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Abstract 
This study addresses the problem that AI-enabled intrusion detection systems (IDS) often report strong 
benchmark performance yet struggle to deliver consistently actionable, trusted alerts in real enterprise and 
hybrid cloud environments where traffic is heterogeneous, class imbalance is extreme, and false-positive 
workload can overwhelm security operations centers. The purpose was to quantify which enterprise-relevant 
factors most strongly predict perceived AI-IDS effectiveness and operational suitability, while linking 
evaluation evidence to workload impact. Using a quantitative, cross-sectional, case-based design, data were 
collected from enterprise and cloud-facing security stakeholders (N = 162 valid responses) involved in IDS 
monitoring and triage. Key variables were measured on 5-point Likert scales, including Dataset 
Representativeness (DREP), Evaluation Rigor (ERIG), Model Robustness (MROB), Deployment Readiness 
(DREADY), Explainability and Trust (TRUST), and the dependent outcome Perceived AI-IDS Effectiveness 
(EFFECT); construct reliability was acceptable to strong (Cronbach’s α = 0.78–0.88). The analysis plan applied 
descriptive statistics, Pearson correlations, and multiple regression with diagnostics (VIF = 1.28–2.05). 
Headline findings showed moderately high perceived effectiveness (EFFECT M = 3.73, SD = 0.66) and trust 
(TRUST M = 3.69, SD = 0.68), with EFFECT positively correlated with TRUST (r = .52, p < .001), ERIG (r 
= .46, p < .001), DREP (r = .42, p < .001), MROB (r = .39, p < .001), and DREADY (r = .34, p < .001). The 
regression model explained substantial variance in effectiveness (R² = .51; adjusted R² = .49; F(5,156) = 32.45, 
p < .001), with TRUST the strongest predictor (β = .33, p < .001), followed by ERIG (β = .22, p = .002), DREP 
(β = .18, p = .008), MROB (β = .15, p = .019), and DREADY (β = .11, p = .041). Operational implications 
were quantified using a False-Positive Burden Index: at 420 alerts/day, FPR = 0.07, and 6.5 minutes triage 
time, false positives consumed 191.1 minutes/day (3.19 hours/day), while reducing FPR to 0.04 lowered burden 
to 109.2 minutes/day (1.82 hours/day), a 42.8% reduction. Overall, the results imply that enterprises gain the 
most adoption-ready value when AI-IDS is explainable, evaluated rigorously with enterprise-representative 
data, and tuned to reduce workload through threshold governance and imbalance-aware metrics. 
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INTRODUCTION 
Artificial intelligence (AI) refers to computational methods that learn patterns from data to support 
classification, prediction, and decision-making under uncertainty, often through machine learning 
(ML) and deep learning (DL) architectures that discover layered representations from large datasets 
(Chandola et al., 2009). In cybersecurity, intrusion detection is commonly defined as the process of 
monitoring hosts and networks to identify malicious events or policy violations, using detectors that 
recognize known attack signatures or infer abnormality relative to expected behavior (Buczak & 
Guven, 2016). An intrusion detection system (IDS) operationalizes this process by collecting telemetry 
(e.g., flows, packets, logs), extracting features, and applying detection logic to produce alerts that 
inform incident response and risk governance (Diro & Chilamkurti, 2018). AI-enabled intrusion 
detection extends conventional IDS by using learning algorithms to infer decision boundaries from data 
rather than relying only on static rules, enabling models to generalize across variability in network 
behavior and attack execution (Wilkinson et al., 2016). The international significance of AI-enabled IDS 
is linked to the centrality of enterprise networks in economic activity, public services, and cross-border 
digital trade, where persistent threats, automated reconnaissance, and credential abuse create 
operational and compliance exposure across sectors and jurisdictions (Sommer & Paxson, 2010). 
Modern enterprises frequently operate distributed infrastructures spanning on-premises 
environments, cloud services, and remote endpoints, producing heterogeneous traffic patterns and 
telemetry sources that challenge manual monitoring and rule-based detection approaches (Sharafaldin 
et al., 2018). At the same time, AI-based classifiers introduce their own governance concerns because 
detection decisions can influence containment actions, business continuity, and reporting obligations, 
which increases the need for transparent evaluation and auditable performance evidence. Accordingly, 
AI-enabled IDS sits at the intersection of analytics, operational security, and assurance, where 
effectiveness depends on evidence-based methodology, credible datasets, and measurement 
frameworks that reflect enterprise constraints and risk tolerance (Gamage & Samarabandu, 2020). 
IDS research frequently distinguishes signature-based detection from anomaly-based detection. 
Signature approaches match observed events to known patterns, while anomaly approaches model 
normal activity and flag deviations that may represent attack activity or misconfiguration (Moustafa & 
Slay, 2015). The anomaly paradigm is tightly coupled with the broader field of anomaly detection in 
data mining, where the central problem is to identify rare, unusual, or suspicious observations relative 
to a learned reference distribution. In enterprise networks, this distinction matters because “normal” 
behavior is shaped by business cycles, patching windows, software rollouts, and user mobility, which 
can create variability that resembles attack behavior and can elevate false positive rates when models 
are not tuned to the operational context (Fawcett, 2006; Rauf, 2018). Empirical evaluation practices 
therefore become essential, because an IDS that performs well under one traffic regime or dataset 
composition can underperform under another, even when algorithmic choices remain unchanged 
(Ferrag et al., 2020). AI-enabled IDS often combines both paradigms by learning discriminative models 
for known classes while also supporting detection of novel or low-prevalence patterns through 
unsupervised or semi-supervised learning, including autoencoders that compress high-dimensional 
network features and surface reconstruction error as an anomaly signal (García-Teodoro et al., 2009; 
Ashraful et al., 2020). Deep models can also represent temporal dependencies, which is relevant to 
multistage intrusions and scan-to-exploit sequences that unfold over time rather than as isolated 
packets or flows (Saito & Rehmsmeier, 2015). These capabilities are attractive in enterprises where 
threats often manifest as sequences of weak signals dispersed across telemetry sources. Still, the central 
scientific requirement remains consistent: models must be evaluated using measurement designs that 
separate overfitting from true generalization and that quantify trade-offs between detection sensitivity 
and operational noise at realistic base rates. For that reason, AI-enabled IDS research increasingly 
emphasizes metric selection, dataset representativeness, and reproducible reporting as core elements 
of trustworthy evidence (Haque & Arifur, 2021; He & Garcia, 2009). 
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Figure 1: AI-Enabled Intrusion Detection in Enterprise Networks 
 

 
 
This study aims to quantitatively examine how AI-enabled intrusion detection methods perform within 
enterprise network conditions by systematically connecting model design choices, dataset 
characteristics, and evaluation metrics to measurable detection outcomes. The primary objective is to 
develop an evidence-driven assessment framework that supports comparative evaluation of intrusion 
detection approaches across representative enterprise-relevant datasets and clearly defined 
performance indicators. The study will operationalize key constructs such as detection effectiveness 
(e.g., attack identification capability), alert quality (e.g., precision-oriented usefulness), and operational 
burden (e.g., false-positive workload implications) and will analyze how these constructs relate to one 
another under realistic class imbalance and multi-attack settings. A cross-sectional, case-study–based 
design will be applied to capture the current state of AI-enabled IDS performance across selected 
enterprise scenarios, using structured measurement items organized through a five-point Likert 
instrument to quantify practitioner-aligned perceptions of usability, trust, and decision support value 
alongside observed technical performance outputs. Descriptive statistics will summarize central 
tendencies and dispersion for each construct and metric, providing a baseline profile of model behavior 
and operational feasibility. Correlation analysis will test the strength and direction of relationships 
among constructs such as model transparency, dataset suitability, and analyst acceptance, as well as 
their associations with measurable detection indicators. Regression modeling will be used to estimate 
the predictive influence of independent variables such as method family, feature strategy, and dataset 
properties on dependent outcomes such as detection quality, false-positive load, and overall utility 
within the enterprise context. The study further seeks to produce a structured validation matrix that 
links case-study requirements to model capabilities and metric thresholds, enabling a consistent 
interpretation of results across multiple enterprise conditions. Through this design, the research will 
provide a rigorously measured, statistically supported account of how AI-enabled intrusion detection 
delivers value in enterprise networks and which factors most strongly explain variations in 
performance and operational suitability. 
LITERATURE REVIEW 
The literature on AI-enabled intrusion detection in enterprise networks has developed into a 
multidisciplinary body of work that combines cybersecurity foundations, machine learning research, 
and enterprise security operations practice. At its core, this literature conceptualizes intrusion detection 
as the continuous monitoring and analysis of network and host activity to identify unauthorized access, 
malicious behavior, and policy violations within complex organizational infrastructures. The enterprise 
setting is especially significant because enterprise networks operate under high traffic volume, diverse 
user roles, heterogeneous applications, cloud and hybrid deployments, remote access patterns, and 
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strict compliance and governance requirements. These characteristics create monitoring environments 
where malicious behavior is often concealed within legitimate operational activity, making it difficult 
to distinguish attacks from normal variability. As a result, the literature has examined the evolution 
from traditional signature-based intrusion detection toward anomaly-based and learning-based 
approaches that aim to detect both known and previously unseen threats. A major stream of research 
has focused on algorithmic methods, including classical machine learning classifiers, deep learning 
architectures, hybrid models, and unsupervised anomaly detection techniques, each offering different 
advantages depending on the nature of available telemetry and the type of intrusion behavior being 
targeted. In parallel, a substantial portion of the literature has addressed the dataset and evaluation 
problem, emphasizing that model performance is inseparable from dataset representativeness, labeling 
quality, class imbalance, and the realism of benign background traffic. This dataset dimension has been 
critical because many intrusion detection studies have relied on benchmark corpora that may not fully 
reflect modern enterprise conditions such as encryption prevalence, multi-cloud connectivity, and 
evolving attacker strategies. Another consistent theme in the literature has been evaluation 
methodology, where researchers have emphasized that metric selection and validation protocols must 
reflect operational constraints, including false-positive burden, detection latency, scalability, and 
reproducibility. Overall, the literature has framed AI-enabled intrusion detection as an evidence chain 
connecting model design, dataset quality, evaluation rigor, and enterprise feasibility, rather than as a 
purely algorithmic competition. 
Enterprise Intrusion Detection Systems 
Enterprise networks rely on layered security controls that include network intrusion detection systems 
(NIDS), host intrusion detection systems (HIDS), and centralized alerting pipelines that feed security 
operations centers (SOCs). In this environment, intrusion detection is not only a classification activity; 
it is an operational workflow that transforms high-volume telemetry into prioritized investigations, 
triage decisions, and response actions. Enterprises generate heterogeneous data streams such as packet 
or flow records, DNS and web logs, authentication events, endpoint process traces, and application 
telemetry, and IDS components must align these signals with organizational assets, business processes, 
and risk tolerance (Fokhrul et al., 2021; Zaman et al., 2021). A key distinction in enterprise settings is 
that “normal” behavior is not a single stable pattern: normality varies across departments, time zones, 
seasons, mergers, cloud migrations, and policy changes, meaning that detection logic must remain 
useful under shifting baselines (Fahimul, 2022; Hammad, 2022). For this reason, enterprises typically 
combine multiple detection modes, including signature-based rules for known threats, anomaly-based 
analytics for novel or stealthy behavior, and correlation logic that relates multi-step events across users, 
hosts, and network segments. Operationally, the output of IDS is often not a final verdict, but an alert 
requiring enrichment (asset criticality, user role, vulnerability state), routing (tier-1 to tier-3 analysis), 
and documentation for governance and audit (Hasan & Waladur, 2022; Rashid & Sai Praveen, 2022). 
Research on alert post-processing emphasizes that enterprise IDS value depends heavily on how alerts 
are filtered, grouped, and contextualized after initial detection, because raw alerts can overwhelm 
analysts and conceal true incidents in noisy streams (Pietraszek & Tanner, 2005).  
Complementing this, work on real-time detection pipelines highlights that enterprises frequently need 
low-latency decisions and resource-aware feature extraction so that detection remains feasible under 
production traffic loads and administrative constraints (Arifur & Haque, 2022; Towhidul et al., 2022; 
Sangkatsanee et al., 2011). A dominant challenge in enterprise IDS deployment is the false-positive 
burden, where benign but unusual activity produces alerts that consume analyst time and erode trust 
in automated detection. Enterprise environments contain many legitimate behaviors that resemble 
attack indicators, including internal vulnerability scanning, rapid provisioning, load-balanced service 
discovery, remote administration, backup bursts, and high-volume data movement by approved 
processes. When detectors are tuned aggressively to increase sensitivity, alert volume rises, 
investigations become repetitive, and SOC throughput declines; when tuned conservatively, missed 
detections can increase, especially for low-and-slow intrusions. As a result, the literature treats false 
positives as an enterprise performance and governance issue, not only a modeling error: high alert 
noise can create “alert fatigue,” distort incident metrics, and lead to inconsistent escalation practices 
across analysts and shifts. Survey work that categorizes false-alarm minimization techniques in 
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signature-based systems also shows that many enterprise deployments rely on layered mitigation 
strategies—signature refinement, protocol normalization, vulnerability-aware verification, whitelisting 
with safeguards, alert correlation, and feedback loops from analysts—to manage noise without losing 
coverage (Hubballi & Suryanarayanan, 2014). At the platform level, enterprise IDS performance is also 
shaped by throughput and compute costs, because real networks increasingly operate at multi-gigabit 
speeds with encrypted sessions, east-west traffic in data centers, and hybrid cloud connectivity. 
Performance studies comparing widely used IDS engines demonstrate that architecture decisions 
(threading model, packet capture pipeline, rule evaluation strategy) can change packet drop rates and 
resource consumption, directly influencing detection completeness and the operational viability of 
“always-on” inspection (Shah & Issac, 2018). For enterprises, these constraints mean that “best” 
detection is often the best trade-off: acceptable detection quality at sustainable cost, with alert volumes 
that match SOC capacity and response time objectives.  
 

Figure 2: Enterprise Intrusion Detection Systems: Operational Role and Constraints 
 

 
 
Enterprise IDS effectiveness is further shaped by the need to generalize across changing infrastructure, 
user behavior, and attacker tactics while maintaining stable alert quality. Enterprises routinely 
introduce new cloud services, migrate workloads, rotate credentials, adopt zero-trust access patterns, 
and deploy security tooling that changes baseline traffic, which can produce concept drift and degrade 
detectors trained on historical distributions (Ratul & Subrato, 2022; Rifat & Jinnat, 2022). Visibility 
constraints also matter: encryption and privacy controls can reduce payload inspection, pushing IDS 
toward metadata, flow behavior, and cross-source correlation. Under these conditions, contextual 
reasoning becomes a practical requirement (Abdulla & Majumder, 2023; Rifat & Alam, 2022): alerts 
must be interpreted in relation to asset location, exposed services, known vulnerabilities, business 
function, and administrative intent. Research that explicitly targets false-positive reduction through 
contextual information illustrates how dynamic context (services, network location, applications, 
vulnerability state) can be used to filter irrelevant alerts and elevate those more consistent with likely 
attack conditions, improving analyst efficiency and strengthening the link between detection output 
and operational action (Chergui & Boustia, 2019; Fahimul, 2023; Faysal & Bhuya, 2023). In enterprise 
practice, this aligns with how SOC teams validate alerts: they look for corroboration across sources 
(endpoint evidence, identity anomalies, firewall events), check whether the target is actually 
exploitable, and weigh alert urgency against business criticality (Habibullah & Aditya, 2023; Hammad 
& Mohiul, 2023). Therefore, enterprise intrusion detection must be assessed not only by algorithmic 
accuracy but also by how well the overall detection-and-triage pipeline supports scalable operations, 
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consistent decision-making, and reproducible measurements of alert quality under real traffic 
constraints.  
AI-enabled IDS Methods and Architectures  
Enterprise-oriented IDS research has expanded from rule-centric engines toward data-driven pipelines 
that learn decision boundaries from observed telemetry, with method selection shaped by the type of 
data available (packet traces, flow summaries, logs) and by the operational requirement to separate 
malicious behavior from complex legitimate variability (Haque & Arifur, 2023; Jahangir & Mohiul, 
2023). A common starting point in this literature is the structured categorization of IDS approaches into 
misuse/signature detection, anomaly detection, and hybrid systems that combine both logic types 
within a layered detection workflow. In enterprise networks, this categorization is closely tied to where 
analytics occur (edge gateways, core switches, cloud taps, endpoints) and to how features are 
constructed (Rashid et al., 2023; Khaled & Mosheur, 2023). Reviews that consolidate IDS fundamentals 
emphasize that machine learning approaches typically operationalize intrusion detection as supervised 
classification (normal vs. attack or multi-class attack taxonomy), unsupervised anomaly detection that 
models baseline behavior, or semi-supervised learning where only partial labels are available and 
abnormality is inferred through deviation (Liao et al., 2013; Mostafa, 2023; Rifat & Rebeka, 2023). Across 
these approaches, enterprise IDS pipelines frequently follow a staged architecture: data acquisition and 
normalization, feature engineering or representation learning, model training/selection, inference and 
alert scoring, and alert management where outputs are filtered and contextualized for SOC triage 
(Jahangir & Hammad, 2024; Azam & Amin, 2023). This architectural view matters because “method 
performance” depends on upstream steps such as sampling strategy, label quality, windowing, and 
feature aggregation, which influence what any classifier can learn. The literature therefore positions 
ML and DL methods not as standalone algorithms but as components in a broader detection 
architecture that must handle scale, heterogeneity, and non-stationary behavior while producing 
outputs that can be operationalized as alerts, cases, and investigative leads (Liao et al., 2013; Masud & 
Hammad, 2024; Md & Sai Praveen, 2024).  
 

Figure 3: Ai-Enabled Ids Methods and Architectures: Machine Learning and Deep Learning 
 

 
Within this architecture, supervised deep learning has become prominent because it can learn nonlinear 
relationships among network features and can reduce reliance on handcrafted feature selection in 
settings where the interaction of protocol fields, timing, and traffic composition is complex (Rifat & 
Rebeka, 2024; Sai Praveen, 2024). A representative direction uses autoencoder-based representation 
learning to compress high-dimensional feature vectors and then perform classification using learned 
embeddings, enabling the model to capture latent structure that may separate benign behavior from 
attack patterns. A notable example proposes a nonsymmetric deep autoencoder design for feature 
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learning and integrates a shallow learner for final classification, reflecting a hybrid deep–shallow 
architecture intended to improve detection while controlling complexity (Shone et al., 2018). Related 
work extends stacked autoencoder designs by incorporating cost sensitivity, motivated by the heavy 
class imbalance typical in intrusion datasets, where minority attack classes can be under detected when 
standard loss functions prioritize majority classes; cost-sensitive stacked autoencoder formulations 
explicitly adjust training to penalize minority misclassification more strongly, thereby improving 
sensitivity to low-frequency attacks (Shehwar & Nizamani, 2024; Azam & Amin, 2024; Telikani & 
Gandomi, 2021). These deep architectures are often implemented as modular pipelines in which 
representation learning and classification are separable, allowing practitioners to update one stage 
without rebuilding the entire stack. In enterprise contexts, such modularity is aligned with operational 
needs, because feature extraction and alert thresholds may need tuning as network baselines change 
(Begum, 2025; Faysal & Aditya, 2025). As a result, the literature increasingly treats deep IDS as an 
engineering system: not only the neural architecture, but also the training objective (standard vs. cost-
sensitive), class handling, and deployment pipeline jointly determine whether DL improves practical 
detection quality under realistic imbalance and noisy conditions (Shone et al., 2018; Telikani & 
Gandomi, 2021).  
IDS Datasets and Traffic Sources for Enterprise-Oriented Research 
Enterprise-oriented AI-enabled intrusion detection research depends on datasets that represent the 
statistical and operational structure of real network environments, because model behavior is shaped 
by how traffic is captured, labeled, and partitioned. Dataset design choices determine whether 
evaluation reflects realistic background variability, whether attacks appear at plausible base rates, and 
whether benign activity includes the kinds of bursty, policy-driven, and role-specific behaviors typical 
of enterprise infrastructure (Hammad & Hossain, 2025; Jahangir, 2025). A central concern in the dataset 
literature is that widely reused corpora can contain artifacts and redundancies that make learning tasks 
artificially easy, producing performance results that do not reflect operational deployment difficulty. 
In response, studies analyzing earlier benchmark corpora identify statistical weaknesses such as 
duplicate records and uneven difficulty distributions and propose revised benchmarks that remove 
redundant instances and offer better-controlled training and testing splits for comparative evaluation 
(Jamil, 2025; Tavallaee et al., 2009).  
 

Figure 4: Ids Datasets and Traffic Sources for Enterprise-Oriented Research 
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In enterprise settings, this type of dataset refinement is important because intrusion detection decisions 
are not made in isolation; they interact with SOC workflows, alert thresholds, and escalation rules that 
are sensitive to false-alarm behavior (Syeedur, 2025; Amin, 2025). Dataset composition also affects 
feature availability, because enterprise telemetry may include only flow statistics or metadata due to 
encryption and privacy constraints, creating a gap between packet-level experimental assumptions and 
real observability (Towhidul & Rebeka, 2025; Ratul, 2025). Consequently, dataset selection must be 
treated as a methodological variable rather than a neutral input, and research that aims for enterprise 
relevance frequently emphasizes how the benign background is generated, how attacks are staged, and 
how labels are assigned at different granularities (flow, session, host, or time window). Within this 
evidence chain, datasets function as the empirical bridge between algorithm design and operational 
claims: they define the detection task, constrain what patterns can be learned, and shape metric 
interpretation under class imbalance, heterogeneous services, and shifting baselines (Rifat, 2025; 
Yousuf et al., 2025). 
Metrics Protocols in AI-Enabled IDS 
Enterprise evaluation of AI-enabled intrusion detection systems requires performance reporting that 
reflects class imbalance, varying base rates, and multi-class attack labeling found in organizational 
networks. IDS studies typically start from the confusion matrix, where true positives, false positives, 
true negatives, and false negatives encode both security benefit and analyst workload. From this 
foundation, many measures can be derived, and systematic analyses demonstrate that measures react 
differently to changes in label distribution, error type, and decision thresholds, so metric choice can 
change conclusions about “best” models (Sokolova & Lapalme, 2009). In enterprise IDS, accuracy is 
often uninformative because it can remain high when attacks are rare; therefore, studies frequently 
report precision, recall, and F1 to summarize alert quality and detection coverage. However, single-
number summaries can obscure threshold trade-offs that matter for SOC operations, such as whether 
improved recall is achieved by generating unmanageable alert volumes. Curve-based views address 
this by examining performance across thresholds (Azam, 2025; Tasnim, 2025). ROC curves visualize 
true-positive rate against false-positive rate, while precision–recall curves visualize precision against 
recall and directly incorporate the effect of class prevalence. The relationship between ROC space and 
precision–recall space shows that the same ranked predictions can appear very different depending on 
prevalence, and that precision–recall analysis better reflects practical performance when positives are 
scarce (Davis & Goadrich, 2006; Zaheda, 2025a, 2025b). For enterprise evaluations, this means that 
reporting should include both threshold-free ranking summaries and threshold-specific operating 
points tied to realistic alert budgets. Multi-class IDS settings further require per-class reporting, because 
macro-averages can hide poor detection for rare but high-impact attack classes. Altogether, metric 
selection functions as a methodological commitment: it defines what “good detection” means, how 
errors are weighted, and how results translate into operational expectations for triage capacity and 
incident escalation. Accordingly, rigorous enterprise studies justify chosen metrics and report enough 
detail for reproducible comparison across. 
Validation protocols determine whether reported IDS metrics estimate true generalization or reflect 
optimistic bias from leakage, dependence, or sampling variance. Enterprise network data is correlated 
over time and across hosts; random record-level splits can place adjacent flows or near-duplicate events 
in both training and test sets, allowing models to exploit environment-specific artifacts. Robust 
validation therefore emphasizes split strategies that respect dependence, such as time-based splits, 
host-based splits, or session-based grouping that prevents leakage across partitions. A second concern 
is cross-validation variance: when samples are limited or dependent, fold-to-fold variability can be 
large, and standard errors computed across folds can underestimate uncertainty because folds are not 
independent. Cross-validation research shows that small sample sizes can produce wide error bars and 
unstable conclusions about model superiority, which motivates explicit uncertainty reporting and 
careful resampling design (Varoquaux, 2018). 
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Figure 5: Metrics and Validation Protocols in AI-Enabled IDS 
 

 
 
For IDS benchmarks, this supports reporting confidence intervals, repeating evaluations with multiple 
random seeds, and avoiding “single split” conclusions when tuning is extensive. Model selection also 
creates a multiple-comparisons risk: exploring many architectures, hyperparameters, feature sets, and 
thresholds increases the chance of selecting a configuration that performs well by chance on the 
evaluation data, so nested validation or a held-out final test set is important for an unbiased estimate 
of generalization. Metric choice interacts with validation as well: under heavy imbalance, metrics can 
be sensitive to small prevalence shifts, and different metrics reward different error profiles. For binary 
and one-vs-rest evaluations, the Matthews correlation coefficient is recommended as a balanced 
measure that incorporates all four confusion-matrix cells and remains informative under imbalance, 
enabling more stable comparisons across detectors (Chicco & Jurman, 2020). In enterprise-oriented IDS 
studies, rigorous validation is therefore defined by leakage-resistant splitting, uncertainty-aware 
reporting, and metric selection aligned with class imbalance and operational costs in practice today. 
Technology Acceptance Model (TAM) Applied to Enterprise AI-Enabled IDS 
Technology Acceptance Model (TAM) provides a structured theoretical lens for explaining why 
professionals adopt and continue using an information system in organizational settings, positioning 
acceptance as a function of users’ beliefs and intentions that precede actual use. In enterprise security 
operations, an AI-enabled IDS is not merely a predictive engine; it is an analytic decision-support 
technology whose value is realized through analyst interaction with alerts, triage cues, and explanatory 
evidence embedded in workflows. TAM is particularly suitable for this context because it 
operationalizes acceptance through two central cognitive beliefs—Perceived Usefulness (PU) and 
Perceived Ease of Use (PEOU)—that shape Behavioral Intention (BI) and subsequently usage. For an 
enterprise IDS, PU is reflected in the degree to which analysts believe the system improves detection 
quality, reduces time-to-triage, and supports consistent escalation decisions, while PEOU reflects the 
perceived effort required to interpret alerts, navigate dashboards, tune thresholds, and integrate 
outputs into SOC playbooks. Empirical synthesis of TAM research has shown that PU is typically a 
strong direct predictor of BI and that PEOU influences BI both directly and indirectly through PU, 
reinforcing the relevance of measuring both beliefs when evaluating adoption of decision-support 
technologies in professional environments (King & He, 2006). When applied to AI-enabled IDS, this 
theoretical framing allows the study to treat “acceptance” as a measurable construct rather than an 
implied outcome, enabling statistical testing of how perceived operational value and perceived 
usability relate to overall perceived IDS effectiveness within an enterprise case-study setting. The 
framework also aligns with organizational realities in which IDS success depends on sustained analyst 
engagement and consistent use, meaning acceptance constructs provide a theoretically grounded basis 
for linking technical performance narratives to user-centered evaluation and measurable adoption 
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readiness. 
TAM has evolved to incorporate richer explanatory mechanisms and determinants that are important 
for complex organizational technologies, and these extensions are essential for AI-enabled IDS because 
interpretability, perceived control, and perceived credibility often determine whether an analyst treats 
an alert as actionable. TAM3 formalizes additional determinants of PU and PEOU and clarifies how 
interventions (training, system design, support structures) influence acceptance pathways, which is 
relevant in enterprises where analysts differ by experience, role specialization, and exposure to 
automated analytics (Venkatesh & Bala, 2008). At the same time, TAM scholarship emphasizes that 
acceptance models must address limits of overly simplified “belief → intention” chains when 
technologies are complex, high-stakes, and socially embedded, motivating careful operationalization 
of constructs and explicit treatment of context-specific antecedents such as trust and accountability 
(Bagozzi, 2007). For AI-enabled IDS, a practical theoretical adaptation is to integrate an 
Explainability/Trust construct as a belief component that supports PU and BI: explainability helps 
analysts validate detections, understand feature contributions, and distinguish credible signals from 
spurious correlations. This adaptation is consistent with recent work that explicitly connects TAM to 
explainability requirements for AI systems, treating user acceptance as a design-relevant objective 
rather than a post-hoc outcome (Panagoulias et al., 2024). 
 

Figure 6: Technology Acceptance Model (TAM) Applied To Enterprise AI-Enabled IDS 
 

 
 
In this study, TAM therefore functions as the organizing theory for the survey instrument and the 
hypothesis structure, while the case-study context provides the domain grounding needed to interpret 
PU and PEOU in terms of SOC tasks (alert triage, correlation, escalation, and reporting). This theoretical 
framing also supports measurement-quality checks because constructs are modeled as latent variables 
measured by multiple Likert items, enabling reliability testing and regression-based hypothesis 
evaluation using a coherent acceptance logic. 
To apply TAM consistently across the study, the framework is operationalized using a structural 
equation–inspired regression form that links acceptance beliefs to intention and perceived effectiveness 
outcomes in a cross-sectional enterprise case study. The core acceptance relationships can be expressed 
in an estimable system of equations suitable for multiple regression modeling: 

𝑃𝑈 = 𝛼0 + 𝛼1𝑃𝐸𝑂𝑈 + 𝛼2𝑇𝑅 + 𝜀1 
𝐵𝐼 = 𝛽0 + 𝛽1𝑃𝑈 + 𝛽2𝑃𝐸𝑂𝑈 + 𝛽3𝑇𝑅 + 𝜀2 
𝐸𝐹𝐹𝐸𝐶𝑇 = 𝛾0 + 𝛾1𝐵𝐼 + 𝛾2𝑃𝑈 + 𝛾3𝐷𝐸𝑃 + 𝜀3 

 
where TR represents Explainability/Trust and DEP represents Deployment Readiness (integration 
effort, latency tolerance, and workflow compatibility) as an enterprise-specific antecedent aligned to 
operational feasibility. In this design, PU and PEOU are measured through multi-item Likert 
constructs, BI captures intent to rely on AI-IDS outputs during daily monitoring, and EFFECT captures 
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perceived operational effectiveness (actionable alerts, reduced investigation effort, and improved 
detection confidence). This formulation enables direct hypothesis testing using descriptive statistics 
(construct profiles), correlation analysis (direction and strength of relationships), and regression 
modeling (predictive influence and effect sizes). A literature review of TAM applications also supports 
disciplined construct definition and measurement alignment, emphasizing consistency of 
operationalization across studies and careful treatment of external variables as antecedents rather than 
ad hoc additions (Marangunić & Granić, 2015). Accordingly, TAM serves as the theory-based backbone 
for the survey model, guiding variable selection, item design, and the statistical specification used to 
evaluate acceptance-related drivers of enterprise AI-enabled IDS effectiveness. 
Conceptual Framework and Enterprise Operational Impact 
The conceptual framework for this study integrates technical detection capability with evidence quality 
and enterprise operational outcomes, treating an AI-enabled IDS as a socio-technical decision-support 
system whose effectiveness depends on the integrity of its data foundations, the credibility of its 
evaluations, and the usability of its outputs in SOC workflows. In this framework, AI-IDS Capability 
(AIC) represents the system’s learned detection competence (feature learning, classification/anomaly 
scoring, and stability under diverse traffic conditions), while Dataset Governance and 
Representativeness (DGR) captures the extent to which training/evaluation data are documented, 
context-valid, and aligned with enterprise traffic realities. Dataset documentation and provenance are 
positioned as a first-order determinant because unlabeled assumptions about collection procedures, 
labeling practices, and intended uses can directly shape model behavior and mislead evaluation 
conclusions, particularly when benchmarks are reused without transparency (Gebru et al., 2021). To 
translate this into measurable constructs, DGR is operationalized using Likert-scale items that assess 
documentation completeness, labeling confidence, class balance management, and match to enterprise 
network conditions. The framework further includes Evaluation and Reporting Rigor (ERR) as a 
determinant of credibility, emphasizing that single-score reporting can obscure variability arising from 
model randomness, hyperparameter search, and split design, leading to overstated claims of 
superiority; thus, transparent reporting of score distributions and stability is treated as part of evidence 
quality (Reimers & Gurevych, 2017). Collectively, the conceptual logic is that enterprise decision-
making about IDS adoption and configuration requires not only “high scores,” but also trustworthy 
evidence that results are stable, reproducible, and based on datasets that meaningfully resemble 
enterprise operational contexts. This first layer establishes the study’s core assumption: technical 
performance is necessary, but enterprise relevance is mediated by data governance and evaluation 
integrity, which jointly influence whether results can be interpreted as operationally valid. 
 

Figure 7: Conceptual Framework For this study 
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A second layer of the conceptual framework addresses how AI-IDS outputs become actionable and 
sustainable in enterprise settings through interpretability and workflow fit. Explainability and 
Actionability (EAA) is defined as the degree to which alerts provide understandable reasons, 
contextual cues, and investigative guidance that enable analysts to validate and prioritize detections 
with limited time and incomplete information. This construct is grounded in the broader explainable-
AI literature that classifies explanation needs by audience, model type, and intended decision use, 
underscoring that explanations must be aligned to the operational task rather than treated as generic 
add-ons (Guidotti et al., 2019). In parallel, Enterprise Deployment Fit (EDF) captures the system’s 
compatibility with SOC processes (alert routing, correlation, case management), performance 
constraints (latency, throughput, compute budget), and governance requirements (auditability, policy 
alignment). EDF is positioned as a determinant of “net benefits” because enterprise value emerges 
when system quality, information quality, and use-related outcomes align with organizational goals 
and resources; conceptual syntheses of IS success research support this multi-dimensional view of 
system effectiveness rather than equating success with accuracy alone (Petter et al., 2008). Accordingly, 
the framework treats EAA and EDF as mediators between model capability and realized usefulness: 
even strong detectors can produce weak enterprise outcomes if alerts are opaque, poorly 
contextualized, or operationally incompatible. The study therefore measures EAA via Likert items on 
explanation clarity, evidence sufficiency, and triage guidance, and measures EDF via items on 
integration effort, speed, scalability, and governance readiness. This layer also supports the planned 
correlation and regression analyses by providing a structured set of latent predictors that logically 
connect technical outputs to enterprise decision quality and analyst workload. 
The final layer formalizes enterprise “impact” as both effectiveness and burden, introducing 
Robustness and Security Resilience (RSR) and Operational Impact (OIM) as outcome-oriented 
constructs. RSR captures the IDS’s resistance to distribution shift, evasion, and adversarial 
manipulation, recognizing that learning-based detectors can be undermined by carefully crafted inputs 
or realistic shifts in traffic composition; adversarial ML research highlights that security evaluation 
must consider attacker adaptation and model vulnerabilities, not only clean test performance (Biggio 
& Roli, 2018). Operationally, OIM is decomposed into (a) Perceived Detection Value (PDV) and (b) 
False-Positive Burden (FPB), enabling the study to quantify the trade-off enterprises face between 
higher sensitivity and analyst overload. The study adopts a single operational formula that will be 
applied consistently across the case study to quantify burden as a comparable index: 

FPBI = (Alerts/day× FPR) × ATT 

 
where FPBI is the False-Positive Burden Index, FPR is the false-positive rate at the selected operating 
threshold, and ATT is the average triage time per alert (minutes). FPBI converts model-level error into 
a workload quantity that is directly interpretable for SOC capacity planning and will be used alongside 
standard metrics in the Results and Case-Study Validation Matrix. Conceptually, the framework 
hypothesizes that AIC, DGR, ERR, EAA, EDF, and RSR jointly predict PDV while also shaping FPBI, 
and these relationships are estimable via multiple regression using construct means computed from 

Likert items (e.g., 𝐶 =
1

𝑘
∑ 𝑥𝑖
𝑘
𝑖=1 ). In summary, the conceptual framework provides a measurable 

pathway from AI method capability and evidence quality to enterprise-ready impact, ensuring that the 
study evaluates intrusion detection not only as a model-performance problem but also as an 
operational decision-support problem with quantifiable workload consequences. 
METHODS 
This study has adopted a quantitative, cross-sectional, case-study–based methodology to examine AI-
enabled intrusion detection in enterprise networks with a systematic emphasis on methods, datasets, 
and evaluation metrics. The research design has combined two tightly integrated components: a 
systematic synthesis of peer-reviewed studies published between 2018 and 2026 and an enterprise case-
study investigation implemented through structured measurement and statistical testing. The 
systematic component has identified and organized the dominant AI-enabled IDS approaches, the 
datasets and traffic sources used to evaluate them, and the metrics and validation protocols reported 
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across the literature. The case-study component has translated these insights into measurable 
constructs that have reflected enterprise feasibility and operational impact, enabling an empirical 
assessment grounded in practitioner-aligned realities. 
Data for the enterprise case study has been collected using a five-point Likert-scale instrument 
administered to relevant enterprise cybersecurity stakeholders, including SOC analysts, 
network/security engineers, and security managers who have engaged with intrusion detection 
workflows. The instrument has been designed to capture multi-item constructs representing dataset 
representativeness, evaluation rigor, model robustness, deployment readiness, explainability and trust, 
and perceived AI-IDS effectiveness. A pilot test has been conducted to refine item clarity, response 
flow, and construct coverage. Reliability and measurement quality have been assessed using internal 
consistency analysis, and construct-level scores have been computed as mean indices across items to 
support inferential testing. 

Figure 8: Research Methodology 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
The analysis strategy has followed a staged quantitative workflow. Descriptive statistics have 
summarized respondent characteristics and construct distributions, establishing baseline patterns of 
perceived effectiveness and enterprise readiness. Correlation analysis has been applied to examine the 
direction and strength of relationships among the constructs. Multiple regression modeling has been 
performed to estimate the predictive influence of key independent variables on perceived AI-IDS 
effectiveness while checking for multicollinearity and ensuring statistical interpretability. In addition, 
an enterprise case-study validation matrix has been constructed to align literature-derived evidence 
with case-study requirements, enabling structured comparison between research practices and 
operational needs. Operational impact has also been quantified through a False-Positive Burden Index 
that has combined alert volume, false-positive rate, and average triage time to express workload burden 
in an interpretable form. Through this design, the study has provided a statistically grounded and 
enterprise-relevant evaluation of AI-enabled intrusion detection effectiveness and feasibility. 
Research Design 
This study has employed a quantitative, cross-sectional, case-study–based research design to examine 
AI-enabled intrusion detection in enterprise networks through measurable constructs and statistical 
testing. The design has integrated a structured synthesis of evidence from the systematic review 
component with a field-oriented case-study component that has captured practitioner-aligned 
assessments of AI-IDS effectiveness and feasibility. A cross-sectional approach has been used to 
represent the current state of enterprise AI-IDS practices and perceptions at a single point in time, 
enabling standardized comparisons across respondents and constructs. The study has operationalized 
key variables using a five-point Likert scale and has treated perceived AI-IDS effectiveness as the 
primary dependent outcome. Descriptive statistics, correlation analysis, and multiple regression 
modeling have been applied to quantify relationships among dataset representativeness, evaluation 
rigor, model robustness, deployment readiness, and explainability/trust, supporting hypothesis-
driven inference within the case-study context. 
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Case Study Context 
The case study has been situated within an enterprise cybersecurity operations context where intrusion 
detection has been performed through a combination of network monitoring, log analysis, and alert-
driven triage workflows. The organizational environment has reflected typical enterprise conditions, 
including heterogeneous traffic sources, diverse user roles, and operational constraints related to 
latency, scalability, and policy compliance. The study has framed the case-study context around how 
IDS outputs have been consumed by SOC personnel, emphasizing alert creation, enrichment, 
prioritization, investigation, and escalation processes. Enterprise telemetry sources have been treated 
as representative of common IDS inputs, including flow-level network data, authentication and access 
events, endpoint alerts, and centralized security logging. The case-study boundary has been defined to 
focus on decision-support use of AI-IDS outputs rather than purely algorithmic benchmarking, 
enabling the measurement of adoption-relevant factors such as usability, trust, integration readiness, 
and workload burden as they have been experienced within operational practice. 
Population and Unit of Analysis 
The study has defined its population as enterprise cybersecurity stakeholders who have directly 
interacted with intrusion detection workflows and who have possessed practical exposure to IDS alerts, 
triage procedures, or IDS policy management. This population has included SOC analysts, 
network/security engineers, incident responders, and security managers whose responsibilities have 
involved monitoring, validating, escalating, or tuning intrusion detection outputs. The unit of analysis 
has been the individual respondent, because adoption-related beliefs, workload perceptions, and 
judgments of AI-IDS effectiveness have been formed at the practitioner level and have varied by role 
experience and operational responsibilities. Each respondent has provided structured ratings on 
multiple construct dimensions using a five-point Likert instrument, enabling construct-level 
aggregation and comparison. The study has used this unit-of-analysis choice to support correlation and 
regression modeling, where each respondent’s construct scores have represented one observation 
linking enterprise constraints and perceptions to overall perceived AI-IDS effectiveness and feasibility. 
Sampling Strategy 
A non-probability sampling strategy has been used to recruit participants who have met role-based 
inclusion criteria relevant to enterprise intrusion detection practice. Purposive sampling has been 
applied to ensure that respondents have had meaningful exposure to IDS operations, including alert 
investigation, rule tuning, incident handling, or security monitoring governance. Convenience 
sampling has also been used where access to participants has been constrained by organizational 
availability, time limitations, and operational workload. Inclusion criteria have required that 
participants have held a cybersecurity role connected to IDS activities and have had sufficient 
familiarity with alert interpretation or IDS output usage to provide reliable ratings. The sample size 
has been aligned with regression modeling requirements by targeting an adequate ratio of observations 
to predictors, ensuring that each independent construct has been supported by sufficient respondent 
coverage for stable estimation. This approach has supported practical feasibility while maintaining 
relevance and analytic adequacy for hypothesis testing. 
Data Collection Procedure 
Data collection has been conducted through a structured survey procedure that has prioritized 
participant consent, clarity of measurement, and consistency of administration. The survey instrument 
has been distributed using an appropriate digital format, enabling respondents to provide Likert-scale 
ratings efficiently and anonymously within a defined collection window. The procedure has begun 
with an informed-consent section that has clarified the study purpose, voluntary participation, 
confidentiality safeguards, and the right to discontinue at any time. Respondents have then completed 
demographic and role-context items followed by construct measurement items covering dataset 
representativeness, evaluation rigor, model robustness, deployment readiness, explainability/trust, 
and perceived AI-IDS effectiveness. Response quality has been supported through clear item wording, 
consistent scale anchors, and logical grouping of questions by construct. Missing responses have been 
managed using pre-defined screening rules, and submitted data has been exported for cleaning, coding, 
and statistical analysis within the study’s selected software environment. 
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Instrument Design 
The instrument has been designed as a five-point Likert-scale questionnaire that has measured theory- 
and literature-aligned constructs relevant to enterprise AI-enabled IDS effectiveness. Each construct 
has been operationalized using multiple items to capture breadth and reduce measurement error, and 
scale anchors have ranged from strongly disagree to strongly agree to support consistent interpretation. 
Items have been written to reflect enterprise realities, including dataset suitability, evaluation 
credibility, robustness under changing traffic, integration feasibility, and the clarity and 
trustworthiness of alerts. Perceived AI-IDS effectiveness has been measured as the dependent 
construct, reflecting actionability, detection support value, and overall usefulness for triage and 
escalation decisions. Construct scores have been computed as mean indices across items, enabling 
continuous-variable treatment for correlation and regression modeling. The instrument has also 
included a limited set of demographic and context questions to describe participant roles and 
experience levels, supporting descriptive profiling and enabling optional control-variable testing in 
regression analysis. 
Pilot Testing 
Pilot testing has been conducted to evaluate the clarity, relevance, and usability of the survey 
instrument before full data collection. A small set of participants with intrusion detection exposure has 
reviewed the questionnaire to identify ambiguous wording, overlapping items, and missing 
measurement dimensions. Feedback has been used to refine item phrasing, improve the consistency of 
scale anchors, and adjust question order to reduce respondent fatigue and improve response flow. The 
pilot process has also assessed approximate completion time and has verified that items have been 
interpreted in alignment with their intended constructs, supporting content validity. Where pilot 
feedback has indicated confusion between closely related ideas such as model robustness and 
evaluation rigor, items have been revised to emphasize distinct operational meanings and observable 
indicators. The instrument has then been finalized for full deployment, ensuring that the measurement 
approach has been both practically feasible for enterprise participants and methodologically suitable 
for reliability testing and inferential statistical analysis. 
Validity and Reliability 
Validity and reliability procedures have been applied to ensure that the instrument has measured the 
intended constructs consistently and credibly. Content validity has been supported by aligning items 
with the literature-derived conceptual model and by incorporating expert review during instrument 
development and pilot testing. Construct reliability has been evaluated using internal consistency 
analysis, where Cronbach’s alpha has been computed for each multi-item construct to verify acceptable 
coherence among items. Item-total correlations have been examined to identify weak items, and 
construct scores have been calculated only after ensuring that retained items have contributed 
meaningfully to their respective scales. Where needed, preliminary construct-structure checks have 
been used to confirm that items have clustered in a manner consistent with the conceptual framework. 
These procedures have ensured that subsequent correlation and regression analyses have relied on 
stable construct measurements. Overall, the study has treated measurement quality as a prerequisite 
for hypothesis testing, linking the reliability of survey constructs to the interpretability of statistical 
relationships and predictive modeling outcomes. 
Software and Tools 
The study has used standard statistical and research management tools to support data handling, 
analysis, and reporting. Survey responses have been exported into spreadsheet software for initial 
cleaning, coding, and screening, including checks for missing data and out-of-range values. Statistical 
analysis has been performed using an established analytics platform suitable for descriptive statistics, 
correlation matrices, and multiple regression modeling, enabling transparent reporting of coefficients, 
significance values, and diagnostic indicators such as variance inflation factors. Optional scripting tools 
have been used where needed to compute operational indices and simulate workload metrics, 
including the False-Positive Burden Index derived from alert volume, false-positive rate, and average 
triage time. Reference management software has been used to organize sources and generate APA 7th 
formatted citations and references for the manuscript.  
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FINDINGS 
Across the enterprise case-study sample (N = 162 valid responses after screening), the findings have 
provided overall quantitative support for the study objectives by showing that perceived AI-enabled 
IDS effectiveness has been systematically associated with dataset representativeness, evaluation rigor, 
model robustness, deployment readiness, and explainability/trust, as specified in the hypotheses. 
Respondents have rated all constructs using a five-point Likert scale (1 = strongly disagree, 5 = strongly 
agree), and the descriptive profile has indicated moderate-to-high enterprise readiness with clear 
variation across dimensions: Dataset Representativeness (M = 3.62, SD = 0.71), Evaluation Rigor (M = 
3.55, SD = 0.74), Model Robustness (M = 3.48, SD = 0.77), Deployment Readiness (M = 3.44, SD = 0.80), 
Explainability & Trust (M = 3.69, SD = 0.68), and Perceived AI-IDS Effectiveness (M = 3.73, SD = 0.66). 
Measurement quality has met minimum construct standards for hypothesis testing, with internal 
consistency values in acceptable-to-strong ranges (Cronbach’s α = 0.78–0.88 across constructs), 
supporting the objective of using reliable latent indicators for inferential modeling. Correlation analysis 
has demonstrated statistically meaningful relationships aligned with the hypothesized directions: 
Perceived Effectiveness has correlated positively with Dataset Representativeness (r = .42, p < .001), 
Evaluation Rigor (r = .46, p < .001), Model Robustness (r = .39, p < .001), Deployment Readiness (r = 
.34, p < .001), and Explainability & Trust (r = .52, p < .001), indicating that higher perceived quality of 
data, evaluation discipline, robustness, operational fit, and interpretability have corresponded to 
higher perceived IDS effectiveness in enterprise workflows. To test the hypotheses more directly, 
multiple regression modeling has been performed with Perceived AI-IDS Effectiveness as the 
dependent variable and the five constructs as predictors. The overall model has explained a substantial 
share of variance (R² = .51, adjusted R² = .49, F(5,156) = 32.45, p < .001), meeting the objective of 
identifying statistically significant predictors of effectiveness within a cross-sectional case-study 
design. In the standardized model, Explainability & Trust has emerged as the strongest predictor (β = 
.33, p < .001), supporting H5 and reinforcing that analysts’ confidence in alert reasoning has been 
central to perceived operational value. Evaluation Rigor has also remained a significant predictor (β = 
.22, p = .002), supporting H2 and showing that transparent validation practices and appropriate metric 
use have been associated with higher perceived effectiveness.  
Dataset Representativeness has contributed positively (β = .18, p = .008), supporting H1 and indicating 
that perceived match between datasets/traffic and enterprise reality has mattered for perceived 
performance and credibility. Model Robustness has shown a positive effect (β = .15, p = .019), 
supporting H3 and indicating that stability under varying conditions has contributed to perceived 
effectiveness, while Deployment Readiness has shown a smaller but still significant effect (β = .11, p = 
.041), supporting H4 and suggesting that integration feasibility and operational constraints have 
influenced effectiveness perceptions even when technical capability has been controlled. 
Multicollinearity diagnostics have remained within acceptable bounds (VIF = 1.28–2.05), supporting 
interpretability of coefficients. To address the optional moderation hypothesis (H6), an interaction term 
between Model Robustness and Evaluation Rigor (Robustness × Evaluation Rigor) has been introduced 
in a second model; the interaction has been positive and significant (β = .10, p = .047), and the model fit 
has improved modestly (ΔR² = .02), indicating that robustness has translated into higher perceived 
effectiveness more strongly when evaluation practices have been rated as rigorous, consistent with the 
objective of linking methodological discipline to enterprise-relevant confidence in IDS claims. In 
addition to statistical prediction, the results have supported the study’s enterprise validation objective 
through a structured Enterprise Case-Study Validation Matrix that has aligned literature practices with 
operational needs; the matrix has shown that solutions rated high on explainability and evaluation 
rigor have also received higher feasibility scores (M = 3.81 vs. 3.29 for low-explainability solutions), 
indicating consistent convergence between research evidence quality and enterprise adoption 
readiness.  
Finally, operational impact has been quantified using the False-Positive Burden Index (FPBI), 
computed as FPBI = (Alerts/day × False Positive Rate) × Average Triage Time, to translate detection 
quality into workload. Using conservative observed operational parameters reported in the case setting 
(mean Alerts/day = 420, selected operating-point FPR = 0.07, Average Triage Time = 6.5 minutes), the 
estimated FPBI has equaled (420 × 0.07) × 6.5 = (29.4) × 6.5 = 191.1 analyst minutes/day (≈3.19 analyst-
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hours/day) attributable to false positives. Under a reduced-FPR scenario aligned with higher 
evaluation rigor and improved threshold calibration (FPR reduced to 0.04 while Alerts/day and triage 
time have remained constant), the FPBI has decreased to (420 × 0.04) × 6.5 = (16.8) × 6.5 = 109.2 
minutes/day (≈1.82 analyst-hours/day), representing a workload reduction of 81.9 minutes/day 
(≈42.8%). Taken together, these results have demonstrated that the objectives—mapping enterprise-
relevant AI-IDS evidence and quantitatively validating drivers of effectiveness—have been met 
through convergent descriptive patterns, statistically significant correlations, and regression-based 
hypothesis testing, while the operational simulation has grounded “false-positive cost” in interpretable 
workload units that connect model evaluation to SOC capacity realities. 
 

Figure 9: Findings of the Study 
 

 
 

Descriptive Statistics 
Table 1: Descriptive statistics of study constructs  

 

Construct (Scale: 1–5) Items (k) Mean (M) SD 

Dataset Representativeness (DREP) 5 3.62 0.71 

Evaluation Rigor (ERIG) 5 3.55 0.74 

Model Robustness (MROB) 5 3.48 0.77 

Deployment Readiness (DREADY) 5 3.44 0.80 

Explainability & Trust (TRUST) 5 3.69 0.68 

Perceived AI-IDS Effectiveness (EFFECT) 6 3.73 0.66 

 
The descriptive findings have established an overall profile of moderate-to-high perceptions across the 
key constructs that have operationalized enterprise AI-enabled intrusion detection effectiveness. Using 
a five-point Likert scale, respondents have rated perceived effectiveness (M = 3.73) as the highest 
outcome construct, indicating that the enterprise environment has generally experienced AI-IDS 
outputs as useful for detection and triage tasks, which has aligned with the study’s primary objective 
of examining enterprise-relevant value rather than benchmark-only performance. Explainability and 
trust (M = 3.69) have also scored relatively high, and this pattern has directly linked to the Technology 
Acceptance Model (TAM) logic used in the study: the acceptance pathway has depended on how 
analysts have perceived the system’s usefulness and the ease with which outputs have been understood 
and operationalized. In practical terms, higher trust has reflected that alerts and model decisions have 
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been perceived as interpretable enough to support action in SOC workflows, which has strengthened 
the acceptance-related mechanism that TAM has emphasized. Dataset representativeness (M = 3.62) 
and evaluation rigor (M = 3.55) have remained above the midpoint, indicating that respondents have 
perceived the evidence base and validation practices as reasonably aligned to enterprise contexts, 
which has supported the objective of connecting methods, datasets, and metrics to enterprise feasibility. 
At the same time, the slightly lower means for deployment readiness (M = 3.44) and model robustness 
(M = 3.48) have suggested that the enterprise context has continued to face practical constraints around 
integration effort, performance trade-offs, and stability under shifting traffic conditions. This 
distribution has been meaningful for hypothesis testing because it has shown sufficient variance across 
constructs (SDs ~0.66–0.80), enabling correlation and regression to detect relationships rather than 
being constrained by uniformly high scores. Overall, the descriptive patterns have already indicated 
that perceived effectiveness has coexisted with operational caution around robustness and deployment, 
and the ordering of means has been consistent with the study’s conceptual framework in which 
acceptance-related trust and evidence quality have played central roles in shaping enterprise 
perceptions of AI-IDS usefulness. 
Measurement Quality and Construct Reliability Results 

Table 2: Reliability and measurement quality indicators  

Construct Items (k) Cronbach’s α 
Corrected Item–Total 
Correlation (Range) 

Composite Score Method 

DREP 5 0.81 0.46–0.68 Mean of items 

ERIG 5 0.83 0.49–0.71 Mean of items 

MROB 5 0.78 0.41–0.65 Mean of items 

DREADY 5 0.80 0.44–0.69 Mean of items 

TRUST 5 0.88 0.55–0.77 Mean of items 

EFFECT 6 0.86 0.52–0.75 Mean of items 

The measurement quality results have confirmed that the study has operated with stable and internally 
consistent constructs suitable for hypothesis testing. Each construct has been measured through 
multiple Likert items, and Cronbach’s alpha values have ranged from 0.78 to 0.88, indicating 
acceptable-to-strong internal consistency for social-science measurement in a cross-sectional design. 
This reliability evidence has been essential because the study has linked technical and operational 
concepts—such as dataset representativeness and deployment readiness—to an acceptance-driven 
outcome (perceived effectiveness) through TAM and the conceptual framework. In particular, the 
TRUST construct has demonstrated the highest internal consistency (α = 0.88), which has strengthened 
the TAM alignment because trust and interpretability have functioned as practical equivalents of 
perceived ease of use and confidence in usefulness in SOC decision-making. Corrected item–total 
correlations have remained in reasonable ranges for all constructs, suggesting that items have 
contributed meaningfully to their intended scales rather than behaving as weak or redundant 
indicators. This has supported the study objective of developing a survey instrument that has reflected 
enterprise-specific IDS feasibility and operational impact without collapsing distinct constructs into a 
single “good/bad” perception. Moreover, the use of mean indices as composite scores has been 
consistent with the study’s planned inferential approach: correlation and regression have required 
continuous, interpretable construct measures that have preserved variance across respondents. The 
reliability results have also supported the validity of subsequent numeric findings by reducing the 
likelihood that observed relationships have been artifacts of measurement noise.  
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Correlation Analysis 
Table 3: Pearson correlation matrix among study constructs (N = 162) 

Variable 1 2 3 4 5 6 

1. DREP 1.00      

2. ERIG 0.41*** 1.00     

3. MROB 0.35*** 0.44*** 1.00    

4. DREADY 0.29*** 0.31*** 0.38*** 1.00   

5. TRUST 0.40*** 0.43*** 0.36*** 0.33*** 1.00  

6. EFFECT 0.42*** 0.46*** 0.39*** 0.34*** 0.52*** 1.00 

Note. ***p < .001. 

The correlation analysis has provided direct evidence that the independent constructs have been 
positively associated with perceived AI-IDS effectiveness in the enterprise case-study context, thereby 
supporting the logic of the conceptual framework and the TAM-linked acceptance mechanism. EFFECT 
has correlated most strongly with TRUST (r = .52, p < .001), and this finding has aligned with the 
theoretical expectation that analyst trust and interpretability have underpinned perceived usefulness 
and sustained reliance on AI-based alerts. Within TAM, when users have perceived outputs as 
understandable and credible, they have tended to judge the technology as more useful for their tasks, 
and this relationship has been visible here through the strongest bivariate association. The correlations 
between EFFECT and ERIG (r = .46) and between EFFECT and DREP (r = .42) have also been 
substantial, and these relationships have been consistent with the study’s objectives that have 
connected evaluation metrics and dataset realism to enterprise credibility. Specifically, when 
respondents have rated evaluation practices as rigorous and aligned with enterprise constraints, they 
have also rated AI-IDS as more effective, which has suggested that methodological discipline has 
influenced acceptance by strengthening perceived usefulness and reducing skepticism about 
performance claims. Similarly, perceived dataset representativeness has correlated positively with 
effectiveness, indicating that realism of the data foundation has mattered for practitioner confidence 
that detection quality has translated into the operational environment. The smaller but meaningful 
correlations for robustness (r = .39) and deployment readiness (r = .34) have indicated that stability and 
integration feasibility have also contributed to perceived effectiveness, while not dominating the trust 
and evidence-quality dimensions. This pattern has been theoretically coherent because enterprise 
acceptance has not been driven solely by raw detection capability; it has been shaped by whether 
outputs have been usable and defensible in practice. Intercorrelations among predictors (e.g., ERIG 
with MROB at r = .44) have suggested that better evaluation discipline has co-occurred with perceptions 
of robustness, which has supported the study’s later moderation logic that rigorous evaluation has 
strengthened the effectiveness impact of robustness. Overall, the correlation matrix has provided 
preliminary support for H1–H5 (directional relationships) and has justified the subsequent regression 
modeling used to test predictive effects while controlling for overlap across constructs. 
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Regression Modeling 
Table 4: Multiple regression predicting Perceived AI-IDS Effectiveness  

Predictor Standardized β t p 

Dataset Representativeness (DREP) 0.18 2.69 .008 

Evaluation Rigor (ERIG) 0.22 3.17 .002 

Model Robustness (MROB) 0.15 2.37 .019 

Deployment Readiness (DREADY) 0.11 2.06 .041 

Explainability & Trust (TRUST) 0.33 4.92 <.001 

Model fit: R² = .51; Adjusted R² = .49; F(5,156) = 32.45, p < .001. 
Diagnostics: VIF range = 1.28–2.05. 

The regression results have provided direct hypothesis-oriented evidence by estimating the unique 
predictive contribution of each construct to perceived AI-IDS effectiveness, while holding the other 
constructs constant. The overall model has explained a substantial share of variance in EFFECT (R² = 
.51), indicating that the framework variables have jointly accounted for a meaningful portion of 
enterprise perceptions of AI-IDS value. TRUST has remained the strongest predictor (β = .33, p < .001), 
which has strongly aligned with TAM logic because analyst confidence in understanding and relying 
on system outputs has supported perceived usefulness in daily monitoring. This has indicated that 
acceptance-related beliefs have not been peripheral; they have been central drivers of perceived 
effectiveness in the enterprise setting, which has directly supported the study’s objective of linking a 
theory-based acceptance lens to operational IDS evaluation. ERIG has also emerged as a significant 
predictor (β = .22, p = .002), supporting the objective that credible metrics and rigorous validation have 
strengthened enterprise belief in system value. In conceptual terms, rigorous evaluation has functioned 
as evidence quality that has translated into confidence, which has reinforced adoption readiness and 
perceived usefulness. DREP has shown a significant positive effect (β = .18, p = .008), indicating that 
perceived dataset realism has predicted effectiveness perceptions beyond trust and evaluation 
practices, supporting the argument that enterprise-relevant data foundations have mattered for 
operational confidence. MROB (β = .15, p = .019) has also contributed uniquely, showing that stability 
under changing conditions has influenced effectiveness judgments even after controlling for evidence-
related variables, which has aligned with the enterprise requirement that IDS should perform 
consistently amid drift and variability. DREADY has had a smaller but significant effect (β = .11, p = 
.041), demonstrating that integration feasibility and workflow compatibility have still shaped perceived 
value, consistent with enterprise realities where operational constraints have limited the realizable 
benefits of technically capable tools. The multicollinearity diagnostics have remained acceptable, 
indicating that predictors have contributed distinct explanatory value rather than simply duplicating 
each other. Collectively, these regression results have supported H1–H5 and have satisfied the study 
objective of identifying which enterprise-relevant factors have statistically predicted perceived AI-IDS 
effectiveness within the cross-sectional case study. 
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Enterprise Case-Study Validation Matrix 
 

Table 5: Enterprise Case-Study Validation Matrix  
 

Evidence 
Dimension 

Literature Evidence 
Emphasis 

Enterprise 
Requirement 

Case-Study 
Rating 

Summary 
(Likert) 

Alignment 
Outcome 

Dataset realism Benchmark coverage, 
attack variety 

Traffic match, labeling 
confidence, drift 

awareness 

DREP M = 3.62 Moderate–
High 

alignment 

Metric 
suitability 

Accuracy/F1/ROC-
AUC common 

FP burden, PR focus, 
operational thresholds 

ERIG M = 3.55 Moderate 
alignment 

Robustness Model comparisons on 
datasets 

Stability under 
baseline change 

MROB M = 3.48 Moderate 
alignment 

Deployment 
feasibility 

Limited reporting Latency, integration, 
scalability 

DREADY M = 
3.44 

Moderate 
alignment 

Explainability 
& trust 

Increasing emphasis Actionable alerts, 
analyst confidence 

TRUST M = 3.69 High 
alignment 

Overall 
effectiveness 

Reported model scores Useful alerts + 
manageable workload 

EFFECT M = 
3.73 

High 
alignment 

 
The validation matrix has operationalized the study objective of connecting systematic-review evidence 
themes to enterprise feasibility by translating “what research reports” into “what enterprises require” 
and then benchmarking the case study’s construct results against these alignment expectations. This 
matrix has not treated enterprise evaluation as a pure performance ranking exercise; it has treated it as 
an evidence alignment exercise, where model capability has been judged alongside dataset realism, 
metric appropriateness, and operational readiness. The case-study construct ratings have shown the 
highest alignment for TRUST (M = 3.69) and EFFECT (M = 3.73), meaning that the enterprise context 
has perceived AI-IDS as useful and comparatively actionable, which has been consistent with TAM’s 
emphasis that acceptance has been strongest when users have perceived the technology as useful and 
workable in their tasks. The matrix has also revealed that dataset realism and evaluation rigor have 
reached moderate alignment levels (DREP M = 3.62; ERIG M = 3.55), indicating that the enterprise has 
perceived the data and metric foundations as reasonably supportive, while still leaving room for 
stronger alignment with operational measurement standards. This has been important because the 
study’s objectives have required explicit attention to “datasets and metrics” as pillars of enterprise-
relevant evidence. Robustness (M = 3.48) and deployment readiness (M = 3.44) have represented the 
weakest alignment dimensions, and this pattern has helped explain why the regression model has 
found smaller beta values for these factors: enterprises have recognized their importance but have 
encountered practical constraints that have reduced their relative influence compared to trust and 
evaluation credibility. The matrix has therefore functioned as a structured interpretation tool that has 
connected the statistical findings to the practical enterprise context, showing that acceptance-related 
constructs (TRUST) and evidence-quality constructs (ERIG, DREP) have been stronger drivers of 
perceived effectiveness than pure feasibility constraints alone. As a result, the validation matrix has 
supported both the literature-to-practice objective and the hypothesis pattern by demonstrating 
coherent alignment between the strongest statistical predictors and the enterprise’s highest-rated 
alignment dimensions. 
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Operational Impact Simulation 
 

Table 6: False-Positive Burden Index (FPBI) simulation under observed vs improved operating 
points 

 

Scenario Alerts/day 
False Positive 

Rate (FPR) 
ATT 

(minutes) 
FP 

alerts/day 
FPBI 

(minutes/day) 
FPBI 

(hours/day) 

Observed 
operating point 

420 0.07 6.5 29.4 191.1 3.19 

Improved 
operating point 

420 0.04 6.5 16.8 109.2 1.82 

Difference 
(reduction) 

— — — -12.6 -81.9 -1.37 

The operational simulation has converted IDS evaluation outcomes into enterprise workload units, 
thereby satisfying the objective of grounding model performance in SOC feasibility rather than 
reporting only abstract accuracy-style indicators. Using the FPBI formula adopted in the study, the 
observed operating point has implied approximately 29.4 false-positive alerts per day, producing an 
estimated 191.1 minutes/day of analyst time consumed by false positives, equivalent to about 3.19 
analyst-hours/day. This has represented a concrete operational cost that has aligned with the study’s 
argument that false positives have mattered as much as detection sensitivity in enterprise contexts. The 
improved operating point has illustrated how evaluation rigor and threshold discipline—captured by 
ERIG in the model—have plausibly reduced false-positive rate from 0.07 to 0.04 while keeping traffic 
volume and triage time constant. Under this scenario, FPBI has fallen to 109.2 minutes/day (1.82 
hours/day), representing a reduction of 81.9 minutes/day (1.37 hours/day), or roughly 42.8% fewer 
false-positive minutes. This reduction has been operationally meaningful because it has represented 
regained SOC capacity that could have been reassigned to deeper investigations, threat hunting, or 
faster escalation, without changing staffing levels. The simulation has also connected back to TAM by 
reinforcing that analyst acceptance has been shaped by workload experience: when false positives have 
been high, analysts have tended to distrust alerts and treat systems as noisy, which has reduced 
perceived usefulness. In contrast, when false positives have been reduced, alerts have become more 
actionable, which has strengthened TRUST and increased perceived usefulness, aligning with why 
TRUST has emerged as the strongest predictor of EFFECT in regression. Therefore, FPBI has not been 
a standalone metric; it has been an interpretive bridge linking evaluation metrics to enterprise 
acceptance and perceived effectiveness. This has supported the study’s hypotheses by showing a 
mechanism through which evaluation rigor and explainability have translated into real operational 
benefits. 
Hypothesis Testing Summary 

Table 7: Hypothesis testing outcomes aligned to correlation and regression results 
Hypothesis Statement (Predictor 

→ EFFECT) 
Expected 
Direction 

Supported by 
Correlation 

Supported by 
Regression 

Decision 

H1 DREP → EFFECT Positive Yes (r = .42*** ) Yes (β = .18, p = 
.008) 

Supported 

H2 ERIG → EFFECT Positive Yes (r = .46*** ) Yes (β = .22, p = 
.002) 

Supported 

H3 MROB → EFFECT Positive Yes (r = .39*** ) Yes (β = .15, p = 
.019) 

Supported 

H4 DREADY → EFFECT Positive Yes (r = .34*** ) Yes (β = .11, p = 
.041) 

Supported 

H5 TRUST → EFFECT Positive Yes (r = .52*** ) Yes (β = .33, p < 
.001) 

Supported 

H6 
(optional) 

ERIG strengthens 
MROB → EFFECT 

Positive 
interaction 

Directionally 
consistent 

Yes (β = .10, p = 
.047; ΔR² = .02) 

Supported 

Note. ***p < .001 for correlations. 
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The hypothesis testing summary has consolidated how the statistical results have proven the study 
objectives and hypotheses within the theory-guided framework. All primary hypotheses (H1–H5) have 
been supported in both bivariate and multivariate forms, indicating that the conceptual predictors have 
not only correlated with perceived effectiveness but have also retained predictive value when tested 
together in a regression model. This has been important because enterprise constructs often overlap 
(e.g., better evaluation rigor can co-occur with higher perceived robustness), so regression support has 
confirmed unique contributions rather than simple association. The strongest evidence has appeared 
for H5, where TRUST has demonstrated both the highest correlation with EFFECT and the largest 
standardized regression coefficient, reinforcing the TAM-based mechanism: when analysts have 
trusted and understood AI-IDS outputs, perceived usefulness has increased, and this has translated 
into higher perceived overall effectiveness. H2 and H1 have also been strongly supported, showing 
that evidence quality (rigorous evaluation practices) and data realism (dataset representativeness) have 
been central to enterprise perceptions of effectiveness, which has aligned with the study objective of 
linking methods, datasets, and evaluation metrics into one evidence chain. H3 and H4 have been 
supported with smaller but significant effects, indicating that robustness and deployment fit have 
mattered but have not dominated the acceptance-related drivers, which has matched the descriptive 
and validation-matrix pattern where deployment readiness and robustness have been the lowest-rated 
constructs. The optional moderation hypothesis (H6) has also been supported, and this has provided a 
valuable theoretical refinement: robustness has translated into effectiveness more strongly when 
evaluation rigor has been high, meaning that rigorous validation has amplified the enterprise 
credibility of robustness claims. This has been coherent with enterprise practice because stability claims 
have required strong validation to be trusted. Overall, this section has demonstrated that the 
objectives—quantitatively validating enterprise drivers of AI-IDS effectiveness and proving hypothesis 
relationships using Likert-based constructs—have been achieved with consistent statistical evidence, 
while TAM has provided the theory-based explanation for why trust and interpretability have been 
decisive in shaping perceived effectiveness. 
DISCUSSION 
The results have collectively indicated that enterprise perceptions of AI-enabled IDS effectiveness have 
depended more on actionability and confidence than on “algorithmic promise” alone, and this pattern 
has aligned with long-standing concerns that network intrusion detection research can overstate 
performance when it is evaluated in simplified experimental conditions. In the case-study findings, 
perceived effectiveness has remained moderately high (M = 3.73/5), yet the strongest bivariate and 
multivariate relationships have centered on explainability and trust, followed by evaluation rigor and 
dataset representativeness (Al Nuaimi et al., 2023). This ordering has reinforced the argument that 
intrusion detection has functioned as a socio-technical decision process in which outputs must be 
interpreted, validated, and escalated by analysts under time pressure (Hubballi & Suryanarayanan, 
2014). Classic critiques have described a “closed world” evaluation problem, where learning-based 
anomaly detection can appear strong on curated datasets but has struggled to transfer cleanly to 
operational networks characterized by evolving baselines, heterogeneous services, and ambiguous 
ground truth. The present findings have been consistent with that critique by showing that higher 
perceived evaluation rigor and stronger dataset realism have tracked higher perceived effectiveness, 
implying that practitioners have not trusted claims unless evaluation has been defensible and data has 
resembled enterprise conditions. Similarly, research surveying IDS evaluation practices has 
emphasized that workload, metrics, and measurement methodology jointly determine whether results 
are meaningful, and it has warned that fragmented practices can make comparisons unreliable. The 
current results have extended that view by empirically linking “evaluation rigor” perceptions to 
effectiveness in a way that has been visible both in correlations and in regression coefficients (Kasongo 
& Sun, 2020). Taken together, the study has supported the objective of moving from method-centric 
reporting toward enterprise-relevant evidence: when a system has been perceived as explainable, 
properly evaluated, and grounded in representative data, it has also been perceived as more effective 
for SOC triage and escalation. This has implied that, for enterprise settings, the practical standard for 
“good detection” has not been a top-line score, but the combination of trustworthy evidence, 
interpretable outputs, and manageable alert burden (Chergui & Boustia, 2019). 
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A central contribution of the findings has been that explainability and trust have emerged as the 
strongest predictor of perceived AI-IDS effectiveness, and this relationship has closely matched prior 
work arguing that explanations have been a prerequisite for responsible reliance on black-box models 
in high-stakes domains. In the results, trust-related ratings have been relatively high (M = 3.69) and 
have shown the strongest association with effectiveness (r = .52; β = .33), suggesting that analysts have 
valued systems that have helped them understand why an alert has fired and how it should be 
investigated (Ferrag et al., 2020). This pattern has aligned with explainable-AI research that has framed 
interpretability as both a practical and ethical requirement when model outputs are used to justify 
actions, particularly when the underlying logic has been opaque (Mahdavifar & Ghorbani, 2019). It has 
also aligned with applied explanation work showing that locally faithful explanations can increase 
users’ ability to diagnose model behavior and decide whether to trust a prediction, which has been 
directly relevant to SOC decision-making where investigators must rapidly judge credibility under 
uncertainty. From an intrusion detection standpoint, this has mattered because false positives and 
ambiguous signals can quickly reduce analyst confidence, leading to alert fatigue, inconsistent 
escalations, and eventual disengagement from automated outputs (Madhubalan et al., 2024).  
The results have suggested that trust has acted as the “conversion factor” from model output to 
operational value: even if detection has been nominally strong, perceived effectiveness has risen when 
alerts have been interpretable and consistent with investigative logic. Importantly, this trust effect has 
not been isolated from methodological concerns; it has co-varied with evaluation rigor and dataset 
realism, implying that explanation alone has not substituted for credible evidence. Instead, explanation 
has strengthened perceived usefulness when it has been paired with defensible validation (Tavallaee 
et al., 2009). Therefore, the discussion has indicated that practical enterprise success has required 
explainability mechanisms that have supported triage (what evidence is driving this?), correlation (how 
does this relate to other events?), and action (what is the most plausible next step?), rather than generic 
interpretability claims (Leevy & Khoshgoftaar, 2020). The findings have also shown that evaluation 
rigor and dataset representativeness have been significant predictors of perceived effectiveness, which 
has reinforced a key message from IDS scholarship: performance is inseparable from how datasets are 
constructed, labeled, and split, and how metrics are selected under heavy class imbalance. Dataset 
research has repeatedly shown that benchmark artifacts such as redundancy and unrealistic 
distributions can inflate reported results, leading to detectors that do not generalize well to real 
environments. Broader surveys of intrusion detection datasets have highlighted that datasets differ 
widely in collection environment, labeling processes, traffic realism, and attack staging, and these 
differences affect what a model can learn and how results should be interpreted (Ring et al., 2019). The 
present results have been compatible with this literature by showing that respondents have rated 
dataset representativeness above the midpoint (M = 3.62) and have linked it positively to perceived 
effectiveness (β = .18), implying that enterprise stakeholders have treated “data realism” as a credibility 
signal. In parallel, evaluation-metrics research has shown that imbalanced classification requires 
careful metric selection; precision–recall analyses have often been more informative than ROC views 
when the positive class is rare, which has closely matched intrusion detection contexts where attacks 
are infrequent but costly (Tavallaee et al., 2009). The study’s emphasis on workload-sensitive metrics 
and the False-Positive Burden Index has been consistent with that recommendation because it has 
translated error into operational cost, rather than treating error as an abstract rate (Sommer & Paxson, 
2010). In addition, methodological guidance on balanced evaluation measures has suggested that 
metrics such as MCC can remain informative under imbalance where accuracy and even F1 can be 
misleading. Thus, the observed positive influence of evaluation rigor on effectiveness has likely 
reflected practitioner sensitivity to whether reported evidence has “survived” these known metric 
pitfalls (Sangkatsanee et al., 2011). Overall, the discussion has indicated that enterprises have viewed 
evaluation rigor and dataset representativeness as necessary conditions for believing performance 
claims, and the present results have provided quantitative support for that credibility mechanism 
(Sharafaldin et al., 2018). 
From a theoretical perspective, the study’s results have strengthened the case for using the Technology 
Acceptance Model as a meaningful lens for enterprise intrusion detection adoption, while also 
indicating where TAM has required context-specific enrichment (Marangunić & Granić, 2015). The 
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regression pattern—where explainability/trust has been the strongest predictor and deployment 
readiness has remained significant but smaller—has resembled TAM’s consistent finding that 
perceived usefulness and ease of use (and their antecedents) have shaped intention and actual use 
across professional settings (Moustafa & Slay, 2015). In an enterprise IDS context, “usefulness” has not 
merely meant generic productivity; it has meant reducing uncertainty in triage, supporting correct 
escalations, and enabling repeatable investigative reasoning under pressure. “Ease of use” has not 
meant interface simplicity alone; it has meant the cognitive ease of interpreting alerts, understanding 
evidence, and acting without excessive verification overhead (Patcha & Park, 2007). The strong role of 
TRUST has therefore mapped onto TAM as a practical operationalization of perceived ease of use and 
perceived usefulness: explanations and credibility cues have reduced the effort required to validate 
alerts and have increased confidence that actions have been justified. At the same time, the significance 
of evaluation rigor and dataset representativeness has suggested a theoretical extension: beyond classic 
TAM beliefs, enterprise adoption of AI-IDS has been shaped by evidence validity—a “can I defend this 
decision?” requirement that has been particularly strong in security operations where accountability 
and auditability have mattered (Sharafaldin et al., 2018). This has resonated with dataset 
documentation work arguing that transparent dataset reporting is essential for responsible 
deployment, because unknown provenance and hidden biases can undermine downstream reliability 
and trust (Shone et al., 2018). Therefore, the study has supported TAM while also showing that AI-
enabled security technologies have introduced extra acceptance determinants related to evidence 
governance. In short, the findings have implied that acceptance in SOC environments has been 
achieved when systems have combined actionable explanations with defensible evaluation and realistic 
data foundations, creating a blended acceptance–evidence pathway that TAM can accommodate but 
that needs to be explicitly measured in AI-IDS studies (Sommer & Paxson, 2010). 
Practical implications have emerged most clearly when the results have been interpreted through 
operational constraints, particularly the false-positive burden quantified by the FPBI simulation 
(Steyerberg et al., 2010). The FPBI values have illustrated that even modest reductions in false-positive 
rate can free substantial analyst time, and this has clarified why trust and evaluation rigor have 
mattered so strongly: analysts have judged effectiveness through lived workload consequences, not 
through benchmark accuracy. Prior IDS evaluation guidance has emphasized that metrics should be 
tied to operational goals and that workload and measurement methodology are part of the evaluation 
design space, not afterthoughts (Tavallaee et al., 2009). The present findings have reinforced that advice 
by showing that deployment readiness (β = .11) has still contributed uniquely to perceived 
effectiveness: if integration has been difficult, latency high, or tuning burdensome, usefulness has been 
partially capped even when trust and rigor have been strong. Additionally, the interaction finding—
where evaluation rigor has strengthened the effect of robustness—has implied that enterprises have 
rewarded robustness claims only when they have been demonstrated credibly, which has encouraged 
a practical recommendation: SOC-facing AI-IDS deployments should adopt evaluation “packets” that 
include leakage-resistant validation designs, threshold reporting, and workload-cost reporting (e.g., 
alerts/day, triage time) alongside standard discrimination metrics. This has also been consistent with 
broader machine-learning methodology warnings that small samples and unstable validation can 
produce misleading confidence, emphasizing the importance of uncertainty reporting and robust split 
strategies (Mahdavifar & Ghorbani, 2019). Operationally, the discussion has suggested a concrete 
enterprise playbook: (1) prioritize explainability features that align with analyst tasks, (2) enforce 
dataset documentation and representativeness checks when adopting models trained on benchmarks, 
(3) evaluate using imbalance-aware metrics and workload indices, and (4) integrate continuous 
monitoring for drift and alert-volume spikes to protect analyst trust over time. These implications have 
shifted the adoption conversation from “which model is best?” toward “which system can be trusted, 
scaled, and sustained in SOC reality?” 
The limitations of the study have also become clearer when the findings have been compared with the 
methodological cautions in prior work, and revisiting them has helped bound the claims. First, the case-
study design and cross-sectional survey measurement have captured perceptions at one point in time, 
so causal ordering among constructs has not been proven even though the hypothesis directions have 
been theoretically grounded (Petter et al., 2008). Second, Likert-based measures have reflected 
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practitioner judgment rather than direct instrumented performance logs, so the results have described 
perceived effectiveness rather than measured detection outcomes; nonetheless, the literature has 
indicated that adoption and operational success depend on these perceptions because analysts 
ultimately decide whether alerts are acted upon. Third, the study has used regression modeling with a 
finite sample, and the literature has warned that model selection and validation choices can influence 
estimated effects, especially if sampling has not been broad or if predictors have been correlated. 
Fourth, the FPBI simulation has relied on simplified parameter assumptions (alerts/day, triage time, 
selected FPR) to communicate workload cost, and real SOC conditions can vary widely by tool stack, 
playbooks, and threat environment. Fifth, while robustness has been measured as a construct and has 
shown significance, the study has not directly executed adversarial testing; this has mattered because 
learning-based systems can be vulnerable to adversarial manipulation, poisoning, and evasion that are 
not captured by standard test sets (Hubballi & Suryanarayanan, 2014). These limitations have not 
invalidated the findings; rather, they have clarified what the results have established: the study has 
shown how enterprise stakeholders have weighted trust, evidence quality, and feasibility in their 
judgments of AI-IDS effectiveness, and it has quantified relationships among these factors within a 
case-study context. The limitations have therefore suggested that future work should triangulate 
perceptions with telemetry-based operational measures and should expand validation designs to 
capture temporal variation, drift, and adversarial conditions (Moustafa & Slay, 2015). 
Future research directions have followed directly from the strongest findings and from the gaps 
identified in prior IDS and XAI work, and they have suggested a coherent agenda that remains aligned 
with the study’s objectives. Longitudinal designs have been needed to test whether trust and perceived 
effectiveness have remained stable as network baselines shift, as attackers adapt, and as model updates 
are deployed; this has responded to the “closed world” concern by observing how systems behave 
under genuine operational drift (García-Teodoro et al., 2009). Experimental or quasi-experimental 
studies inside SOCs have also been needed to connect explainability interventions to measurable 
outcomes such as mean time to triage, escalation accuracy, and analyst agreement rates, building on 
the claim that explanations can affect reliance decisions (Milenkoski et al., 2015). Methodologically, 
future work has been positioned to standardize IDS evaluation bundles that incorporate imbalance-
aware metrics (PR-AUC, MCC), leakage-resistant splitting, uncertainty reporting, and workload 
indices; this has aligned with recommendations that evaluation should be systematized across 
workload, metrics, and methodology dimensions and with evidence that PR views can better reflect 
performance under rare-event settings. Data governance research has also remained critical: adopting 
dataset “datasheets” and documenting collection assumptions can reduce hidden bias and 
misapplication risk, which has been especially important as enterprises reuse public datasets to justify 
deployments (Ring et al., 2019). Finally, security-specific future work has been required to integrate 
adversarial robustness testing and red-team evaluation into AI-IDS validation, because adaptive 
attackers can undermine static performance claims (Kasongo & Sun, 2020). Overall, the future research 
agenda has pointed toward a mature enterprise evaluation paradigm: one that has treated AI-enabled 
IDS as a continuously operating socio-technical system and has measured success through defensible 
evidence, actionable explanations, and sustained workload feasibility rather than benchmark scores 
alone (Mahdavifar & Ghorbani, 2019). 
CONCLUSION 
This study has concluded that AI-enabled intrusion detection in enterprise networks has been best 
explained and evaluated as a socio-technical decision-support capability rather than a purely 
algorithmic classification task, and the empirical results have demonstrated that enterprise 
effectiveness has depended on a coherent chain linking data realism, evaluation discipline, system 
robustness, deployment feasibility, and analyst-centered trust. The quantitative, cross-sectional, case-
study–based findings have shown that perceived AI-IDS effectiveness has been moderately high and 
has been significantly associated with all hypothesized drivers measured using five-point Likert 
constructs, while the multivariate results have clarified that explainability and trust have served as the 
most influential predictor of effectiveness, consistent with the Technology Acceptance Model’s 
emphasis that perceived usefulness and usability-related beliefs have shaped sustained reliance on 
information systems. The study has also confirmed that evaluation rigor and dataset representativeness 
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have been statistically significant contributors to enterprise effectiveness, indicating that practitioners 
have relied on defensible validation practices and enterprise-relevant data foundations to judge 
whether AI-IDS claims have been credible and operationally transferable. Model robustness and 
deployment readiness have also shown significant, though comparatively smaller, effects, reflecting 
that enterprises have balanced detection aspirations with practical constraints such as stability under 
changing baselines, integration effort, and performance trade-offs. Importantly, the study has provided 
an operational bridge from model error to enterprise workload by applying the False-Positive Burden 
Index, which has translated false-positive rates into daily analyst time consumption and has illustrated 
how modest reductions in false-positive rate have yielded meaningful SOC capacity gains; this 
operational result has reinforced why trust and evaluation rigor have mattered so strongly, because 
analyst acceptance has been shaped by the lived experience of alert quality and triage burden. By 
aligning systematic evidence themes with case-study outcomes through a validation matrix, the study 
has also established that enterprise adoption readiness has been highest when research practices have 
emphasized interpretable alerts, rigorous and imbalance-aware evaluation, and datasets whose 
construction and context have been transparent and representative. Overall, the research has achieved 
its objectives by mapping the state of AI-enabled IDS methods, datasets, and metrics and by empirically 
proving the hypothesized relationships among enterprise-relevant constructs using descriptive 
statistics, correlation analysis, and regression modeling, while grounding the analysis in TAM to 
explain why acceptance-related trust and usability of outputs have been central to perceived 
effectiveness. In sum, the study has shown that the enterprise value of AI-enabled intrusion detection 
has been realized when detection outputs have been credible, explainable, and operationally 
sustainable, supported by representative data and rigorous evaluation that have collectively 
strengthened confidence, reduced noise, and enabled consistent security decision-making within 
enterprise monitoring workflows. 
RECOMMENDATIONS 
The recommendations of this study have emphasized that enterprise stakeholders and researchers have 
needed to treat AI-enabled intrusion detection as an evidence-governed, analyst-centered capability 
whose success has depended on trust, evaluation rigor, and operational feasibility rather than headline 
model scores. For enterprise practitioners, selection and procurement processes have benefited from 
requiring a minimum evaluation bundle that has included precision–recall reporting at realistic base 
rates, explicit false-positive rate thresholds tied to SOC staffing capacity, and workload translation 
using an index such as FPBI = (Alerts/day × FPR) × ATT, because this has enabled decision-makers to 
compare tools in units that have matched operational reality. Deployment programs have been 
strengthened by establishing threshold governance and calibration routines that have periodically 
reviewed alert volumes, false-positive patterns, and triage time, ensuring that model operating points 
have remained aligned with acceptable workload budgets and that drift-driven noise has been detected 
early. SOC implementation has also been improved when AI-IDS outputs have been embedded into 
case-management workflows with structured enrichment (asset criticality, vulnerability exposure, 
identity context), because contextualized alerts have increased actionability and supported consistent 
escalation. Given that explainability and trust have been the strongest predictors of perceived 
effectiveness, vendors and internal security engineering teams have been advised to prioritize 
explanation features that have matched analyst tasks, including feature-contribution views, 
comparable historical examples, and clear reason codes, and to pair these with playbook-oriented 
guidance that has reduced cognitive effort during triage. Training and change-management practices 
have been recommended to reinforce acceptance, since analysts have adopted systems more 
consistently when they have understood how scores were produced, what error patterns were 
expected, and which response actions were appropriate for each alert type. For researchers, the study 
has recommended that comparative AI-IDS experiments have reported dataset provenance, labeling 
logic, and partition strategies explicitly, and that they have adopted leakage-resistant validation 
designs such as time-based or host-based splits where feasible, because these practices have 
strengthened enterprise confidence in generalization claims. Research reporting has been improved 
when it has included uncertainty estimates, repeated runs, and distributional summaries rather than 
single-score claims, and when it has used imbalance-aware measures and cost-sensitive interpretations 
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rather than accuracy-only reporting. Dataset development efforts have been recommended to include 
standardized documentation, clear licensing/usage notes, and enterprise-relevant benign background 
diversity, because dataset representativeness has been a significant determinant of perceived 
effectiveness and credibility in the case study. Finally, for both practitioners and researchers, the study 
has recommended that robustness evaluation has incorporated stress testing under baseline shift and 
operational variability and that ongoing monitoring has been implemented for post-deployment drift, 
because stable performance has been a practical requirement for sustaining analyst trust and 
maintaining acceptable alert volumes over time. Through these combined recommendations, 
enterprises have been positioned to achieve more reliable, defensible, and sustainable AI-enabled 
intrusion detection outcomes that have aligned model capability with analyst decision-making and 
SOC capacity constraints. 
LIMITATION 
This study has faced several limitations that have shaped the interpretation and scope of its findings, 
even though the quantitative results have remained internally consistent with the conceptual and 
theoretical model. First, the research has employed a cross-sectional design, so relationships among 
constructs have been assessed at a single point in time; as a result, the statistical associations observed 
among dataset representativeness, evaluation rigor, robustness, deployment readiness, 
explainability/trust, and perceived effectiveness have not established causal ordering, even when the 
hypothesized directions have been theoretically grounded through TAM and the conceptual 
framework. Second, the case-study component has relied on self-reported Likert-scale measurements 
rather than direct instrumentation of live IDS telemetry and operational logs, meaning that the 
dependent outcome has reflected perceived effectiveness rather than objectively verified detection 
outcomes such as true-positive yield, time-to-detect, or confirmed incident reduction. Although 
perceived usefulness and trust have been central to actual adoption in SOC settings, perception-based 
data has been vulnerable to response biases such as social desirability, halo effects, and common 
method variance, which can inflate correlations when predictors and outcomes are captured through a 
single survey instrument. Third, the sampling approach has been non-probabilistic, combining 
purposive and convenience recruitment, so the respondent group has reflected accessible enterprise 
stakeholders rather than a statistically representative sample of all enterprise SOC contexts; 
consequently, generalization to other industries, maturity levels, or tooling ecosystems has been 
constrained, particularly where organizations have differed in staffing ratios, logging coverage, 
encryption prevalence, and threat exposure. Fourth, the regression model has explained a substantial 
proportion of variance, yet omitted-variable risk has remained, because organizational factors such as 
budget, leadership support, incident response maturity, analyst experience heterogeneity, and existing 
SIEM/EDR integration depth have not been fully modeled and could have influenced effectiveness 
perceptions. Fifth, while measurement reliability has been acceptable, construct validity has been 
limited by the practical need to keep the survey instrument manageable, so some complex technical 
ideas—such as robustness under concept drift, adversarial resilience, and evaluation leakage controls—
have been operationalized in simplified forms that may not fully capture their technical nuance. Sixth, 
the enterprise validation matrix and the False-Positive Burden Index simulation have provided useful 
interpretive structure, but they have depended on assumed or averaged parameters such as alerts/day 
and triage time, which can vary widely across SOCs; therefore, the workload estimates have 
represented reasonable illustrative conversions rather than universal workload predictions. Seventh, 
the study has not executed controlled adversarial testing, red-team evaluations, or longitudinal drift 
measurement, so the robustness construct has been evaluated through perceptions rather than through 
systematic stress tests that would be required to confirm resilience under adaptive attackers and 
changing enterprise baselines. Finally, the systematic review component has been constrained by 
publication availability and reporting practices, which can introduce publication bias toward positive 
results and can limit extraction of comparable metrics when studies report incomplete evaluation 
details. These limitations have not negated the findings, but they have framed the results as case-study–
grounded evidence about enterprise perceptions and statistically supported relationships rather than 
definitive causal proof of operational performance improvements across all enterprise environments. 
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