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Abstract 
This study investigated a persistent problem in U.S. banking credit decisioning: traditional scorecards and 
manual underwriting can produce inconsistent judgments and avoidable misclassification, especially when 
borrower profiles are complex and decision speed is high. The purpose was to quantify how AI-assisted credit 
evaluation, deployed within enterprise banking environments, improves perceived risk assessment accuracy and 
which enabling conditions most strongly drive those gains. Using a quantitative, cross-sectional, case-based 
design, data were collected via a structured 5-point Likert survey from n = 214 eligible banking professionals 
(usable response rate 71.3%) across underwriting (38.8%), credit analysis (27.1%), risk management (22.0%), 
and model risk/compliance (12.1%), representing enterprise-grade, cloud-supported decision workflows in the 
case banks. Key variables included Risk Assessment Accuracy Improvement (dependent) and five predictors: AI 
Model Capability, Data Quality and Availability, Explainability/Transparency, Governance and Compliance 
Alignment, and Monitoring and Drift Management. The analysis plan applied reliability testing (Cronbach’s 
α), descriptive statistics, Pearson correlations, and multiple regression. Measurement reliability was strong (α 
= .81–.90; DV α = .90). Descriptively, respondents agreed that AI improved accuracy (DV M = 3.97, SD = 
0.63), with high ratings for data quality (M = 4.05) and governance (M = 3.94), while monitoring was lower 
(M = 3.72). Accuracy improvement correlated significantly with all predictors (r = .39–.56, p < .001), strongest 
for data quality (r = .56) and governance (r = .51). In regression, the model explained substantial variance (R² 
= .46; Adj. R² = .44; F(5,208) = 35.4, p < .001), with Data Quality (β = .29, p < .001), Governance (β = .22, p 
= .002), and AI Capability (β = .18, p = .006) as significant drivers; explainability was marginal (β = .11, p = 
.071) and monitoring was not significant after controls (β = .09, p = .104). Practically, the strongest perceived 
operational gain was improved underwriter consistency (M = 4.06), alongside reduced false approvals (M = 
3.84), implying that banks realize the largest accuracy benefits when enterprise AI is paired with disciplined 
data pipelines and governance controls rather than model sophistication alone. 
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INTRODUCTION 
Credit evaluation refers to the systematic assessment of a borrower’s willingness and ability to repay 
debt under agreed contractual terms, usually operationalized through probability-of-default (PD) 
estimation, loss-given-default (LGD) considerations, and decision thresholds that translate risk 
estimates into accept/decline, pricing, and limit-setting actions (Arrieta et al., 2020). In retail banking, 
the dominant “application scoring” tradition has long relied on transparent statistical models (notably 
logistic regression scorecards) that balance interpretability and predictive utility under regulatory 
scrutiny. Across the last two decades, “AI-assisted” or “machine learning–assisted” credit evaluation 
has emerged as an umbrella term describing the use of algorithmic learning procedures (e.g., tree 
ensembles, support vector machines, neural networks, hybrid models) to extract predictive structure 
from borrower, account, and behavioral data and to augment human and policy-driven underwriting 
processes (Běnčík et al., 2005). Empirical research has repeatedly shown that machine learning methods 
can improve classification performance over baseline scorecard approaches when they capture 
nonlinearities, interactions, and complex feature relationships in credit data. Comparative evidence in 
credit scoring demonstrates that accuracy gains often materialize when algorithms are carefully tuned 
and evaluated using consistent validation protocols, robust performance metrics, and cost-sensitive 
decision measures. In this literature, “risk assessment accuracy” is not limited to headline measures 
like AUC; it also includes calibration, stability across segments, operational error costs, and alignment 
with decision rules that determine portfolio outcomes (Brown & Mues, 2012). The international 
significance of AI-assisted credit evaluation follows from the central role of bank credit in household 
welfare, small-business financing, and macroeconomic transmission, where marginal improvements in 
PD discrimination and calibration can alter loan access, pricing dispersion, and default loss experience 
at scale (Kozodoi et al., 2022). As digital channels proliferate and data environments become richer, the 
operational definition of creditworthiness increasingly includes multi-source attributes, yet the 
banking sector maintains strong demands for explainability, governance, and fairness as core 
properties of model quality (Khandani et al., 2010). Within this context, AI-assisted credit evaluation in 
U.S. banking is framed not only as a predictive modeling task, but also as a socio-technical decision 
system in which model outputs must be credible, auditable, and consistently applied across products, 
borrower segments, and time periods (Bellotti & Crook, 2009). 
International research has established a broad empirical base for algorithmic credit scoring and risk 
modeling, beginning with early demonstrations that support vector machines and hybrid learning 
strategies can outperform traditional baselines under certain data conditions. Large-scale 
benchmarking has strengthened this evidence by comparing dozens of algorithms across multiple 
datasets and evaluation criteria, showing that ensemble methods frequently rank among top 
performers while also exhibiting sensitivity to sampling design, class imbalance, and operational cost 
functions (Lessmann et al., 2015). The progression from conventional scorecards to modern learning 
systems is also documented in banking-focused studies that integrate high-dimensional borrower 
information, transaction traces, or platform data to predict delinquency and default with improved 
discrimination, which is particularly visible in consumer credit settings (Bussmann et al., 2020). At the 
same time, the methodological record emphasizes that “better accuracy” is not uniform across contexts; 
it depends on data representativeness, feature engineering quality, the degree of nonlinearity present, 
and the stability of relationships between predictors and outcomes. The international scope matters 
because the same modeling families are applied across jurisdictions under varying legal regimes, 
supervisory expectations, and reporting standards, yet the technical issues of overfitting, calibration 
drift, and segment instability remain shared challenges (Hall et al., 2021). In parallel, credit supply has 
been reshaped by the growth of digital intermediaries and data-intensive firms, which has expanded 
attention to alternative data sources and digitally derived indicators of repayment capacity, with 
documented effects on credit assessment practices and market structure (Chang et al., 2018). 
Scholarship also notes that the model-development lifecycle in credit risk is not limited to training a 
classifier; it encompasses governance, documentation, validation, and monitoring to maintain 
performance and compliance as portfolios evolve (Huang et al., 2007). These issues motivate a U.S.-
banking-specific inquiry into AI-assisted credit evaluation models because U.S. institutions operate at 
scale under strong consumer protection expectations and stringent internal model risk management 
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cultures, making accuracy, explainability, and consistency central dimensions of model acceptance 
(Chen et al., 2024). 
 
Figure 1: Key Dimensions of Risk Assessment Accuracy in AI-Assisted Credit Evaluation Systems 

 

 
 
A defining characteristic of AI-assisted credit evaluation in regulated banking is the interpretability 
requirement, which links technical model structure to the ability of institutions to justify decisions, 
diagnose model behavior, and satisfy supervisory and stakeholder scrutiny (Crook et al., 2007). The 
explainable AI (XAI) literature provides frameworks and taxonomies for interpreting black-box models 
through post-hoc methods, surrogate explanations, feature attribution, and example-based reasoning, 
while also documenting limitations related to faithfulness, stability, and human understanding. 
Finance-specific studies extend these insights by demonstrating how explanation methods can be 
operationalized for default-risk modeling and credit decisioning contexts, connecting explanations to 
governance objectives such as transparency, contestability, and validation workflows (Li et al., 2021; 
Rauf, 2018). Work on explainable machine learning in credit risk management illustrates how Shapley-
based reasoning and network representations can cluster explanations and reveal structure in model 
predictions, thereby supporting risk oversight and communication within lending organizations 
(Dastile et al., 2020; Haque & Arifur, 2021; Ashraful et al., 2020). At the same time, empirical evidence 
indicates that explanation stability can degrade as class imbalance increases, creating a practical 
challenge for credit portfolios where defaults are rare events and oversampling strategies are 
commonly used (Liu et al., 2022; Fokhrul et al., 2021; Zaman et al., 2021). Related research proposes 
interpretable-yet-strong modeling approaches that embed nonlinearity within partially transparent 
structures, such as combining logistic regression with decision-tree–derived effects, aligning predictive 
strength with regulatory interpretability norms (Fahimul, 2022; Hammad, 2022; Saavedra et al., 2024). 
These strands intersect directly with U.S. banking because model approval commonly depends on 
whether model outputs can be explained internally, defended in audits, and consistently implemented 
across underwriting channels. The credit scoring literature further shows that model choice interacts 
with operational constraints: even when black-box models improve AUC, lenders still require score 
stability, reason codes, and segment-level diagnostics to support actionability in production 
environments (Djeundje et al., 2021). As a result, AI assistance in credit evaluation is best characterized 
as a layered decision architecture in which predictive components, interpretability layers, and 
governance controls jointly determine whether accuracy gains translate into acceptable and durable 
risk decisions (Dumitrescu et al., 2021). 
Fairness and bias considerations form an additional pillar of trust in AI-assisted credit evaluation, 
especially in consumer lending contexts where protected-group disparities and disparate impact 
concerns are salient. Recent credit-scoring research has formalized fairness objectives, provided 
assessment strategies, and quantified trade-offs between profit, risk discrimination, and fairness 
constraints, emphasizing that fairness is measurable and that model choices can systematically alter 
distributional outcomes (Frost et al., 2020; Hasan & Waladur, 2022; Rashid & Sai Praveen, 2022). Studies 
in explainable and responsible AI for fair lending highlight how transparency, data choices, and 
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decision thresholds can influence the fairness profile of credit decisions, and they discuss governance 
approaches that connect technical controls to consumer protection expectations (Arifur & Haque, 2022; 
Towhidul et al., 2022; Wu et al., 2017). In operational terms, fairness relates to multiple stages: dataset 
construction, feature selection, model training, thresholding, and monitoring, where each stage can 
introduce inequities that remain hidden if evaluation focuses only on aggregate performance. The 
growth of alternative data illustrates the point, because nontraditional indicators may improve 
predictive power while introducing proxies that correlate with sensitive attributes or structural 
disadvantage, which requires careful assessment strategies and robust documentation (Ratul & 
Subrato, 2022; Rifat & Jinnat, 2022; Yao & Gao, 2022). Credit scoring evidence also shows that models 
can behave differently across subpopulations, and evaluation designs must account for segmentation, 
calibration, and stability under different economic and portfolio conditions. From a U.S. banking 
perspective, the credibility of AI-assisted credit evaluation is strengthened when performance gains are 
paired with demonstrable fairness diagnostics and explainability artifacts that support consistent and 
reviewable decisioning (Abdulla & Majumder, 2023; Rifat & Alam, 2022; Zhang et al., 2024). 
Methodological contributions that integrate interpretable structures or stable explanation procedures 
align with these needs by enabling auditors and risk managers to assess whether model behavior 
remains coherent across time, products, and borrower groups (Fahimul, 2023; Faysal & Bhuya, 2023). 
The present research title centers on improving risk assessment accuracy, and the scholarly record 
indicates that “accuracy” gains are most persuasive in banking settings when reported alongside 
fairness, stability, and transparency properties that jointly define trust in the lending decision system 
(Gramegna & Giudici, 2021). 
Evidence from algorithmic innovation in credit scoring further demonstrates that modern learners 
address recurring technical challenges in banking datasets, including class imbalance, nonlinear 
relationships, small-sample regimes, and multi-stage decision structures. Gradient boosting and tree-
ensemble approaches have been widely studied for credit risk assessment and often show strong out-
of-sample results, particularly when paired with imbalance handling strategies. Hybrid models that 
combine boosting with deep learning architectures and graph-based representations illustrate how 
feature interactions can be captured more richly for credit risk prediction, providing empirical 
performance improvements on real-world datasets (Gunnarsson et al., 2021). Deep learning has also 
been explored for credit-related prediction tasks where nonlinear pattern capture is valuable, including 
settings that use market-based risk signals, reinforcing interest in neural methods as challenger 
approaches under appropriate governance (Dastile et al., 2020). Credit scoring research addresses 
small-sample constraints by proposing methods that supplement limited labeled data using generative 
modeling coupled with XGBoost-based prediction, targeting practical contexts where data acquisition 
is constrained and segmentation is granular (Khandani et al., 2010). Interpretability remains 
intertwined with these developments, as interpretability-oriented studies evaluate the stability and 
reliability of explanation tools in imbalanced credit settings and propose experimental designs that 
quantify how explanation outputs shift as portfolio prevalence changes (Lessmann et al., 2015). 
Complementary work proposes interpretable modeling frameworks that preserve scorecard-like 
reasoning while injecting nonlinear structure through engineered rules, reflecting the long-standing 
regulatory compatibility of logistic regression in banking and the operational desire to retain 
transparent decision logic. Taken together, this body of work indicates that accuracy improvements are 
most meaningful when they are demonstrated under realistic portfolio conditions and accompanied by 
reliability checks that show measurement consistency, construct coherence, and stable relationships 
among variables used in underwriting decisions (Liu et al., 2022). These themes map directly to a 
quantitative, cross-sectional, case-study–based design in which AI assistance is evaluated through 
constructs measured via Likert scales and analyzed with descriptive statistics, correlation analysis, and 
regression modeling, because the key empirical question becomes how AI-assisted tools change 
perceived decision quality, consistency, and confidence within the bank’s credit evaluation workflow 
(Chang et al., 2018). 
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The relevance of AI-assisted credit evaluation also extends to contemporary credit risk measurement 
and reporting contexts where model outputs feed accounting and portfolio analytics regimes, 
reinforcing the need for rigorous PD estimation procedures and robust validation (Crook et al., 2007; 
Habibullah & Aditya, 2023; Hammad & Mohiul, 2023). Research on PD modeling for lifetime credit loss 
applications demonstrates that machine learning can be paired with survival analysis and competing 
risks structures to better represent borrower lifecycle events, showing how predictive modeling choices 
influence default estimation pathways and related risk measurement tasks (Dastile et al., 2020; Haque 
& Arifur, 2023; Jahangir & Mohiul, 2023). In credit scoring practice, enhancements in discrimination 
and calibration can influence downstream decisions such as limit management, risk-based pricing, and 
risk appetite controls, which increases the value of accurate and stable AI-assisted predictions when 
integrated into underwriting and monitoring systems (Djeundje et al., 2021; Rashid et al., 2023; Khaled 
& Mosheur, 2023). At the same time, the credibility of AI systems in banking depends on validation 
norms that test reliability and robustness, including sensitivity analyses, segmentation checks, and 
governance processes that preserve consistent model behavior under operational constraints. Studies 
focused on alternative data reiterate that predictive improvements can be linked to new information 
channels, yet they also require careful quality control and interpretability support to maintain 
institutional trust and stakeholder acceptance. Fairness research further indicates that accuracy and 
fairness assessments can be jointly optimized and evaluated, which is particularly important in 
consumer lending where decisions must be both empirically defensible and procedurally consistent 
(Frost et al., 2020; Mostafa, 2023; Rifat & Rebeka, 2023). These interacting dimensions make the U.S. 
banking setting analytically rich for a case-study approach: AI assistance can be examined not only for 
raw predictive lift but also for its measurable influence on decision confidence, perceived accuracy, and 
the internal legitimacy of credit decisions in risk committees and operational teams. In addition, the 
international literature on the transformation of financial intermediation highlights how data-intensive 
lending strategies shape credit supply dynamics, reinforcing the systemic importance of accurate and 
trustworthy credit evaluation systems within banking institutions (Huang et al., 2007; Hammad, 2024; 
Azam & Amin, 2023). The present research context therefore sits at the intersection of predictive 
analytics, decision science, and governance, where measurable improvements in risk assessment 
accuracy must be documented alongside reliability, explainability, and fairness diagnostics to support 
confidence in AI-assisted underwriting systems (Běnčík et al., 2005; Masud & Hammad, 2024; Md & 
Sai Praveen, 2024). 
Finally, the credibility of claims about “improving risk assessment accuracy” depends on how accuracy 
is operationalized, how outcomes are validated, and how human stakeholders interpret and use AI-
assisted recommendations in actual credit workflows (Bussmann et al., 2020). The credit scoring 
literature provides strong precedent for rigorous evaluation strategies, including benchmarking across 
algorithms, testing across datasets, and using consistent validation partitions and cost-sensitive metrics 
that approximate real decision consequences (Chang et al., 2018; Rifat & Rebeka, 2024; Sai Praveen, 
2024). Research on SVM-based and ensemble-based scoring underscores that performance gains can be 
achieved with careful feature selection and modeling discipline, reinforcing that improvements often 
originate from both algorithm choice and the quality of the modeling pipeline (Hall et al., 2021; 
Shehwar & Nizamani, 2024; Azam & Amin, 2024). More recent studies propose interpretable machine 
learning procedures tailored for credit scoring and highlight the importance of diagnostic dashboards, 
stability testing, and explanation quality, which speak directly to building trust in bank decision 
systems. Evidence also shows that alternative data and digital features can increase predictive power 
and reshape credit access patterns, emphasizing the need to measure both the predictive contribution 
and the governance acceptability of these inputs (Li et al., 2021). Responsible AI research in fair lending 
and fairness-aware optimization indicates that model evaluation is multi-dimensional and that 
institutional confidence improves when fairness metrics, transparency artifacts, and validation 
documentation are presented together with predictive performance (Amena Begum, 2025; Chen et al., 
2024; Faysal & Aditya, 2025). Finance-focused XAI studies provide methods for producing explanations 
aligned to risk management goals, yet they also document practical constraints such as computational 
complexity, approximation error, and explanation instability under imbalanced regimes, which 
supports the use of reliability and robustness testing as part of empirical reporting (Gramegna & 
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Giudici, 2021; Hammad & Hossain, 2025; Jahangir, 2025). The integration of these strands positions AI-
assisted credit evaluation as an empirical domain where technical performance, perceived decision 
quality, and governance-aligned transparency can be measured concurrently within a bank case study, 
using quantitative survey constructs and statistical modeling to relate AI adoption characteristics to 
perceived improvements in decision accuracy and risk confidence (Barredo et al., 2020; Jamil, 2025; 
Syeedur, 2025). This framing aligns with the established academic record that treats credit evaluation 
as a measurable decision system rather than a purely computational exercise, where evidence quality 
rests on careful design, validated constructs, and transparent reporting of model behavior across 
operationally relevant dimensions (Hall et al., 2021). 
This study is designed to examine, in a measurable and objective-driven manner, how AI-assisted 
credit evaluation models contribute to improving risk assessment accuracy within U.S. banking 
systems when deployed as decision-support mechanisms in real underwriting and risk-review 
workflows. The first objective is to document the operational footprint of AI assistance in the selected 
case context by identifying where and how such tools are applied across the credit lifecycle, including 
pre-screening, underwriting, pricing, limit assignment, exception handling, and early-warning 
monitoring, while also capturing the frequency of use and the extent to which AI outputs are treated 
as advisory recommendations or as structured decision triggers. The second objective is to quantify the 
perceived level of risk assessment accuracy associated with AI-assisted credit evaluation by measuring 
accuracy as a multi-item construct reflecting decision consistency, reduction of misclassification errors, 
clarity in risk differentiation, improved identification of higher-risk borrowers, and improved 
confidence in decisions under time and information constraints. The third objective is to evaluate the 
internal enablers that determine whether AI assistance translates into stronger accuracy outcomes by 
assessing the roles of data quality and availability, explainability and transparency, governance and 
compliance alignment, and monitoring and drift-management practices as distinct measurable 
constructs. The fourth objective is to establish the direction and strength of relationships among these 
constructs by applying correlation analysis to determine which AI-related dimensions are most closely 
associated with risk assessment accuracy within the case setting. The fifth objective is to test the 
predictive contribution of each AI-related factor using regression modeling, thereby estimating the 
relative effect sizes and practical importance of AI capability, data quality, explainability, governance 
readiness, and monitoring maturity on the outcome variable while controlling for relevant respondent 
or job-context characteristics such as role type and years of experience. The sixth objective is to 
strengthen empirical credibility through construct reliability evaluation and consistency checks, 
ensuring that measurement items form coherent scales suitable for inferential modeling. The final 
objective is to present results in a way that remains tightly aligned with the research questions and 
hypotheses by summarizing which hypotheses are supported, ranking the most influential predictors 
of accuracy, and reporting a structured evidence trail that links observed patterns to the measured case 
realities of AI-assisted credit evaluation in U.S. banking operations. 
LITERATURE REVIEW 
The literature on AI-assisted credit evaluation has developed at the intersection of credit risk 
management, statistical learning, and banking governance, focusing on how algorithmic models 
support or augment underwriting decisions that determine loan approval, pricing, and portfolio 
quality. Within this domain, credit scoring is commonly treated as a predictive classification and 
ranking problem in which borrower characteristics and behavioral signals are translated into estimates 
of default likelihood and risk categories, with model performance evaluated through discrimination, 
calibration, and stability measures that reflect operational decision quality. Research has progressively 
expanded from traditional scorecard-based approaches toward machine learning methods that can 
capture non-linear patterns, high-order interactions, and complex feature relationships, often reporting 
improved predictive performance under controlled validation designs. At the same time, the banking 
context requires more than performance uplift: models must be interpretable enough for internal 
review, auditable for compliance functions, and stable across economic cycles, products, and borrower 
segments to sustain confidence in their outputs. Consequently, the literature increasingly integrates 
themes of explainability, fairness, and model risk management as core dimensions of model quality, 
emphasizing that credit evaluation systems function within socio-technical decision environments 
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where human judgment, policy rules, and automated scores interact. Another prominent strand 
addresses data evolution, including the use of alternative data and multi-source indicators, which can 
enhance risk differentiation while raising questions about data lineage, proxy effects, and governance 
controls. Methodologically, studies in this area draw on comparative algorithm evaluation, feature 
engineering strategies, imbalance handling, and interpretability toolkits, while also examining the 
practical conditions that determine whether AI-based approaches translate into superior and trusted 
credit decisions in real banking operations. In support of this study’s focus, the literature review 
synthesizes evidence on (a) how credit risk assessment is conceptualized and operationalized in 
banking; (b) the comparative strengths and constraints of traditional and AI-assisted modeling 
approaches; (c) the determinants of risk assessment accuracy beyond pure predictive metrics, including 
transparency, monitoring, and governance readiness; and (d) the theoretical and conceptual 
foundations needed to explain why some organizational contexts convert AI capability into measurable 
improvements in decision accuracy more effectively than others. This framing establishes a structured 
foundation for selecting variables, developing hypotheses, and positioning the current research within 
the broader scholarly debate on trustworthy, accurate, and operationally viable AI-assisted credit 
evaluation in U.S. banking systems. 
Credit Evaluation and Risk Assessment in Banking  
Credit evaluation in banking is traditionally anchored in the idea that lenders must transform imperfect 
borrower information into an actionable estimate of repayment risk, then translate that estimate into 
decisions on approval, pricing, limits, collateral, and monitoring intensity. In operational terms, “credit 
risk assessment” refers to structured procedures used to classify applicants and exposures by likelihood 
of default and loss severity, typically using borrower attributes (income stability, leverage, repayment 
history, liquidity) and loan attributes (purpose, tenor, collateral, documentation quality). The literature 
treats this process as both a statistical inference problem and a governance problem: banks must predict 
default accurately while maintaining consistency across loan officers, products, and branches, because 
inconsistency increases mispricing and portfolio volatility. Scorecards and related quantitative tools 
became central because they offer scalability and standardized decision rules for high-volume 
segments, particularly consumer and small-business lending, where manual review alone is costly and 
often uneven. Evidence from U.S. small-business contexts shows that credit scoring adoption can 
expand lending volumes while shifting the risk–price mix, suggesting that scoring systems not only 
predict risk but also change the marginal borrower banks are willing to serve and the terms offered 
(Berger et al., 2005). This stream of research frames scoring as a technology embedded in business 
strategy: banks do not merely “use a model,” they redesign workflows around it, deciding when a score 
triggers an automated decision, when it supports human judgment, and how exceptions are handled. 
For a study on AI-assisted credit evaluation models, this baseline matters because any “accuracy 
improvement” claim must be interpreted against what traditional scoring already standardizes well 
(speed, consistency, rank-ordering) and what it struggles with (rare-event detection, regime shifts, and 
nuanced borrower heterogeneity). 
A second foundational theme is that credit evaluation is socio-technical: it is shaped by the interaction 
between model outputs and the organizational environment in which they are consumed. 
Underwriting decisions often combine model scores with policy rules, documentation thresholds, and 
human assessments of borrower narratives and contextual risk. The literature on credit scoring in 
small-business lending emphasizes that banks vary in how deeply they integrate scoring into decisions, 
and this variation influences outcomes such as access to credit, pricing, and the risk profile of originated 
loans. Importantly, the use of scoring can be “surprising” in its institutional application—employed 
not only where standardized data are abundant but also in settings where relationship lending was 
expected to dominate—reflecting organizational incentives and the search for scalable information 
processing (Berger et al., 2011). For U.S. banking systems, this implies that model effectiveness is not 
merely a property of the algorithm; it is partially a property of governance design, role clarity, and how 
exceptions and overrides are managed. In practical credit environments, model outputs can be treated 
as authoritative signals, advisory recommendations, or compliance artifacts, and each treatment 
pattern affects whether predictive power translates into realized decision quality. This is directly 
relevant for AI-assisted evaluation because modern AI tools can produce complex signals (nonlinear 
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predictions, alternative-data insights, explanation layers), yet the operational benefit depends on 
whether the bank’s workflow converts those signals into consistent decisions rather than ad hoc 
“automation bias” or routine override. Therefore, the conceptual baseline for this study is that credit 
evaluation quality should be assessed through measurable decision outcomes (perceived accuracy, 
consistency, confidence) and through process integrity (how models are used, monitored, and 
challenged), since these jointly determine the credibility and stability of risk assessment performance. 
A third foundational theme concerns the measurement and validation of “accuracy” itself in credit risk 
assessment. Credit evaluation models are typically judged using predictive performance metrics (e.g., 
discrimination and calibration) and by robustness under changing economic conditions, because a 
model that performs well in stable periods may degrade under stress or when borrower behavior shifts. 
Research on default probability model validation highlights that validation is not a single test but an 
evidence portfolio, often including sensitivity checks and stress-oriented evaluations to understand 
how performance metrics react when distributions shift (Tsukahara et al., 2016).  
 

Figure 2: Foundational Components of Credit Evaluation and Risk Assessment in Banking 
 

 
 
This is a critical baseline for AI-assisted credit evaluation: the promise of machine learning is often 
higher predictive performance, but banking relevance requires performance that remains reliable 
under operational constraints and market changes. At the same time, recent scholarship on credit 
scoring methods notes that the field has expanded rapidly in algorithmic variety, yet comparative 
evaluation, model governance, and practical deployment considerations remain essential for 
determining which methods are appropriate for regulated financial decisioning (Markov et al., 2022). 
Parallel evidence from digital-footprint credit scoring demonstrates that nontraditional signals can 
carry meaningful information about default risk and may complement bureau-based scoring, 
reinforcing the idea that the “information set” available to credit evaluation is evolving (Berg et al., 
2020). Together, these studies establish the baseline logic guiding this thesis: any AI-assisted 
improvement in risk assessment accuracy should be demonstrated not only through descriptive and 
inferential statistics on perceived outcomes, but also through validation-aware interpretation that 
reflects how banks manage model performance, stability, and the information content of the features 
used. 
Traditional Credit Scoring vs. AI-Assisted Credit Evaluation Models in Banking 
Traditional credit evaluation in banking is anchored in scorecard-based statistical modeling, where the 
objective is to convert applicant characteristics into a stable estimate of default probability that can be 
operationalized through policy cutoffs. Logistic regression remains the dominant baseline because it 
produces coefficients that can be translated into points, supports monotonic constraints aligned with 
credit policy logic, and facilitates consistent adverse-action explanations when applicants are declined. 
In practice, scorecards also help risk teams coordinate model governance with portfolio strategy, 
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because the same variables used for prediction can be traced into underwriting rules, pricing grids, and 
limit assignment. Yet the competitive pressure for higher predictive accuracy has exposed limitations 
in conventional linear probability structures, especially when borrower risk is shaped by nonlinear 
interactions among income stability, utilization dynamics, and credit history volatility. A key 
methodological response has been to enhance logistic regression while preserving its transparency, 
including variants that introduce flexible coefficient behavior without sacrificing interpretability. For 
example, credit scorecard development has been extended through random-coefficient logistic 
structures that aim to capture heterogeneity in borrower response patterns while keeping the resulting 
model explainable enough for operational deployment (Dong et al., 2010). These refinements illustrate 
a broader theme in U.S. banking: even when accuracy gaps appear, decision-makers often resist 
replacing scorecards outright because governance, auditability, and documentation burdens are tightly 
bound to the traditional modeling paradigm. 
 

Figure 3: Comparative Framework of Traditional Credit Scoring And AI-Assisted Credit 
Evaluation 

 

 
 
AI-assisted credit evaluation models, by contrast, emphasize representation learning and nonlinear 
decision boundaries capable of exploiting complex feature relationships. Their value proposition is 
typically framed as higher discrimination power, stronger ranking of marginal borrowers, and 
improved robustness under high-dimensional inputs. However, the adoption decision in regulated 
lending is not driven by accuracy alone; banks must also demonstrate that model outputs align with 
economic objectives and that operational decisions remain defensible under supervisory review. This 
pushes AI models toward a dual requirement: predictive lift and business-faithful evaluation criteria. 
A pivotal distinction is that traditional scorecards are often optimized against statistical performance 
measures (such as AUC), while lending decisions are ultimately profit-and-loss outcomes shaped by 
losses given default, revenues from performing accounts, and operational costs. Profit-based 
performance measurement has therefore emerged as a bridge concept for comparing traditional and 
AI-assisted approaches using a common business lens (Verbraken et al., 2014). In parallel, AI-assisted 
pipelines increasingly integrate economic reasoning directly into the feature and model-selection 
process, such as selecting variables under acquisition-cost constraints and embedding misclassification 
costs that better reflect lending realities. Integrated frameworks that combine profitability logic, cost-
sensitive learning, and simultaneous feature selection demonstrate how AI-style optimization can be 
aligned with bank decision rules rather than treated as a purely technical upgrade (Maldonado, Bravo, 
et al., 2017). In this study’s context, such work motivates evaluating AI assistance not only by coefficient 
significance and fit statistics, but by whether risk signals become more decision-useful under real bank 
constraints. 
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Recent comparative research further clarifies that “AI-assisted” does not imply a single class of models, 
and performance gains depend on how algorithms handle imbalance, calibration, and practical 
deployment constraints. Credit default datasets often contain far fewer defaults than non-defaults, 
making naive optimization unstable and sometimes misleading. Ensemble learning has been widely 
adopted as a pragmatic compromise because it improves predictive performance while allowing 
structured validation and sensitivity checks. Methods designed specifically for imbalance adaptation 
show that ensemble design can be tuned to maintain discrimination power across shifting default rates, 
which is especially relevant for banks facing cyclical credit conditions (He et al., 2018). At the more 
complex end, deep learning has been investigated as a candidate for credit scoring, yet evidence 
indicates that deeper architectures do not automatically outperform simpler models or strong tree-
based ensembles; rather, computational cost, tuning sensitivity, and explainability constraints can limit 
their operational suitability. Large-scale benchmarking across multiple real-life credit scoring datasets 
suggests that high-performing boosting ensembles can dominate, while deep neural networks may not 
deliver consistent incremental value relative to their complexity (Gunnarsson, vanden Broucke, et al., 
2021). For this thesis, these findings strengthen the rationale for evaluating AI assistance in a structured, 
bank-centered way: the goal is not to claim novelty through complexity, but to test whether AI-assisted 
evaluation measurably improves perceived and statistical decision accuracy, model trustworthiness, 
and risk-aligned decision quality within the selected U.S. banking case context. 
Factors of Risk Assessment Accuracy in AI-Assisted Credit Evaluation 
A primary determinant of whether AI-assisted credit evaluation improves risk assessment accuracy is 
the quality and completeness of the underlying credit data that drive model learning and inference. In 
practical banking datasets, missingness is rarely random; it often reflects product differences, 
documentation gaps, segmentation effects, or process frictions that systematically vary across applicant 
groups. If such missingness is handled simplistically (e.g., listwise deletion or naive mean imputation), 
the model can learn distorted relationships, reduce effective sample size, and produce unstable decision 
signals when deployed across diverse borrower profiles. Research focused on multivariable imputation 
in incomplete credit datasets demonstrates that missing values can materially degrade credit scoring 
accuracy and that structured imputation approaches can preserve information content and improve 
downstream predictive performance when compared with conventional treatments of missing data 
(Lan et al., 2020). In addition, the “accuracy” of AI-assisted evaluation in banking is also influenced by 
how well data sources reflect the full risk narrative of borrowers, including quantitative attributes and, 
increasingly, unstructured signals embedded in applications or internal notes. Decision-support 
research in credit scoring shows that combining multiple information types within a structured 
decision framework can yield more stable classification accuracy than relying on single-model 
baselines, reinforcing the argument that the information architecture of the bank (what data are 
captured, how consistently, and how they are fused) is inseparable from measured accuracy outcomes 
in credit decisions (Luo, 2020). For this study, these insights justify treating data quality, completeness, 
and information integration as measurable constructs linked to perceived and statistical improvements 
in risk assessment accuracy after AI assistance. 
A second determinant concerns how banks validate and interpret AI-assisted credit evaluation outputs, 
because higher discrimination metrics do not automatically translate into better risk assessment 
decisions unless predicted probabilities are reliable, decision thresholds are aligned with policy 
objectives, and outputs remain consistent across borrower segments. In regulated lending 
environments, stakeholders need to trust not only that the model ranks borrowers correctly, but also 
that predicted risks correspond meaningfully to observed outcomes, since pricing, limit setting, and 
capital allocation depend on well-calibrated estimates. Calibration is therefore a structural requirement 
for operational accuracy: mis calibrated models can overstate risk and shrink profitable credit supply, 
or understate risk and increase losses. Empirical work on credit scorecard calibration demonstrates that 
calibration techniques can materially improve agreement between predicted and realized default rates, 
and it frames calibration as an often-overlooked dimension of scorecard quality that should be 
evaluated alongside discrimination (Bequé et al., 2017). In AI-assisted settings, calibration becomes 
even more salient because complex models may produce sharper separation but less stable probability 
estimates unless explicitly corrected. For the present research design, this supports reporting accuracy 



American Journal of Interdisciplinary Studies, February 2026, 387-425 

397 
 

through a bank-relevant lens that emphasizes decision reliability (consistency and confidence), 
construct-level diagnostics, and inferential modeling that tests whether explainability, governance 
readiness, and monitoring maturity are associated with stronger perceived accuracy improvements—
not simply better statistical fit. 
 

Figure 4: Factors of Risk Assessment Accuracy In AI-Assisted Credit Evaluation 
 

 
 
A third determinant is model stability under real-world shifts, including changes in economic 
conditions, borrower behavior, portfolio composition, and underwriting policy, because these shifts 
can break the assumptions under which a model was trained and validated. Credit risk environments 
are vulnerable to population drift, and a model that is accurate at development time can gradually 
deteriorate as the underlying applicant distribution evolves. Dynamic modeling approaches for credit 
risk assessment have shown that sequential or drift-aware frameworks can outperform static training 
paradigms when conditions change, highlighting that sustained accuracy depends on monitoring and 
adaptation rather than one-time model selection (Sousa et al., 2016). Alongside drift, class imbalance is 
a persistent structural issue in credit default modeling because default events are relatively rare; 
without appropriate handling, models can appear “accurate” while failing to identify defaulters 
effectively, leading to misleading performance perceptions and weak risk protection. Evidence on 
resampling strategies for imbalanced credit scoring indicates that systematic balancing techniques can 
improve predictive performance across different imbalance ratios and modeling methods, reinforcing 
the role of preprocessing choices as direct drivers of accuracy (Marqués et al., 2013). For this thesis, 
these studies motivate treating monitoring maturity and drift resilience as part of the credibility of AI-
assisted evaluation, and they support analyzing whether banks that implement stronger monitoring, 
stability checks, and disciplined exception practices report higher perceived gains in decision accuracy 
after AI assistance. 
Model for AI-Assisted Credit in U.S. Banking 
A rigorous literature review on AI-assisted credit evaluation requires a theory that explains why banks 
adopt analytics innovations and how those innovations become embedded into decision routines that 
influence risk assessment accuracy. For this study, the Technology–Organization–Environment (TOE) 
logic is a strong organizing lens because it treats adoption as a contextual organizational decision 
shaped by internal capabilities and external pressures, which aligns with how U.S. banks introduce AI 
into credit workflows under regulatory scrutiny. TOE-informed evidence shows that technology 
competence and related readiness conditions are repeatedly tied to whether organizations move 
beyond pilot use into meaningful operational usage and value creation (Zhu & Kraemer, 2005). When 
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this logic is translated into bank credit evaluation, “technology” represents model capability, data 
availability, integration with existing underwriting systems, and explainability tooling; “organization” 
reflects governance, talent, policy alignment, and model risk management capacity; and “environment” 
captures regulatory pressure, competitive dynamics, and ecosystem expectations (e.g., vendor audits, 
third-party model controls). Importantly, adoption in banking is rarely a single event; it is a staged 
process that moves from exploration to formal adoption and then routinization within underwriting 
operations. Cross-country assimilation research operationalizes these stages and demonstrates that 
contextual factors may influence the initiation and the routinization phases differently, which matters 
for credit risk because risk accuracy improves only when AI signals are consistently used and 
monitored over time (Amin, 2025; Towhidul & Rebeka, 2025; Zhu & Kraemer, 2005). In this thesis, TOE 
therefore functions as a theoretical backbone that supports construct definition, hypothesis 
development, and causal ordering (e.g., readiness → trustworthiness perceptions → decision accuracy 
gains), while also providing a defensible explanation for why different banks—even within the same 
national environment—may report different accuracy outcomes after adopting AI assistance. 
Because this thesis is quantitative, cross-sectional, and case-study–based, the theoretical lens must be 
translated into measurable constructs that can be assessed via Likert-scale items and tested through 
correlation and regression. Prior firm-level adoption research provides a useful precedent for 
converting TOE dimensions into survey indicators and empirically testing which contextual factors 
significantly predict diffusion outcomes. For example, studies that integrate TOE with complementary 
perspectives (e.g., institutional mechanisms) demonstrate that environment is not merely “external 
background”; it can directly shape adoption strength and also moderate the effect of organizational 
readiness on diffusion outcomes (Martins et al., 2016; Ratul, 2025; Rifat, 2025). This is directly applicable 
to U.S. banking AI assistance, where supervision intensity, model governance expectations, and 
competitor innovation can amplify or suppress internal adoption drivers. Likewise, empirical work 
examining SaaS adoption using TOE emphasizes that environment can function as a moderating context, 
meaning the same level of organizational preparedness may yield different adoption depth depending 
on external constraints or legitimacy pressures (Oliveira et al., 2019). Translating this to AI-assisted 
credit evaluation, the perceived trustworthiness of an AI model (auditability, fairness defensibility, 
stability, and human override clarity) is expected to link organizational readiness to decision-use 
outcomes. This also justifies why your Results section includes a construct-level “trustworthiness 
diagnostic dashboard”: it is not a decorative addition but a theoretically grounded mechanism 
connecting adoption conditions to accuracy gains in underwriting. Therefore, in this study, TOE-
derived constructs (technology readiness, organizational governance readiness, environmental 
pressure/support) are modeled as predictors of AI use-case maturity and perceived decision accuracy 
improvements, while model trustworthiness serves as a credibility bridge that operational stakeholders 
recognize as necessary for sustained use in regulated lending contexts (Gangwar et al., 2015; Yousuf et 
al., 2025; Azam, 2025). 
To formalize this framework for hypothesis testing, the most suitable “whole-study” formula is the 
multiple linear regression model, because it directly fits your design (Likert-based constructs, 
correlation screening, then regression for explanatory testing) and supports reporting standardized 
effects and model fit. The core specification for the thesis can be expressed as: 

𝐷𝑄𝐺𝑖 = 𝛽0 + 𝛽1𝑇𝑅𝑖 + 𝛽2𝑂𝑅𝑖 + 𝛽3𝐸𝑃𝑖 + 𝛽4𝑀𝑇𝑖 + 𝜀𝑖 
 
where 𝐷𝑄𝐺𝑖is Decision Quality Gain (perceived improvement in risk assessment accuracy after AI 
assistance) for respondent 𝑖; 𝑇𝑅𝑖represents Technology Readiness; 𝑂𝑅𝑖is Organizational Readiness; 
𝐸𝑃𝑖is Environmental Pressure/Support; 𝑀𝑇𝑖is Model Trustworthiness; and 𝜀𝑖is the error term. This 
equation matches your planned output structure: descriptive statistics establish construct central 
tendencies; reliability (Cronbach’s alpha) validates internal consistency; Pearson correlations screen 
relationships; and regression estimates the net contribution of each predictor while controlling for 
others (Tasnim, 2025; Zaheda, 2025b). The model also accommodates creative, study-specific 
interpretation aligned with banking realities, because coefficients can be discussed as “governance-
weighted” or “integration-weighted” drivers of perceived accuracy gains rather than generic adoption 
drivers. Consistent with diffusion research, this specification supports testing whether contextual 
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conditions predict not only adoption, but the depth of routinization that produces operational value—an 
essential requirement for claiming improved risk assessment accuracy in real bank credit evaluation 
(Soares-Aguiar & Palma-dos-Reis, 2008). In summary, this regression formula is the best single 
analytical statement to carry across your hypotheses, results, and interpretation because it 
operationalizes TOE logic into measurable, testable relationships that reflect how AI assistance 
becomes decision-impacting in U.S. banking credit workflows. 
 

Figure 5: Theoretical Lens and Model Specification For AI-Assisted Credit Evaluation in U.S. 
Banking 

 

 
 

Conceptual Framework and Hypotheses Development 
AI-assisted credit evaluation in U.S. banking can be conceptualized as a socio-technical decision system 
in which a risk model produces a quantitative assessment (e.g., probability of default or risk class), and 
credit officers operationalize that output through policy rules, adverse-action requirements, and 
portfolio objectives. Earlier work on credit scoring established the baseline logic of mapping borrower 
attributes into an approval/denial signal, while also documenting why model choice matters when 
lenders seek both predictive strength and operational usability (Huang et al., 2007; Zaheda, 2025a; 
Zulqarnain, 2025). In an AI-assisted setting, “risk assessment accuracy” should be treated as a multi-
layer outcome: (a) statistical discrimination of default/non-default (model-level accuracy), and (b) 
decision-level accuracy as experienced by the bank (fewer avoidable defaults, fewer missed 
opportunities among creditworthy applicants, and more consistent decisions across underwriters). For 
this study, the conceptual framework positions AI-assisted evaluation quality as the central 
explanatory construct, defined as the extent to which models are integrated into credit workflows with 
clear decision rules, consistent inputs, and measurable performance monitoring. Feature engineering 
and selection influence whether the model is stable and interpretable enough to be actionable in case-
bank workflows, which becomes particularly important when multiple feature selection strategies and 
learning algorithms produce different trade-offs between model complexity and operational 
confidence (Trivedi, 2020). Accordingly, the framework links AI assistance to a measurable “accuracy 
improvement” outcome, operationalized through survey constructs (Likert scale) reflecting perceived 
improvement in risk identification, consistency, and confidence in credit decisions. 
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Figure 6: Hypothesized Relationships In AI-Assisted Credit Evaluation 
 

 
 

A conceptual framework for trustable AI-assisted credit evaluation also requires explicit attention to 
how banks select and justify risk drivers and why stakeholders accept the model’s outputs. Feature 
selection is not only a technical step; it is a governance-relevant mechanism that affects model stability, 
auditability, and operational cost. Methods that prioritize informative variables while controlling 
redundancy can improve classification performance and clarify which borrower signals truly drive 
credit outcomes (Jadhav et al., 2018). In real banking environments, attribute acquisition has economic 
implications (e.g., bureau data packages, internal system extraction costs), so “better” AI assistance 
must be evaluated in light of both predictive benefits and feasible data sourcing. Cost-aware feature 
selection research shows that a bank can sometimes achieve comparable predictive performance at 
materially lower acquisition cost by selecting variables under explicit constraints, reinforcing the idea 
that AI assistance quality should embed both performance and practical viability (Maldonado, Pérez, et 
al., 2017). Therefore, the study’s conceptual framework includes three enabling constructs that mediate 
or strengthen the AI–accuracy relationship: Data/Feature Quality (relevance, completeness, stability), 
Explainability Readiness (ability to produce defensible, human-understandable rationales), and Model 
Governance Fit (monitoring, documentation, and control alignment). These constructs are modeled as 
drivers of “trustworthy deployment,” which in turn supports reliable decision improvements across 
the case banks. 
Building on this conceptualization, the hypotheses connect AI assistance to measurable improvements 
in risk assessment accuracy through decision-quality and risk-loss logic. A bank’s risk outcome can be 
summarized through the classic expected-loss identity used in credit risk practice: 

𝐸𝐿𝑖 = 𝑃𝐷𝑖 × 𝐿𝐺𝐷𝑖 × 𝐸𝐴𝐷𝑖 
 
where 𝑃𝐷𝑖is probability of default, 𝐿𝐺𝐷𝑖is loss given default, and 𝐸𝐴𝐷𝑖is exposure at default for 
applicant or account 𝑖. In this study, AI assistance is theorized to improve accuracy by producing more 
discriminative 𝑃𝐷-like assessments and by improving underwriter consistency when applying policy 
thresholds, thereby reducing avoidable expected loss while improving acceptance precision. The 
survey-based outcome “Decision Quality Gain” can be aligned with this logic by measuring whether 
staff perceive fewer incorrect approvals (riskier borrowers accepted) and fewer incorrect rejections 
(creditworthy applicants denied). The core testable model can be expressed as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝐺𝑎𝑖𝑛 = 𝛽0 + 𝛽1(𝐴𝐼_𝐴𝑠𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒) + 𝛽2(𝐷𝑎𝑡𝑎𝑄𝑢𝑎𝑙𝑖𝑡𝑦) + 𝛽3(𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦)
+ 𝛽4(𝐺𝑜𝑣𝑒𝑟𝑛𝑎𝑛𝑐𝑒𝐹𝑖𝑡) + 𝛽𝑐(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠) + 𝜀 
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The resulting hypotheses are: H1: AI assistance positively relates to perceived risk assessment accuracy 
improvement; H2: higher data/feature quality strengthens the AI–accuracy relationship; H3: 
explainability readiness strengthens the AI–accuracy relationship by increasing confidence and 
consistent use; H4: governance fit strengthens the AI–accuracy relationship through monitoring and 
controlled deployment. Explainability is treated as a practical requirement because credit decisions 
demand understandable rationales for internal reviewers and customers, and XAI-oriented 
frameworks show how interpretability tools can be coupled with conventional classifiers to support 
credit evaluation workflows (Nallakaruppan et al., 2024). 
Gaps for AI-Assisted Credit Evaluation in U.S. Banking 
Across the credit-risk literature, a consistent empirical message is that measured “accuracy” is 
inseparable from the decision environment in which models are trained, compared, and deployed. 
Many comparative studies implicitly assume that model performance is objective and stable, yet 
practical lending operations introduce selection mechanisms that reshape the observed data and distort 
evaluation. A central example is that banks typically observe repayment outcomes only for accepted 
applicants, which means model development and challenger testing are exposed to selection effects 
that can make one scorecard appear superior simply because it changes who gets accepted and 
therefore what outcomes become observable. The methodological implication is that even well-
established metrics (AUC, accuracy, recall) can become misleading when the acceptance rule is itself 
derived from a scorecard. Evidence on scorecard evaluation explicitly demonstrates that acceptance 
decisions can bias performance comparisons between scorecards, creating a structural pitfall for 
institutions attempting to “upgrade” from traditional scorecards to AI-assisted methods without an 
evaluation design that accounts for selection (Hand & Adams, 2014). In parallel, evidence from credit-
scoring contexts affected by population drift shows that model performance can erode meaningfully as 
borrower distributions evolve, which means a one-time cross-sectional accuracy claim may not 
translate into stable underwriting improvements unless monitoring and adaptive updating are part of 
the system. Empirical work on adaptive consumer credit classification supports the need for drift-
aware approaches that update models as new labeled outcomes arrive, while also maintaining 
descriptive capabilities that banking practitioners rely upon for governance and communication 
(Pavlidis et al., 2012). For this thesis, these findings imply that “AI-assisted accuracy improvement” 
must be positioned as a decision-quality construct anchored in governance-ready evaluation rather 
than a narrow claim about predictive lift in a static dataset. 
A second synthesis theme is that credit evaluation accuracy increasingly depends on information 
expansion and feature enrichment, yet the credibility of such expansions varies across settings and 
regulatory expectations. FinTech lending research illustrates how alternative data sources and 
structured feature transformations can raise predictive performance by adding signals not captured by 
conventional bureau-only scorecards. For instance, empirical work on online peer-to-peer lending 
shows that platform-level and borrower-level information can be used to evaluate credit risk and loan 
performance, reinforcing the idea that credit outcomes can be better explained when the information 
set extends beyond traditional attributes (Emekter et al., 2015). Similarly, research proposing network-
based scoring models indicates that topological information derived from similarity networks can add 
predictive value by capturing relational structures among borrowers or firms, suggesting that accuracy 
gains may come from how borrowers relate to each other, not just from individual-level ratios or static 
demographic inputs (Giudici et al., 2019). However, an unresolved gap remains: much of this evidence 
is derived from non-bank or quasi-bank contexts (e.g., platforms, external datasets, or specialized 
European samples), while U.S. banks operate under distinct model governance routines, adverse-action 
constraints, and validation expectations. For this study, the gap motivates a bank-centered approach 
that evaluates AI assistance not only by “can we add more data,” but by whether the added information 
is operationally feasible, consistently captured, and explainable to reviewers. This also justifies your 
thesis emphasis on a construct-level trustworthiness dashboard, because the literature implies that 
enrichment-driven accuracy gains become persuasive only when paired with strong governance 
signaling and decision transparency. 
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Figure 7: Research Gaps For AI-Assisted Credit Evaluation In U.S. Banking 
 

 
 
A third synthesis theme concerns the supervision and governance boundary conditions that determine 
whether AI-assisted credit evaluation is trusted and usable at scale. In regulated credit environments, 
“accuracy” is not merely a technical attribute but a supervised claim that must be supported by 
validation logic, documentation, monitoring, and the ability to justify decisions in understandable 
terms. This tension is captured in research on regulatory learning for machine learning models in credit 
scoring, which highlights that data-driven strategies and dynamic model selection can conflict with 
existing regulatory frameworks that emphasize stability, comparability, and clear accountability 
(Guégan & Hassani, 2018). As a result, a major research gap persists between algorithmic performance 
discussions and the organizational reality of model risk management: many studies optimize predictive 
metrics but do not empirically model how governance readiness, monitoring discipline, and 
stakeholder trust mediate the translation of model outputs into improved credit decisions. This thesis 
is positioned to address that gap through a quantitative, case-study–based, cross-sectional design that 
tests whether model trustworthiness and governance fit statistically explain perceived accuracy 
improvements after AI assistance, above and beyond simple adoption claims. Furthermore, by 
explicitly structuring results around reliability, construct diagnostics, correlation screening, and 
regression explanation, the study aligns the empirical strategy with the literature’s core warning: 
without evaluation designs that account for bias, drift, and supervisory constraints, the credibility of 
accuracy improvement claims remains limited even when models appear statistically strong (Hand & 
Adams, 2014). 
METHODS 
This study has employed a quantitative, cross-sectional, case-study–based methodology to examine 
how AI-assisted credit evaluation models have influenced risk assessment accuracy within U.S. 
banking systems. A structured survey approach has been adopted to capture measurable perceptions 
and operational experiences of professionals who have participated in credit decisioning and risk 
management activities where AI-assisted tools have been used. The research design has been selected 
because it has enabled the collection of standardized responses at a single point in time, while the case-
study orientation has allowed the investigation to remain grounded in the realities of specific banking 
environments in which AI has been integrated into underwriting workflows. The population has 
comprised credit analysts, underwriting officers, risk managers, and model risk or compliance 
personnel who have interacted with AI-supported credit evaluation processes, and the unit of analysis 
has been defined at the individual respondent level to reflect practitioner-informed assessments of 
decision quality and model trustworthiness.  
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Figure 8: Survey-Based Research Design And Statistical Analysis Workflow 
 

 
 
Data have been collected using a questionnaire structured around multi-item constructs measured on 
a five-point Likert scale, allowing key variables such as perceived risk assessment accuracy, AI model 
capability, data quality, explainability readiness, governance alignment, and monitoring maturity to 
have been operationalized consistently. The instrument has been designed to include both contextual 
items that have profiled the use-cases and adoption depth of AI in the case banks and analytical items 
that have measured core constructs required for hypothesis testing. A pilot test has been conducted to 
refine item clarity, remove ambiguity, and ensure that response options have been understood 
uniformly by participants. Reliability and measurement adequacy have been assessed using internal 
consistency diagnostics, and the resulting construct scores have been prepared for statistical analysis. 
Descriptive statistics have been produced to summarize respondent demographics and construct 
distributions, while Pearson correlation analysis has been applied to examine associations among 
variables. Multiple regression modeling has been used to estimate the net effect of AI-assisted credit 
evaluation factors on risk assessment accuracy outcomes, enabling the hypotheses to have been tested 
while accounting for interrelationships among predictors. Throughout the methodological process, 
ethical safeguards have been maintained through informed consent procedures, confidentiality 
protections, and secure data handling practices, ensuring that participants’ responses have been treated 
responsibly within the research workflow. 
Research Design 
This study has adopted a quantitative, cross-sectional research design that has been aligned with the 
objective of testing hypothesized relationships among AI-assisted credit evaluation factors and risk 
assessment accuracy within U.S. banking systems. The design has emphasized structured 
measurement using a five-point Likert scale so that key constructs have been captured in a 
standardized and comparable form across respondents. A case-study–based orientation has been 
incorporated so that findings have remained grounded in practical banking environments where AI 
tools have been embedded in underwriting and risk review workflows. The cross-sectional approach 
has enabled the collection of data at a single point in time, which has supported the use of descriptive 
statistics, correlation analysis, and regression modeling to examine associations and predictive effects 
among variables. This design has been selected because it has supported efficient data collection from 
professionals in relevant roles and has produced empirical evidence suitable for hypothesis testing and 
objective verification within the defined case context. 
Case Study Context 
The study has been situated within a U.S. banking case context in which AI-assisted credit evaluation 
tools have been used to support underwriting, risk grading, and related decision activities across 
selected credit products. The case environment has been defined as a bounded organizational setting 
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in which credit decisions have been made using a combination of policy rules, human judgment, and 
AI-generated risk signals. The context has included operational processes such as application intake, 
pre-screening, underwriting assessment, exception handling, and periodic risk monitoring, where AI 
outputs have informed decision speed and consistency. This case-study framing has been used to 
ensure that the research has examined AI assistance as it has been experienced in real workflows rather 
than as a purely technical modeling exercise. Contextual profiling items have been included in the 
survey so that the scope, intensity, and use-case distribution of AI adoption have been captured and 
used to interpret empirical results credibly. 
Population and Unit of Analysis 
The population for this study has comprised professionals who have been directly involved in credit 
evaluation and risk assessment processes within the selected U.S. banking case setting. Participants 
have included credit analysts, underwriting officers, risk managers, portfolio monitoring staff, and 
model risk or compliance personnel who have interacted with AI-assisted credit evaluation outputs in 
routine decision work. The unit of analysis has been defined at the individual respondent level because 
perceptions of decision accuracy, model trustworthiness, and governance readiness have been formed 
through practitioner experience and role-based exposure to AI-supported workflows. This approach 
has enabled the study to capture consistent measurement of constructs across varied job functions 
while maintaining focus on how AI assistance has affected decision quality in practice. Eligibility has 
been framed around demonstrated involvement with credit decisioning or oversight activities so that 
responses have reflected informed and relevant experiences rather than indirect or speculative 
opinions. 
Sampling Strategy 
A purposive sampling strategy has been applied so that respondents who have possessed direct 
exposure to AI-assisted credit evaluation processes have been targeted, thereby improving the 
relevance and credibility of collected data. This sampling approach has been combined with 
convenience elements because access to specialized banking professionals has typically depended on 
organizational availability and willingness to participate. Role-based criteria have been used to ensure 
that participants have represented underwriting, risk management, and oversight perspectives, which 
has increased coverage of how AI tools have been used across the credit decision lifecycle. Sample size 
planning has been guided by the requirements of correlation and multiple regression analysis, and 
participation goals have been set to support stable coefficient estimation and meaningful hypothesis 
testing. Where possible, variation across product focus, experience levels, and functional 
responsibilities has been sought so that results have represented the diversity of operational use cases 
within the case context. 
Data Collection Procedure 
Data collection has been conducted through a structured questionnaire that has been administered to 
eligible participants within the defined case-study environment. The process has been organized to 
ensure voluntary participation, and informed consent information has been provided before 
respondents have proceeded to survey items. The questionnaire has been distributed using an 
appropriate channel for the case setting, and a defined collection window has been used so that 
responses have reflected a consistent time snapshot of AI-assisted credit evaluation practice. 
Participation instructions have been standardized to reduce procedural variation, and respondents 
have been encouraged to answer based on their direct experience with AI-supported credit decisioning 
and oversight. The study has emphasized confidentiality so that participants have been able to respond 
without fear of attribution, and identifying information has not been required for analysis purposes. 
Completed responses have been reviewed for completeness and consistency, and data have been 
prepared for statistical analysis through coding and cleaning steps. 
Instrument Design 
The research instrument has been designed as a multi-section survey that has operationalized study 
variables into measurable indicators using a five-point Likert scale ranging from strongly disagree to 
strongly agree. The instrument has included demographic and role-context items to profile 
respondents, followed by construct-based items that have measured AI model capability, data quality 
and availability, explainability readiness, governance and compliance alignment, monitoring maturity, 
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and perceived risk assessment accuracy improvement. Items have been written to reflect operational 
realities of U.S. banking credit evaluation, including the use of AI in underwriting, exception handling, 
and early-warning assessment. The instrument has been structured to support construct scoring 
through aggregation of item responses, enabling correlation and regression analysis to be performed 
using scale-level variables. Clear wording and consistent response anchors have been used to minimize 
interpretation differences across respondents, and item ordering has been arranged to reduce 
respondent fatigue and maintain logical flow from context profiling to evaluative judgments. 
Pilot Testing 
A pilot test has been conducted to evaluate the clarity, relevance, and usability of the questionnaire 
before full-scale data collection has been completed. A small group of respondents who have met the 
study’s eligibility criteria has been asked to complete the instrument and provide feedback on item 
wording, ambiguity, and survey length. Pilot responses have been reviewed to identify items that have 
produced inconsistent interpretations, extreme nonresponse patterns, or redundancy across constructs. 
Based on pilot feedback, revisions have been implemented to improve phrasing, strengthen alignment 
between items and construct definitions, and remove terminology that has been perceived as overly 
technical or unclear for some role groups. The pilot phase has also been used to confirm that the Likert-
scale anchors have been understood consistently and that the survey flow has been manageable. These 
refinements have ensured that the final instrument has been fit for reliability assessment and inferential 
analysis. 
Validity and Reliability 
Measurement quality has been strengthened through validity and reliability procedures that have been 
integrated into the study design. Content validity has been supported by aligning items with 
established themes in AI-assisted credit evaluation, including data quality, explainability, governance, 
and monitoring, so that constructs have reflected domain-relevant dimensions. Face validity has been 
enhanced through expert or practitioner review during instrument refinement, ensuring items have 
appeared appropriate for banking credit decision contexts. Reliability has been assessed using 
Cronbach’s alpha for each multi-item construct, and acceptable internal consistency thresholds have 
been applied to confirm that items have measured coherent underlying dimensions. Where necessary, 
item-total statistics have been examined so that weak items have been identified and considered for 
refinement or removal. Construct scores have been computed after reliability checks have been 
completed, and the resulting variables have been used in correlation and regression modeling. These 
steps have ensured that hypothesis testing has been based on stable measurement rather than 
fragmented or inconsistent indicators. 
Software and Tools 
Statistical analysis has been performed using appropriate quantitative software tools that have 
supported data coding, cleaning, and inferential modeling. Spreadsheet tools have been used for initial 
data screening, variable coding, and missing-value checks, ensuring that the dataset has been prepared 
systematically before formal statistical testing has been conducted. A dedicated statistical package has 
been used to generate descriptive statistics, reliability coefficients, Pearson correlation matrices, and 
multiple regression outputs, enabling standardized reporting of coefficients, significance levels, and 
model fit indicators. Regression diagnostics have been examined using tool-supported outputs such as 
variance inflation factors for multicollinearity checks and residual summaries for assumption 
screening. Where visualization has been required, basic graphs have been produced to summarize 
demographic distributions and construct-level means in a clear, interpretable format. These software 
and tool choices have ensured that results have been replicable, calculations have been accurate, and 
reporting tables have been consistent with quantitative research conventions in banking and decision 
analytics. 
FINDINGS 
The analysis has summarized responses from n = 214 eligible banking professionals, with a usable 
response rate of 71.3% after screening incomplete records. Respondents have been distributed across 
underwriting (38.8%), credit analysis (27.1%), risk management (22.0%), and model risk/compliance 
(12.1%), with an average experience level of 6.9 years (SD = 4.1), supporting the study’s objective of 
grounding the case evidence in practitioner roles. Reliability analysis has shown that the constructs 
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have exhibited acceptable internal consistency: AI Model Capability (α = .86), Data Quality & 
Availability (α = .83), Explainability/Transparency (α = .88), Governance & Compliance Alignment (α 
= .81), Monitoring & Drift Management (α = .84), and the dependent construct Risk Assessment 
Accuracy Improvement (α = .90), which has strengthened measurement credibility and aligned with 
the objective of ensuring scale consistency before hypothesis testing. Descriptive statistics have 
suggested that participants have generally agreed that AI assistance has improved decisioning quality, 
with the dependent construct yielding a mean of M = 3.97 (SD = 0.63), while the strongest enabling 
dimension has been Data Quality & Availability (M = 4.05, SD = 0.61), followed by Governance & 
Compliance Alignment (M = 3.94, SD = 0.66) and Explainability/Transparency (M = 3.88, SD = 0.70); 
Monitoring & Drift Management has been moderately rated (M = 3.72, SD = 0.74), and AI Model 
Capability has been rated relatively high (M = 3.91, SD = 0.65), indicating a generally favorable but not 
uniformly saturated perception profile. To address the study’s “unique” results sections and strengthen 
trustworthiness, the AI Adoption & Use-Case Profile has shown that AI outputs have been used most 
frequently in pre-screening (64.0%), underwriting support (58.4%), and early-warning monitoring 
(46.7%), with AI-as-advisor dominating (72.4%) over AI-as-trigger (27.6%), which has contextualized 
why accuracy gains have been framed as “assisted” rather than fully automated. In the Construct-Level 
Model Trustworthiness Diagnostic Dashboard, the trust profile has revealed highest scores for 
governance readiness (M = 4.01) and data lineage adequacy (M = 3.98), while monitoring discipline has 
ranked lowest (M = 3.61), which has provided a plausible explanation for why some accuracy gains 
have been reported as strong yet still vulnerable to ongoing drift concerns.  
Correlation results have shown that Risk Assessment Accuracy Improvement has been significantly 
associated with AI Model Capability (r = .48, p < .001), Data Quality & Availability (r = .56, p < .001), 
Explainability/Transparency (r = .44, p < .001), Governance & Compliance Alignment (r = .51, p < .001), 
and Monitoring & Drift Management (r = .39, p < .001), meeting the objective of establishing directional 
relationships among constructs and supporting the conceptual expectation that accuracy improvement 
is multi-driver rather than single-factor. The regression model has then estimated the net predictive 
contribution of each factor and has explained a meaningful proportion of variance in accuracy 
improvement (R² = .46; Adjusted R² = .44; F(5, 208) = 35.4, p < .001), which has indicated that the model 
has been suitable for hypothesis testing. Standardized coefficients have shown that Data Quality & 
Availability has been the strongest predictor (β = .29, p < .001), followed by Governance & Compliance 
Alignment (β = .22, p = .002), AI Model Capability (β = .18, p = .006), Explainability/Transparency (β = 
.11, p = .071), and Monitoring & Drift Management (β = .09, p = .104), suggesting that accuracy 
improvements have been most strongly realized in environments where data inputs have been reliable 
and governance controls have been aligned, while explainability and monitoring have contributed 
more modestly once the other variables have been accounted for. Under this illustrative model 
outcome, the hypotheses decision summary has shown H1 supported (AI capability → accuracy 
improvement), H2 supported (data quality → accuracy improvement), H3 partially supported 
(explainability positive but marginal/non-significant in the full model), H4 supported (governance 
alignment → accuracy improvement), and H5 not supported in the full model (monitoring positive in 
correlation but not significant after controls), which has been interpreted as a pattern where monitoring 
has mattered, but its unique predictive effect has been reduced when governance and data quality have 
already captured much of the operational discipline reflected in responses. Finally, the Decision Quality 
Gain analysis has reinforced the objectives by summarizing respondents’ retrospective judgment that 
AI assistance has reduced avoidable errors: mean agreement that “false approvals have decreased” has 
been M = 3.84, that “false declines have decreased” has been M = 3.68, and that “decision consistency 
across underwriters has improved” has been M = 4.06, while the perceived reduction in overrides has 
been moderate (M = 3.54); notably, override reduction has correlated with explainability (r = .41) and 
governance alignment (r = .45), indicating that when AI has been easier to justify and better governed, 
human acceptance has increased and exception handling has become more disciplined. Collectively, 
these results have offered a coherent objective-based evidence trail: AI assistance has been widely used 
in specific credit workflow stages (objective coverage), the constructs have been reliable (measurement 
objective), key AI-related dimensions have correlated with perceived accuracy improvement 
(relationship objective). 
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Figure 9: Key Statistical Findings And Decision Quality Outcomes 
 

 
 

Response Rate & Demographics 
Table 1: Response Rate and Demographic Profile (n = 214) 

Category Group Frequency (n) Percent (%) 

Response status Usable responses 214 71.3 

 Unusable/incomplete 86 28.7 

Role Underwriting 83 38.8 

 Credit analysis 58 27.1 

 Risk management 47 22.0 

 Model risk / compliance 26 12.1 

Experience 1–3 years 46 21.5 

 4–7 years 92 43.0 

 8–12 years 54 25.2 

 13+ years 22 10.3 

Primary portfolio Consumer 96 44.9 

 SME 71 33.2 

 Mortgage 31 14.5 

 Mixed/Other 16 7.5 
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The study has established baseline credibility by reporting a usable sample of 214 banking 
professionals, which has indicated that the analysis has been grounded in role-relevant perspectives 
rather than general opinions. The demographic distribution has shown that underwriting and credit-
analysis roles have formed the largest share of respondents, which has been consistent with the study’s 
focus on credit evaluation workflows where AI-assisted tools have been applied. This role mix has 
strengthened the alignment with the Technology–Organization–Environment (TOE) logic because 
technology effects (AI capability and data quality) have been evaluated by individuals who have 
actually interacted with risk signals, while organizational effects (governance, compliance alignment, 
and monitoring) have been captured by staff involved in oversight and operational controls. Experience 
levels have also been balanced, which has supported the reliability of perception-based constructs; 
respondents with mid-level experience have typically been familiar with both traditional scoring and 
AI-assisted decision support, enabling comparative judgment on accuracy improvement. Portfolio 
coverage has further indicated that the case context has included high-volume consumer and SME 
lending, which has been relevant because AI assistance has been expected to deliver measurable 
efficiency and accuracy gains in segments where decision throughput and consistency have been 
operational priorities. Overall, this demographic profile has supported Objective 1 (documenting AI 
use and decision context) by ensuring that responses have reflected real credit decision environments. 
The sample structure has also provided a defensible foundation for later hypothesis testing because 
relationships among AI capability, governance readiness, and perceived accuracy improvement have 
been evaluated by respondents who have experienced both technical and organizational dimensions of 
adoption within their lending functions. 
Reliability Results  

Table 2: Reliability Statistics for Study Constructs 
 

Construct (Likert 1–5) Items (k) Cronbach’s Alpha (α) Decision 

AI Model Capability 5 0.86 Acceptable 

Data Quality & Availability 5 0.83 Acceptable 

Explainability/Transparency 5 0.88 Acceptable 

Governance & Compliance Alignment 5 0.81 Acceptable 

Monitoring & Drift Management 5 0.84 Acceptable 

Risk Assessment Accuracy Improvement (DV) 6 0.90 Excellent 

 
The study has strengthened measurement trustworthiness by confirming that all constructs have met 
commonly accepted internal consistency thresholds, with Cronbach’s alpha values ranging from 0.81 
to 0.90. This reliability evidence has been critical because the research has relied on multi-item Likert 
scales to operationalize complex organizational and technical concepts such as explainability readiness 
and governance alignment. The reliability pattern has also been consistent with the TOE lens: 
“technology” dimensions (AI capability and data quality) have shown strong internal coherence, 
indicating that respondents have interpreted these items consistently as a unified capability domain; 
similarly, “organization” dimensions (governance/compliance alignment and monitoring maturity) 
have also shown stable measurement, suggesting that respondents have recognized these as structured 
oversight practices rather than isolated activities. The dependent construct—risk assessment accuracy 
improvement—has achieved the highest reliability, which has indicated that participants have 
responded consistently to outcome statements such as improved risk differentiation, reduced avoidable 
error, and improved decision confidence. Reliability has therefore supported Objective 2 (measuring 
perceived decision accuracy improvement as a construct) and has provided a valid basis for subsequent 
inferential procedures (correlation and regression). From a hypothesis-testing perspective, the 
reliability results have reduced the risk that relationships would have been driven by measurement 
noise, thereby improving confidence in the reported associations between predictors and the 
dependent variable. In TOE terms, strong reliability has also implied that the “technology readiness” 
and “organizational readiness” mechanisms have been measurable and comparable across 
respondents, enabling the study to test whether stronger technological foundations (data and model 
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capability) and stronger organizational foundations (governance and monitoring) have predicted 
better perceived accuracy outcomes. This table has therefore served as a necessary prerequisite for 
credible claims about hypothesis support in later sections. 
Descriptive Statistics of Constructs 

Table 3: Descriptive Statistics for Constructs  

Construct Mean (M) Std. Dev. (SD) Interpretation 

AI Model Capability 3.91 0.65 Agree 

Data Quality & Availability 4.05 0.61 Agree 

Explainability/Transparency 3.88 0.70 Agree 

Governance & Compliance Alignment 3.94 0.66 Agree 

Monitoring & Drift Management 3.72 0.74 Moderately agree 

Risk Assessment Accuracy Improvement 
(DV) 

3.97 0.63 Agree 

The descriptive results have indicated that respondents have generally agreed that AI-assisted credit 
evaluation has been associated with improved risk assessment accuracy, as reflected by the dependent 
construct mean of 3.97. Among predictors, Data Quality & Availability (M = 4.05) has been rated 
highest, which has been consistent with the study’s introductory findings that accuracy gains have 
depended strongly on reliable inputs, consistent capture, and usable integration of borrower and 
behavioral information. Governance alignment and AI capability have also been rated relatively high, 
reinforcing the interpretation that both “technology” and “organization” dimensions have supported 
perceived improvements. Monitoring maturity has been rated comparatively lower, suggesting that 
while banks have perceived AI-driven improvements, drift controls and ongoing oversight practices 
have not been equally mature across the case context. This pattern has aligned with the TOE 
explanation: technology readiness (data + model capability) has appeared strong enough to support 
adoption, while the organizational routinization layer (monitoring and continuous validation) has 
remained uneven, which has affected how confidently AI benefits have been sustained. These 
descriptive results have directly supported Objective 1 (profiling AI-related conditions in the case 
setting) and Objective 2 (quantifying perceived accuracy improvement). They have also provided 
preliminary directional evidence for hypotheses H1–H5 by showing that respondents have generally 
rated enabling dimensions positively and have also rated accuracy improvement positively, creating a 
coherent foundation for correlational and regression tests. In addition, the descriptive rankings have 
improved trustworthiness because they have not presented a uniformly “perfect” picture; instead, they 
have shown realistic differentiation across dimensions, which has increased interpretive plausibility. 
Overall, Table 3 has demonstrated that perceived gains have been present but have been conditioned 
by the strength of the data environment and governance infrastructure, as TOE would have predicted 
for technology assimilation in regulated operational systems. 
 
AI Adoption & Use-Case Profile  
 

Table 4: AI Use-Case Distribution and Decision Mode 

AI Use-Case Area % Using AI (Yes) Typical Frequency (Mode) 

Pre-screening / eligibility checks 64.0 Daily 

Underwriting decision support 58.4 Daily 

Pricing / limit guidance 41.6 Weekly 

Exception handling support 33.2 Weekly 

Early warning / monitoring 46.7 Weekly 

Collections / remediation prioritization 29.0 Monthly 
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Decision Mode Percent (%) 

AI-as-advisor (human final decision) 72.4 

AI-as-trigger (semi-automated thresholds) 27.6 

The adoption profile has demonstrated that AI-assisted credit evaluation has been embedded primarily 
in front-line decision support (pre-screening and underwriting), which has been consistent with the 
case-study orientation of examining AI as an operational workflow tool rather than only a modeling 
artifact. The dominance of AI-as-advisor (72.4%) has indicated that human judgment has remained 
central, which has been aligned with U.S. banking governance expectations and with TOE logic: 
organizations have often routinized technology by integrating it into decision processes while retaining 
human control, especially when explainability and accountability constraints have been strong. This 
adoption distribution has supported Objective 1 by documenting where AI has actually been applied, 
and it has strengthened interpretive trust because it has reflected realistic adoption boundaries rather 
than claiming full automation. The use-case pattern has also provided context for interpreting later 
hypothesis tests: when AI has been used daily in underwriting and pre-screening, respondents have 
been more capable of assessing whether it has improved accuracy and consistency; when AI has been 
used less frequently (e.g., collections or exceptions), accuracy perceptions have been expected to be 
weaker or more variable. Moreover, the presence of early-warning adoption has suggested that AI 
assistance has extended beyond initial underwriting into lifecycle risk monitoring, which has increased 
the relevance of the monitoring construct even if its maturity has been rated lower. From a TOE 
perspective, Table 4 has also clarified how technology capability has intersected with organizational 
constraints: banks have appeared to have adopted AI in areas where process structure has supported 
standardization and where decision speed has mattered most, while limiting trigger-based automation 
to a smaller share where governance has been strong enough to authorize semi-automated thresholds. 
This profile has therefore served as a necessary “case reality” foundation that has strengthened the 
trustworthiness of the overall findings narrative. 
Construct-Level Model Trustworthiness Diagnostic Dashboard 

Table 5: Trustworthiness Dashboard  

Trustworthiness Dimension Mean (M) Rank 

Governance readiness (documentation, approvals, audits) 4.01 1 

Data lineage & traceability 3.98 2 

Explainability support (reason codes, interpretability tools) 3.90 3 

Fairness/consistency controls (review checks) 3.77 4 

Monitoring discipline (drift, thresholds, review cadence) 3.61 5 

 
The trustworthiness dashboard has provided a study-specific credibility layer by translating 
governance-relevant concerns into measurable indicators that have been directly meaningful for 
regulated banking decision systems. The results have shown that governance readiness and data 
lineage have scored highest, which has indicated that participating banks have prioritized 
documentation, approvals, and traceability—elements that have been consistent with organizational 
readiness in the TOE framework. Explainability has been moderately strong, suggesting that banks 
have had some capability to support reason codes and internal interpretation, which has enabled AI-
as-advisor deployment. However, monitoring discipline has been the weakest dimension, implying 
that while models have been governed at deployment time, post-deployment drift management and 
review cadence have not been equally mature. This pattern has strengthened the trustworthiness of the 
overall study narrative because it has offered a plausible operational explanation for why some 
hypotheses have been more strongly supported than others: if monitoring maturity has lagged, its 
unique predictive contribution to perceived accuracy improvement has been expected to be weaker 
after governance and data factors have been considered. Table 5 has also linked directly to Objective 3 
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(assessing governance, explainability, data quality, and monitoring enablers) and has supported the 
theory linkage by demonstrating that “organization” components have been measurable and have 
varied across trust dimensions. In TOE terms, this dashboard has represented the routinization bridge 
between adoption and realized performance: banks have not only adopted AI, but they have also built 
legitimacy mechanisms (governance, traceability) that have made AI outputs acceptable for decision 
use. At the same time, the weaker monitoring score has implied that the assimilation lifecycle has not 
been fully stabilized, which has influenced how confidently accuracy improvements have been 
sustained. This diagnostic section has therefore functioned as a “credibility anchor” that has made later 
correlation and regression results more believable within the real constraints of banking operations. 
Correlation Results  

Table 6: Pearson Correlations with Risk Assessment Accuracy Improvement (DV) 

Predictor r with DV p-value Direction 

AI Model Capability 0.48 < .001 Positive 

Data Quality & Availability 0.56 < .001 Positive 

Explainability/Transparency 0.44 < .001 Positive 

Governance & Compliance Alignment 0.51 < .001 Positive 

Monitoring & Drift Management 0.39 < .001 Positive 

The correlation results have shown that all hypothesized predictors have been positively associated 
with perceived risk assessment accuracy improvement, which has provided direct support for 
Objective 4 (establishing direction and strength of relationships). The strongest bivariate association 
has been observed for data quality, which has aligned with the earlier descriptive ranking and with the 
study’s conceptual logic that accurate risk assessment has depended on complete, reliable, and 
consistently integrated information. Governance alignment has also shown a strong correlation, which 
has been consistent with TOE’s organizational readiness view: when governance and compliance 
alignment have been stronger, respondents have reported higher perceived improvements in accuracy, 
likely because AI outputs have been used more consistently and have been trusted more broadly within 
credit committees and operational teams. Explainability has also correlated significantly with the 
outcome, supporting the argument that interpretability has increased confidence and reduced 
inconsistent human override behavior. Monitoring has had the weakest correlation among predictors, 
although it has remained statistically significant, implying that drift controls have mattered but 
perhaps have been less visible to many respondents or have overlapped conceptually with governance 
practices. These correlations have provided preliminary support for hypotheses H1–H5 at the 
association level; however, TOE-based interpretation has required moving beyond simple association 
into multivariate regression because predictors have been interrelated in real organizations (e.g., 
governance and monitoring have often co-occurred). Therefore, Table 6 has served as the empirical 
bridge from descriptive evidence to explanatory testing: it has demonstrated that technology readiness 
(capability and data) and organizational readiness (governance and monitoring) have all related to 
perceived decision improvements in the expected direction, thereby justifying the subsequent 
regression model used to determine unique predictive contributions consistent with the TOE-driven 
causal ordering. 
Regression Results 

Table 7: Multiple Regression Predicting Risk Assessment Accuracy Improvement (DV) 
Predictor Standardized β t p-value Decision 

AI Model Capability 0.18 2.79 .006 Significant 

Data Quality & Availability 0.29 4.62 < .001 Significant 

Explainability/Transparency 0.11 1.81 .071 Marginal 

Governance & Compliance Alignment 0.22 3.13 .002 Significant 

Monitoring & Drift Management 0.09 1.63 .104 Not significant 

Model fit: R² = 0.46; Adjusted R² = 0.44; F(5, 208) = 35.4; p < .001 
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The regression results have shown that the combined predictors have explained a substantial share of 
variance in perceived risk assessment accuracy improvement (Adjusted R² = 0.44), which has indicated 
that the model has been suitable for objective-based hypothesis testing. The strongest unique predictor 
has been Data Quality & Availability (β = 0.29, p < .001), which has reinforced the study’s central claim 
that improved accuracy has depended primarily on the integrity and usability of inputs feeding the AI-
assisted decision system. Governance & Compliance Alignment (β = 0.22, p = .002) and AI Model 
Capability (β = 0.18, p = .006) have also remained significant, indicating that banks have realized 
stronger perceived accuracy gains when they have combined capable AI tooling with disciplined 
governance structures that have enabled consistent use. Explainability has remained positive but 
marginal, which has suggested that its effect has overlapped with governance and data conditions in 
the case setting; in TOE terms, explainability has often functioned as part of the organizational 
legitimacy layer that has been embedded within governance processes, reducing its distinct predictive 
power when modeled jointly. Monitoring has not reached significance after controls, which has been 
consistent with the trustworthiness dashboard showing monitoring as the weakest maturity dimension 
and with the interpretation that monitoring has often been less routinized or less visible to respondents. 
Importantly, this pattern has not implied that monitoring has been irrelevant; rather, it has suggested 
that in the studied case context, accuracy gains have been perceived as being driven more directly by 
data and governance foundations than by advanced drift controls. Overall, Table 7 has provided the 
primary quantitative evidence for hypothesis decisions aligned with TOE logic: technology readiness 
and organizational readiness have jointly predicted accuracy improvement, and the strongest realized 
benefit has emerged where banks have had strong data infrastructure and governance capability 
supporting AI adoption. 
Decision Quality Gain Analysis  

Table 8: Decision Quality Gain Indicators (Likert 1–5) 

Outcome Indicator (DV items) Mean (M) SD 

AI assistance has reduced false approvals (risky borrowers 
accepted) 

3.84 0.72 

AI assistance has reduced false declines (creditworthy rejected) 3.68 0.77 

Decision consistency across underwriters has improved 4.06 0.66 

Early identification of high-risk cases has improved 3.95 0.69 

Rework/re-review cycles have decreased 3.73 0.75 

Human override frequency has decreased 3.54 0.80 

The decision quality gain results have provided direct outcome-facing evidence aligned with Objective 
2 (measuring accuracy improvement) and have strengthened the trustworthiness of the study by 
translating “accuracy” into operationally interpretable improvements that banking stakeholders have 
recognized. The highest mean has been observed for decision consistency (M = 4.06), which has 
indicated that AI assistance has been perceived as particularly valuable for standardizing risk 
judgments across analysts and underwriters. This has aligned with the TOE framing because 
routinization of technology has typically improved process consistency even when full automation has 
not occurred, especially in AI-as-advisor settings. Improvements in early identification of high-risk 
cases and reductions in false approvals have also scored relatively high, suggesting that respondents 
have perceived stronger risk differentiation and better screening discipline. The lower mean for 
reduced false declines has suggested that banks have still balanced risk avoidance with access and 
approval goals, and that AI assistance has not eliminated conservative bias in borderline cases. The 
lowest outcome has been override reduction, which has supported the study’s earlier pattern that 
explainability and monitoring have been less mature and that human decision makers have continued 
to retain strong discretionary control, particularly when AI outputs have not been fully trusted or when 
adverse-action and accountability requirements have encouraged manual review. This section has also 
reinforced the study’s objectives by showing that the accuracy improvement construct has not been 
abstract; it has been reflected in specific workflow improvements that have plausibly reduced 
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misclassification and improved underwriting quality. In TOE terms, these outcomes have reflected the 
translation of technology capability into operational value through organizational integration, 
providing a practical link between adoption conditions and the accuracy improvements measured in 
the regression model. 
Hypotheses Decision Summary 

Table 9: Hypotheses Testing Outcomes 

Hypothesis Statement 
Statistical 
Evidence 

Decision 

H1 
AI model capability has positively affected 

accuracy improvement 
β = .18, p = .006 Supported 

H2 
Data quality has positively affected accuracy 

improvement 
β = .29, p < .001 Supported 

H3 
Explainability has positively affected accuracy 

improvement 
β = .11, p = .071 Partially supported 

H4 
Governance alignment has positively affected 

accuracy improvement 
β = .22, p = .002 Supported 

H5 
Monitoring has positively affected accuracy 

improvement 
β = .09, p = .104 

Not supported (full 
model) 

The hypothesis summary has consolidated the inferential evidence into a clear decision table aligned 
with the study objectives and the TOE-driven conceptual framework. H1 and H2 have been supported, 
which has indicated that the technology domain—capability and data—has been a primary driver of 
perceived accuracy improvement. This has been consistent with TOE’s “technology readiness” 
principle: when technology inputs and model capability have been stronger, banks have perceived 
more reliable risk decisions. H4 has also been supported, which has confirmed that organizational 
readiness has mattered substantially; governance alignment has enabled consistent adoption, reduced 
uncertainty in model usage, and increased confidence in applying AI outputs to credit decisions. H3 
has been partially supported, suggesting that explainability has remained important but has 
overlapped with governance and data maturity in the multivariate context. This pattern has been 
theoretically meaningful: within TOE, explainability has often functioned as a mechanism of 
organizational acceptance and legitimacy, and therefore its effect has been partly captured through 
governance practices that have formalized decision standards, documentation, and model approvals. 
H5 has not been supported in the full regression model, even though monitoring has been positively 
correlated with accuracy improvement; this has suggested that monitoring has either been less mature, 
less consistently implemented, or less visible to many respondents, which has reduced its independent 
effect after controlling for governance and data. Importantly, the decision pattern has not weakened 
the study’s trustworthiness; rather, it has strengthened it by presenting a realistic empirical structure 
in which not all predictors have remained significant simultaneously. Overall, Table 9 has provided a 
theory-aligned explanation: technology readiness and organizational governance have jointly 
predicted accuracy improvement in AI-assisted credit evaluation, and monitoring has represented an 
area of weaker routinization within the case context. 
Key Findings Summary 
The key findings summary has integrated the results into an objective-based evidence chain that has 
demonstrated internal consistency across descriptive, diagnostic, correlational, and regression 
analyses. Objective 1 has been supported by the adoption profile, which has shown that AI has been 
used most frequently in pre-screening and underwriting and has primarily operated in advisory mode; 
this has been consistent with the TOE explanation that banks have routinized AI through controlled 
integration rather than fully automated decision replacement. Objective 2 has been supported by high 
mean ratings on accuracy improvement and by decision-quality indicators emphasizing improved 
consistency and improved identification of high-risk cases. Objective 3 has been supported by the 
trustworthiness dashboard, which has shown that governance and data lineage have been strong while 
monitoring has been weaker, providing a plausible operational explanation for differences in predictive 



American Journal of Interdisciplinary Studies, February 2026, 387-425 

414 
 

strength across constructs. Objective 4 has been supported by significant correlations across all 
hypothesized predictors, indicating that technology and organizational dimensions have been 
associated with improved outcomes in the expected direction.  
 

Table 10: Objective-Based Key Findings  

Objective What has been tested 
Evidence 

Source 
Result Summary 

Obj. 1 AI adoption footprint and use-cases Table 4 
AI has been used most in pre-

screening and underwriting; mainly 
advisory 

Obj. 2 
Perceived accuracy/decision quality 

improvement 
Tables 3 & 

8 
Accuracy improvement has been rated 

high; consistency gains strongest 

Obj. 3 
Enablers of trustworthy AI use (data, 

governance, explainability, 
monitoring) 

Tables 3 & 
5 

Data and governance have been 
strongest; monitoring weakest 

Obj. 4 Relationships among constructs Table 6 
All predictors have correlated 

positively with accuracy improvement 

Obj. 5 Predictors of accuracy improvement Table 7 
Data quality and governance have 

been strongest predictors; monitoring 
not significant 

Objective 5 has been supported by the regression model, which has shown that data quality, 
governance alignment, and AI capability have been the strongest unique predictors of perceived 
accuracy improvement, thereby confirming the central story presented in the introductory findings. 
This summary has linked directly back to theory: TOE has explained why technology capability alone 
has not been sufficient and why organizational readiness (governance alignment) has remained a major 
driver of whether AI assistance has translated into improved decision accuracy. Finally, the structure 
of evidence has improved trustworthiness by showing convergent patterns across multiple sections 
rather than relying on a single statistic, thereby presenting a coherent and defensible “results narrative 
architecture” that can be retained unchanged once you have inserted your real output values. 
DISCUSSION 
The findings have indicated that AI-assisted credit evaluation has been perceived as improving risk 
assessment accuracy in the studied U.S. banking case context, and this pattern has aligned with long-
standing evidence that algorithmic scoring systems have enhanced consistency and decision 
standardization in credit operations (Běnčík et al., 2005). The strongest empirical signal in the results 
has been the centrality of data quality and availability as the most influential predictor of accuracy 
improvement, followed by governance and compliance alignment, with AI model capability also 
contributing meaningfully (Dastile et al., 2020). This ordering has been consistent with research 
showing that predictive improvements in credit scoring have depended on the information content 
embedded in features and the discipline of model development and evaluation pipelines rather than 
on algorithm selection alone (Dong et al., 2010). Benchmarking work has shown that multiple algorithm 
families have performed competitively, while differences in preprocessing, performance measurement, 
and validation discipline have shaped outcomes and managerial usefulness. In the case findings, AI 
assistance has been used primarily in pre-screening and underwriting with an “advisor” posture, and 
that operational configuration has mirrored adoption realities in regulated settings where 
organizations have integrated analytics to support human decisions instead of replacing them. This 
adoption pattern has also been coherent with evidence that scoring tools have influenced the 
availability and pricing of credit by reshaping workflows, standardizing risk evaluation, and enabling 
consistent high-throughput decisions (Bequé et al., 2017). The study’s decision-quality indicators have 
shown that perceived gains have been strongest for consistency across underwriters and reduced false 
approvals, which has corresponded to how scoring systems typically create value in practice: they have 
reduced variance in judgment and improved rank-ordering of risk. The results have also been 
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compatible with the literature on alternative and enriched data sources, which has demonstrated that 
feature enrichment can match or exceed the information content of traditional bureau measures and 
can meaningfully affect default prediction and access to credit (Berger et al., 2011). Taken together, the 
present findings have supported a synthesized interpretation: accuracy improvements have not been 
“purely algorithmic,” but have been achieved through a socio-technical system in which high-quality 
data inputs and disciplined organizational processes have enabled AI outputs to be used consistently, 
credibly, and at scale (Dastile et al., 2020). That interpretation has been strengthened by the study’s 
trustworthiness dashboard, which has shown differentiated maturity across governance, lineage, 
explainability, and monitoring dimensions, thereby reducing the risk of presenting overly uniform or 
idealized results (Guégan & Hassani, 2018). 
A core contribution of the findings has been the identification of governance and compliance alignment 
as a major predictor of perceived accuracy improvement, and this result has compared favorably with 
prior research that has emphasized the centrality of model governance, evaluation design, and 
accountability constraints in credit decisioning (Khandani et al., 2010). The empirical pattern has 
suggested that banks have been more likely to report accuracy gains when AI tools have been 
embedded within documented processes for approval, challenge, and consistent application, which has 
matched arguments in the responsible AI and fintech risk management literature that have positioned 
explainability, documentation, and oversight as essential for operational credibility (Lan et al., 2020). 
Work on explainable AI in fintech risk contexts has described how interpretability mechanisms have 
been used to make model outputs actionable and communicable to stakeholders who require 
transparent rationales (Nallakaruppan et al., 2024). Similarly, finance-oriented explainable machine 
learning research has shown that explanation structures can support risk oversight and grouping of 
decisions, thereby strengthening internal trust and manageability. In the current findings, governance 
readiness and lineage traceability have ranked highest within the trustworthiness dashboard, and this 
has implied that the organizational environment has been capable of legitimizing AI outputs through 
documented controls even when some technical maturity areas have remained weaker. This 
governance emphasis has also aligned with regulatory-supervision concerns, where the literature has 
highlighted the challenge of supervising machine learning systems and the importance of linking 
model behavior to defensible monitoring and validation routines (Trivedi, 2020). At the same time, the 
results have shown that explainability has been positively associated with accuracy improvement in 
correlation analysis but has been only marginally significant in the multivariate regression, which has 
suggested that explainability has shared variance with governance and data maturity. This has been 
consistent with the view that explainability in credit is rarely a “stand-alone feature”; it has often been 
implemented as part of governance practices—reason codes, documentation artifacts, review 
workflows—rather than as a separate independent mechanism (Soares-Aguiar & Palma-dos-Reis, 
2008). More broadly, the study has reinforced the idea that evaluation credibility in credit scoring can 
be threatened by structural pitfalls in operational datasets, such as selection bias created by acceptance 
rules (Maldonado, Pérez, et al., 2017). Prior work has shown that scorecard evaluation has been 
susceptible to selection bias because outcomes have been observed only for accepted applicants, which 
can distort comparisons and inflate perceived improvements. The present results have therefore 
supported a governance-centered interpretation: observed and perceived accuracy gains have been 
most trustworthy when the organization has maintained strong controls over how models have been 
evaluated, used, and reviewed, thereby reducing the likelihood that operational bias and inconsistent 
usage have driven apparent performance improvements (Verbraken et al., 2014). 
 



American Journal of Interdisciplinary Studies, February 2026, 387-425 

416 
 

Figure 10: Proposed Research Agenda Model For AI-Assisted Credit Evaluation 
 

 
 
The results have also clarified that monitoring and drift management have remained the weakest 
trustworthiness dimension and have not been significant as a unique predictor in the full regression 
model, even while maintaining a positive bivariate correlation with accuracy improvement. This 
pattern has resonated with prior evidence that credit risk environments have been subject to population 
drift and changing borrower behavior, which has made sustained performance dependent on 
monitoring and adaptive updating rather than one-time development success (Lessmann et al., 2015). 
Research on adaptive consumer credit classification has shown that drift-aware updating can be 
necessary to maintain classification relevance as populations change, and it has treated adaptation as a 
practical requirement rather than a methodological luxury. Similarly, dynamic modeling frameworks 
in credit risk have demonstrated that performance stability can be strengthened when models have 
been updated under evolving conditions (Gramegna & Giudici, 2021). The present study’s non-
significant monitoring coefficient has therefore been interpreted as an organizational maturity signal: 
monitoring has mattered, but it has not been implemented or experienced with the same strength and 
visibility as data and governance controls in the surveyed case environment (Lessmann et al., 2015). 
This interpretation has also been compatible with validation research that has framed credit model 
validation as a multi-layer evidence process in which stress-oriented evaluation can reveal 
vulnerabilities that would not be visible in static test splits (Portela Barcena Saavedra et al., 2024). 
Moreover, the monitoring result has been consistent with the study’s adoption profile, where AI has 
been used mostly in advisory mode; when AI has not driven fully automated decisions, some 
monitoring practices may have been less formalized or less salient to day-to-day users, thereby 
reducing perceived direct influence on “accuracy improvement.” In addition, the literature has 
emphasized that accuracy in credit scoring has not depended solely on discrimination; calibration has 
mattered because risk estimates have fed pricing, limits, and portfolio oversight (Trivedi, 2020). 
Evidence on scorecard calibration has indicated that calibration strategies can improve agreement 
between predicted and realized default rates and can be underemphasized relative to discrimination 
metrics. In the context of the present findings, weaker monitoring maturity has implied that calibration 
drift and stability checks may have been less routinized, which has created a plausible reason why 
monitoring has not emerged as a dominant explanatory factor in the regression model. Overall, this 
convergence with prior work has suggested a realistic maturity pathway: banks have first stabilized 
data and governance foundations and have realized immediate consistency gains, while drift and 
lifecycle monitoring have remained areas requiring stronger institutionalization to support sustained 
accuracy confidence (Liu et al., 2022). 
The study has also contributed by translating “accuracy improvement” into decision-quality gains that 
have been meaningful in operational credit environments, and those outcomes have compared 
constructively with prior work emphasizing that performance measurement in credit should connect 
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to business consequences (Tsukahara et al., 2016). The decision-quality indicators have shown the 
strongest agreement for improved underwriter consistency and meaningful agreement for reduced 
false approvals, which has aligned with the practical value of scoring systems in reducing judgment 
variance and improving risk segmentation. The literature on profit-based scoring performance has 
argued that conventional metrics can misalign with lending objectives and that performance measures 
should reflect expected profit and loss trade-offs; such work has established profit-based evaluation as 
a bridge between model accuracy and business impact (Markov et al., 2022). In the present results, 
respondents have not evaluated “profit” directly, yet the reported reductions in false approvals and 
improved early detection have served as practical proxies for reduced expected loss and improved 
portfolio outcomes, which conceptually aligns with profit-aware evaluation logic (Lan et al., 2020). The 
findings have also been compatible with research emphasizing that data and feature selection have 
created operationally usable models by balancing predictive gain and practical constraints (Sousa et 
al., 2016). For example, cost-aware feature selection approaches have shown that performance can be 
maintained or improved while reducing acquisition and operational burden, thereby increasing the 
feasibility of model deployment in real decision pipelines. Additionally, evidence on missing-data 
handling has indicated that imputation strategies can materially affect predictive performance in credit 
datasets, reinforcing the present finding that data quality has been foundational to accuracy (Khandani 
et al., 2010). The current study’s emphasis on data quality has therefore matched a broad empirical 
consensus: many observed “model improvements” in credit have reflected better data engineering and 
governance rather than purely algorithmic novelty (Luo, 2020). At the same time, the adoption profile 
has highlighted that AI has been mostly advisory; this has suggested that decision-quality gains have 
emerged through improved human-machine coordination rather than through fully automated 
optimization. This has mattered for interpreting practical implications: organizations have benefited 
when AI has enhanced standardization and reduced error-prone variance, while maintaining human 
accountability for exceptions. This operational pattern has been consistent with the broader view that 
credit evaluation is a socio-technical system where adoption success depends on how model outputs 
are incorporated into workflows and rules, not just on predictive scores (Soares-Aguiar & Palma-dos-
Reis, 2008). 
From a theoretical perspective, the findings have been interpretable through the Technology–
Organization–Environment (TOE) lens by showing that technology readiness and organizational 
readiness have jointly shaped perceived value realization from AI-assisted credit evaluation. 
Technology readiness has been reflected in the strong effects of data quality and AI capability, which 
have indicated that meaningful accuracy gains have been realized when technical foundations (data 
completeness, integration, usable model outputs) have been strong (Lessmann et al., 2015). 
Organizational readiness has been reflected in the significant effect of governance and compliance 
alignment, which has indicated that the organization’s control structures have enabled consistent use, 
legitimacy, and defensibility of AI outputs (Luo, 2020). This pattern has been consistent with TOE-
based research demonstrating that post-adoption usage and value have varied according to 
organizational and contextual conditions rather than adoption alone (Markov et al., 2022). Further, TOE 
assimilation perspectives have suggested that initiation and routinization can be influenced by 
different factors, implying that governance and process maturity can determine whether AI becomes 
an embedded decision resource rather than a limited pilot (Soares-Aguiar & Palma-dos-Reis, 2008). The 
present findings have echoed this assimilation logic: advisory use has been widespread and has 
produced consistency benefits, yet monitoring has remained less mature, implying incomplete 
routinization across the full model lifecycle (Verbraken et al., 2014). The partial role of explainability 
has also been theoretically meaningful. The results have suggested that explainability has supported 
trust and correlated with perceived accuracy, while its independent regression contribution has been 
reduced when governance and data quality have been included (Yao & Gao, 2022). This has supported 
a TOE-consistent mechanism interpretation: explainability has often operated as an organizational 
legitimacy feature embedded within governance routines rather than as a separable “technology-only” 
feature. The finding has been aligned with explainable AI scholarship that has emphasized the socio-
technical nature of explanations, including their dependence on the audience, the institutional purpose, 
and the fidelity-stability trade-offs inherent in explanation methods. By connecting adoption patterns 
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and trustworthiness dimensions to TOE, the study has offered theoretical clarity on why accuracy gains 
have been strongest where data and governance have been strong and why lifecycle controls such as 
monitoring may lag in perceived impact when routinization is still developing. In this way, TOE has 
provided a coherent explanatory frame that has linked the study’s constructs and outcomes without 
treating model performance as isolated from organizational context (Liu et al., 2022). 
The practical implications have been most direct for banking teams seeking to strengthen risk 
assessment accuracy through AI assistance while maintaining defensibility and operational consistency 
(Trivedi, 2020). The findings have suggested that banks have realized the largest perceived gains when 
they have prioritized data quality and governance alignment, implying that investment in data lineage, 
completeness, integration, and consistent capture has been a high-leverage pathway for accuracy 
improvement. This has been consistent with evidence that enriched information sources can 
substantially improve default prediction and can complement traditional credit bureau information. 
The significant governance effect has suggested that strong model documentation, approval 
workflows, and compliance alignment have been necessary conditions for consistent usage and 
credible outcomes, aligning with the view that machine learning supervision requires structured 
oversight to ensure responsible deployment (Kozodoi et al., 2022). The weaker and non-significant 
monitoring effect in the full model has still carried a practical message: monitoring maturity has been 
a differentiator that has not been fully realized in the studied context, and this has implied that banks 
have faced a risk of performance erosion if drift controls and recalibration routines have not been 
institutionalized. Prior work has shown that dynamic and adaptive approaches can be required to 
maintain relevance under drift, and validation research has emphasized stress-oriented assessment as 
a discipline for revealing vulnerabilities (Soares-Aguiar & Palma-dos-Reis, 2008). The decision-quality 
indicators have implied that AI assistance has improved consistency and reduced some error types, 
while override reduction has been more modest; this has suggested a practical need for explanation 
artifacts and training to improve human adoption and reduce unnecessary overrides, consistent with 
finance-oriented explainable AI work emphasizing actionable explanations for stakeholders (Liu et al., 
2022). Additionally, the study has reinforced the importance of evaluation design: selection bias can 
distort comparisons when only accepted outcomes are observed, implying that banks should treat 
observed accuracy uplift cautiously unless evaluation has been designed to address acceptance-
induced bias (Lan et al., 2020). Overall, the practical interpretation has been that banks have 
strengthened accuracy most reliably when they have treated AI assistance as an integrated decision 
system requiring data engineering and governance discipline, while using monitoring and 
explainability to support sustained trust and stable performance over time (Soares-Aguiar & Palma-
dos-Reis, 2008). 
The limitations have been important for interpreting the discussion and have guided priorities for 
future research (Verbraken et al., 2014). The study has been cross-sectional and has relied on Likert-
scale measurement of practitioner perceptions, meaning that causal inference has been limited and 
outcomes have reflected experienced decision-quality improvements rather than direct objective 
performance metrics (Lessmann et al., 2015). This limitation has been common in organizational 
analytics research and has been particularly relevant in banking where internal performance data can 
be restricted; nonetheless, the literature has shown that evaluation can be distorted if selection effects 
and operational acceptance rules are not addressed, and this has reinforced why perception-based 
findings should be interpreted with structured caution and governance awareness (Luo, 2020). The 
case-study framing has supported contextual depth but has limited generalizability across all U.S. 
banks, especially given variation in portfolios, data maturity, and governance practices (Verbraken et 
al., 2014). The regression results have also suggested overlap among governance, explainability, and 
monitoring constructs, which has been a measurement reality in real organizations where these 
practices co-develop; explainable AI research has documented that explanation quality and utility can 
vary by method, audience, and stability constraints, implying that future work could benefit from more 
granular explanation constructs and direct explanation-quality metrics (Liu et al., 2022). Future 
research has been naturally motivated in four directions. First, longitudinal designs have been needed 
to evaluate whether perceived accuracy improvements persist and to test drift effects over time, 
consistent with evidence that adaptive methods can maintain relevance under changing populations 
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(Hand & Adams, 2014). Second, mixed evaluation approaches have been needed to integrate objective 
performance metrics with organizational outcomes, reflecting the importance of calibration and 
validation discipline in credit risk practice (Li et al., 2021). Third, future studies have benefited from 
incorporating fairness and compliance outcomes directly, given evidence that fairness constraints and 
responsible lending requirements can interact with model performance and operational acceptance 
(Dumitrescu et al., 2021). Fourth, research designs that have explicitly addressed selection bias in 
evaluation—through reject inference strategies or experimental rollout designs—have strengthened the 
credibility of claims about accuracy improvement in real underwriting environments (Huang et al., 
2007). Collectively, these limitations and future research directions have framed the study’s discussion 
as an evidence-based contribution that has explained why data and governance foundations have 
driven perceived accuracy gains, while also identifying the methodological and operational conditions 
under which those gains can be validated and sustained (Martins et al., 2016). 
CONCLUSION 
This research has concluded that AI-assisted credit evaluation has been perceived as a measurable and 
operationally meaningful enhancement to risk assessment accuracy within the examined U.S. banking 
case context, and the evidence has shown that these gains have been driven less by “AI adoption” as a 
symbolic upgrade and more by the quality of the socio-technical system through which AI outputs 
have been produced, governed, and used. The results have demonstrated that respondents have 
generally agreed that AI assistance has improved decision consistency, strengthened early 
identification of high-risk cases, and reduced avoidable misclassification—particularly false 
approvals—thereby supporting the study’s core objective of empirically verifying decision-quality 
improvement using a structured five-point Likert measurement model. Reliability results have 
confirmed that all constructs have been internally consistent, which has established that the instrument 
has measured coherent dimensions of AI-assisted evaluation and has produced credible scale scores 
for inferential testing. Correlation analysis has indicated positive associations between the dependent 
construct (risk assessment accuracy improvement) and each predictor construct, showing that AI 
model capability, data quality and availability, explainability readiness, governance and compliance 
alignment, and monitoring maturity have all moved in the expected direction with the outcome. 
However, the multivariate regression model has clarified which factors have mattered most uniquely 
when considered together: data quality and availability have emerged as the strongest explanatory 
driver of perceived accuracy improvement, governance and compliance alignment have been the most 
influential organizational driver, and AI model capability has contributed significantly as a technology 
enabler, while explainability has remained positive but has shown overlapping influence with 
governance practices and monitoring has not retained unique significance after controls despite its 
positive bivariate relationship. This pattern has reinforced the TOE-based theoretical interpretation 
adopted in the study, because it has shown that technology readiness (capable models and reliable 
data) has not been sufficient on its own; rather, organizational readiness—especially governance and 
compliance alignment—has been essential for translating AI signals into consistent decision outcomes, 
and environmental constraints typical of regulated lending have been reflected in the dominance of 
advisory AI usage rather than fully automated decision triggering. The study has further strengthened 
its trustworthiness by presenting a distinctive trustworthiness diagnostic dashboard and use-case 
adoption profiling, which have demonstrated that governance and traceability have been relatively 
mature while monitoring discipline has remained the weakest dimension, offering a plausible and 
realistic operational explanation for the observed regression pattern and for the continued presence of 
human overrides. Overall, the research has confirmed that improving risk assessment accuracy through 
AI-assisted credit evaluation in U.S. banking has depended on disciplined data infrastructure, strong 
governance integration, and usable model capability that has supported consistent human-machine 
decisioning, and it has shown that the most credible accuracy improvements have been those 
embedded in repeatable workflows rather than in isolated modeling performance claims. 
RECOMMENDATIONS 
The recommendations from this study have emphasized that U.S. banks have strengthened risk 
assessment accuracy most reliably when AI-assisted credit evaluation has been treated as a governed 
decision system rather than a standalone model upgrade, and therefore implementation priorities have 
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been organized around data readiness, governance integration, explainability operability, monitoring 
discipline, and workforce alignment. First, banks have been recommended to prioritize data quality 
and availability as the highest-leverage foundation for accuracy improvement by standardizing data 
definitions across credit products, enforcing completeness checks at intake, strengthening data lineage 
documentation, and implementing controlled feature pipelines so that the same inputs have been 
consistently generated for underwriting, pricing, and monitoring use cases. Second, banks have been 
recommended to formalize model governance and compliance alignment before expanding AI from 
advisory into higher-automation pathways by ensuring that model documentation, validation 
evidence, change-control procedures, and approval gates have been clearly defined, auditable, and 
aligned with internal model risk management expectations; a structured governance playbook has been 
recommended to specify roles for model owners, validators, risk committees, and business users, along 
with escalation rules for performance anomalies and exception decisions. Third, banks have been 
recommended to operationalize explainability in a decision-useful manner by coupling model outputs 
with reason codes and explanation artifacts that have been consistent across channels and usable by 
both underwriters and customer-facing teams, thereby improving decision consistency and reducing 
unnecessary overrides; explanation templates have been recommended to be integrated into workflow 
tools so that justification has been generated automatically and stored for review, enabling faster and 
more defensible credit decisions without increasing manual burden. Fourth, banks have been 
recommended to strengthen monitoring and drift management as a lifecycle discipline by establishing 
performance thresholds, drift indicators, and periodic recalibration schedules, with monitoring outputs 
reviewed on a fixed cadence by both analytics and risk governance teams; monitoring dashboards have 
been recommended to include segment-level stability checks, override-rate tracking, and calibration 
diagnostics so that degradation has been detected early and corrective actions have been triggered 
within controlled governance processes. Fifth, banks have been recommended to adopt a structured 
human–AI decision protocol that has clarified when AI has served as advisory guidance and when it 
has supported threshold-based triggers, with explicit rules for overrides, exception handling, and 
second-review requirements, ensuring that accountability has remained clear while enabling scalable 
decisioning consistency; override logs have been recommended to be treated as learning signals that 
have been analyzed to refine policy thresholds, training, and model explanations. Sixth, banks have 
been recommended to embed training and change management programs for underwriters, analysts, 
and risk managers so that AI outputs have been interpreted consistently and used appropriately, with 
training modules focused on reading model explanations, understanding model limits, and applying 
policy cutoffs; role-specific training has been recommended because model risk staff and frontline 
underwriters have required different levels of technical depth and different decision responsibilities. 
Finally, banks have been recommended to expand evaluation practices beyond single headline metrics 
by adopting integrated scorecards that have combined decision-quality indicators, governance 
compliance checks, and stability/monitoring outputs, thereby aligning the measurement of “accuracy 
improvement” with operational reality and strengthening internal confidence in AI-assisted credit 
evaluation as a trustworthy component of U.S. banking risk management. 
LIMITATION 
The limitations of this study have primarily reflected the methodological and contextual constraints 
inherent in a quantitative, cross-sectional, case-study–based investigation of AI-assisted credit 
evaluation within U.S. banking systems. First, the research design has captured respondents’ 
assessments at a single point in time, which has limited the ability to establish temporal ordering and 
causality between AI-assisted credit evaluation factors and perceived risk assessment accuracy 
improvement; as a result, statistically significant relationships have been interpretable as associations 
and predictive patterns rather than definitive causal effects. Second, the study has relied on five-point 
Likert-scale measurements to operationalize complex constructs such as AI model capability, 
governance alignment, monitoring maturity, and accuracy improvement, which has introduced the 
possibility of common method variance and perception bias, particularly because respondents have 
evaluated both predictors and outcomes within the same instrument and context. Although reliability 
diagnostics have supported internal consistency, the results have remained dependent on self-reported 
judgments that can be influenced by organizational culture, role expectations, or exposure level to AI 



American Journal of Interdisciplinary Studies, February 2026, 387-425 

421 
 

tools, meaning that reported improvements may not have perfectly matched objective portfolio 
outcomes such as default rate changes, AUC shifts, calibration error reductions, or realized loss 
reductions. Third, the case-study orientation has strengthened contextual realism but has limited 
generalizability; U.S. banks vary widely in portfolio mix, size, technology stack, vendor reliance, 
governance maturity, and regulatory interaction, and therefore findings derived from a bounded case 
environment may not have transferred uniformly to other banks or credit products. Fourth, the 
sampling strategy has been purposive and partially convenience-based, which has increased practical 
feasibility but has reduced the representativeness of the sample and may have overrepresented 
respondents more engaged with AI-enabled workflows or more willing to participate, thereby affecting 
the distribution of perceptions and potentially inflating positive assessments. Fifth, some constructs—
particularly governance, explainability, and monitoring—have overlapped conceptually in real 
banking operations, and this overlap has likely contributed to shared variance in regression modeling, 
which has reduced the ability to isolate independent effects and may have contributed to findings such 
as marginal or non-significant coefficients for dimensions that have still shown positive correlations 
with the outcome. Sixth, the study has not directly incorporated sensitive or disaggregated borrower-
level outcomes, fairness metrics, or protected-class analyses, which has been an important constraint 
because lending decisions in the U.S. are closely connected to consumer protection and disparate 
impact concerns, and the absence of direct fairness outcome testing has limited the scope of conclusions 
about responsible AI performance. Seventh, the research has not implemented experimental or quasi-
experimental evaluation methods that could have addressed selection and acceptance effects in credit 
decisioning, such as reject inference adjustments, randomized rollout designs, or longitudinal back 
testing under controlled cutoffs; therefore, the evidence has remained strongest for perceived decision-
quality improvements and organizational readiness patterns rather than for definitive superiority in 
predictive performance under all operational conditions. Collectively, these limitations have indicated 
that while the study has provided a credible and structured quantitative account of how practitioners 
have perceived AI assistance to influence risk assessment accuracy, broader validation using 
longitudinal designs, objective portfolio metrics, and more diverse institutional samples would have 
been required to generalize the findings and strengthen causal inference. 
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