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ABSTRACT 

This study presents a comprehensive systematic literature review aimed at 

analyzing and synthesizing current advancements, applications, and 

challenges in maintenance optimization within smart manufacturing facilities. 

Guided by the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA 2020) framework, a total of 112 peer-reviewed articles 

published between 2010 and 2024 were rigorously selected and analyzed from 

major academic databases, including Scopus, Web of Science, IEEE Xplore, 

ScienceDirect, and Google Scholar. The review focuses on three principal 

frameworks of maintenance optimization: Lean Maintenance, Total Productive 

Maintenance (TPM), and digitally-driven models incorporating Artificial 

Intelligence (AI), Machine Learning (ML), Cyber-Physical Systems (CPS), and 

Computerized Maintenance Management Systems (CMMS). Sectoral 

applications in the automotive, aerospace, and food processing industries were 

closely examined, revealing that predictive maintenance, digital twin 

technologies, and AI-enabled diagnostics significantly enhance reliability, 

reduce downtime, and improve overall equipment effectiveness. Furthermore, 

the study identifies persistent research gaps related to contextual adaptation in 

small and medium enterprises (SMEs), integration challenges between 

traditional and digital systems, and the lack of standardized benchmarking 

methods for evaluating maintenance performance. The findings contribute to 

a better understanding of the strategic evolution of maintenance from a 

reactive, cost-centered function to a proactive, data-driven enabler of 

industrial resilience and sustainability. This review provides actionable insights for 

practitioners, researchers, and policymakers seeking to align maintenance 

strategies with Industry 4.0 objectives, while also calling for more inclusive and 

empirically validated approaches in future research. 
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INTRODUCTION 

Maintenance, in the context of industrial operations, refers to the systematic process of preserving 

equipment, machinery, and infrastructure to ensure functionality, performance, and reliability across 

the production lifecycle (Bokrantz & Skoogh, 2023) . In manufacturing environments, maintenance is 

not merely a corrective action but a strategic function designed to uphold operational continuity, 

asset longevity, and cost efficiency (Caballé & Castro, 2017). The International Organization for 

Standardization (ISO 14224:2016) defines maintenance as a “combination of all technical, 

administrative, and managerial actions during the life cycle of an item intended to retain it in, or 

restore it to, a state in which it can perform the required function.” Within smart manufacturing 

contexts—characterized by digital integration, automation, and data-driven decision-making—

maintenance must evolve from conventional time-based or reactive frameworks to proactive, 

optimized models (Yazdi et al., 2019). The strategic importance of maintenance has been globally 

acknowledged as a pillar of industrial competitiveness and sustainability, as shown in multi-national 

initiatives such as Germany’s Industrie 4.0, the United States’ Advanced Manufacturing Partnership 

(AMP), and Japan’s Society 5.0 

(Borkowski et al., 2014). 

Smart manufacturing facilities 

embody the fusion of cyber-

physical systems, automation 

technologies, artificial intelligence, 

and industrial IoT (IIoT), forming 

intelligent production environments 

capable of self-monitoring and self-

optimization (Bokrantz & Skoogh, 

2023). These environments require 

adaptive maintenance strategies 

that align with dynamic production 

conditions, diverse machine 

architectures, and continuous data 

influx from sensor-rich networks 

(Mollahassani-pour et al., 2017). 

Within this context, the role of Lean 

Manufacturing, Total Productive 

Maintenance (TPM), and digitally-

augmented reliability frameworks 

becomes crucial in sustaining 

operational performance (Gelaw et 

al., 2023). TPM, initially formalized by 

(Zhong et al., 2015), emphasizes the 

collective responsibility of operators 

and maintenance teams to 

maximize equipment effectiveness 

and minimize unplanned downtime. 

Lean Manufacturing, grounded in 

the Toyota Production System, 

supports maintenance efficiency by 

reducing waste, standardizing 

workflows, and improving 

equipment availability (Filip & 

Marascu-Klein, 2015). Smart facilities integrate these foundational practices with advanced tools 

such as predictive analytics, machine learning, and real-time monitoring to ensure equipment health 

and production stability (Jiménez et al., 2021). 

The global drive for maintenance optimization reflects industrial demands for increased productivity, 

reliability, and resource efficiency. Manufacturing remains a vital economic driver, accounting for 

16% of global GDP and employing over 500 million people worldwide (Bhadu et al., 2021). The cost 

of unplanned equipment downtime, particularly in capital-intensive industries like automotive, 

Figure 1: Types of Maintenance in Industrial Operations: A 

Maturity-Based Framework for Smart Manufacturing 
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chemical, and semiconductor manufacturing, can range from $100,000 to over $1 million per hour 

(Masoud et al., 2025). Effective maintenance frameworks are essential to minimize such losses and 

uphold global supply chain continuity. In Europe, studies conducted under Horizon 2020 projects 

emphasize condition-based and predictive maintenance as crucial to achieving zero-defect 

manufacturing and circular economy targets (Mollahassani-pour et al., 2017). In Asia, the integration 

of smart maintenance systems in South Korea and China is linked to national goals in digital industrial 

transformation and technological self-reliance (Gelaw et al., 2023). Similarly, U.S.-based 

manufacturing firms adopting sensor-enabled maintenance report up to 20–30% increases in overall 

equipment effectiveness (OEE) and 40% reductions in downtime (Hussain et al., 2019). 

Digitally-driven reliability models, including Condition-Based Maintenance (CBM), Predictive 

Maintenance (PdM), and Reliability-Centered Maintenance (RCM), are increasingly integrated into 

industrial engineering paradigms for asset lifecycle optimization (Rahman, 2015). These models rely 

on the continuous collection and analysis of machine performance data—such as vibration, 

temperature, pressure, and acoustic emissions—to assess real-time equipment health and predict 

potential failures before they occur (Wahab et al., 2013). Such predictive capabilities are enabled 

by machine learning algorithms that analyze historical and real-time data to detect patterns, 

anomalies, and degradation trends (Karam et al., 2018). Industrial engineering, with its emphasis on 

systems optimization, process efficiency, and human-machine integration, plays a pivotal role in 

designing and implementing these data-driven maintenance systems (Liza Ludeña et al., 2022). 

Scholars note that the application of digital twins, edge computing, and cloud-based diagnostics 

has further extended the scope of smart maintenance in distributed industrial settings (Syaifoelida et 

al., 2020). 

Total Productive Maintenance 

remains a core philosophy in 

both traditional and digital 

manufacturing settings, 

underlining the need for 

autonomous maintenance, 

focused improvement, quality 

maintenance, and early 

equipment management 

(Alblooshi et al., 2022). TPM’s 

original pillars—designed to 

maximize equipment 

effectiveness through cross-

functional participation—have 

been digitally enhanced 

through mobile work orders, 

operator dashboards, and 

maintenance management 

systems that improve 

transparency and execution 

accuracy (Koç & Ecevit Alpar, 

2023). In industrial engineering 

literature, TPM is often 

contextualized as a precursor to more advanced models, serving as a cultural and procedural 

foundation for data-enabled strategies (Jobin, 2015). Studies in automotive and electronics 

manufacturing show that companies that combine TPM principles with digital monitoring experience 

higher uptime, improved mean time between failure (MTBF), and reduced mean time to repair 

(MTTR) (Kose et al., 2022). These metrics directly impact productivity, worker safety, and cost control, 

further reinforcing the symbiotic relationship between TPM, Lean, and digital technologies. 

Lean Maintenance, derived from Lean Manufacturing principles, focuses on eliminating waste from 

maintenance processes, such as unnecessary movement, redundant inspections, or excessive 

inventory (Robertsone et al., 2021). In industrial engineering applications, Lean Maintenance 

supports the standardization of processes, preventive task scheduling, and visual control systems for 

real-time status updates (Wahab et al., 2013). Its fusion with TPM creates a streamlined, employee-

Figure 2: Digitally-Driven Reliability Models in Industrial Engineering 
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driven maintenance culture that aligns closely with Industry 4.0 objectives (Karam et al., 2018). 

Several case studies highlight Lean-TMP synergies where organizations achieved more than 90% OEE 

and significant maintenance cost reductions through the integration of 5S, SMED, and Just-in-Time 

(JIT) principles (Ludeña et al., 2022). Furthermore, Lean-oriented maintenance strategies improve 

organizational agility by simplifying workflows, increasing scheduling accuracy, and embedding 

continuous improvement practices across departments (Syaifoelida et al., 2020). As facilities 

increasingly rely on digital work instructions, CMMS (Computerized Maintenance Management 

Systems), and AI-based optimization engines, the relevance of Lean practices as a support 

framework remains evident. While digitally-enabled maintenance is often associated with high-

capital smart factories, its conceptual frameworks and applied models are deeply rooted in industrial 

engineering theories of systems optimization and resource allocation (Alblooshi et al., 2022). Scholars 

argue that maintenance must be designed as an integrated socio-technical system, where digital 

tools complement, rather than replace, human expertise (Rahman, 2015). Studies in sectors ranging 

from aerospace to food processing demonstrate the positive impacts of data-driven maintenance 

on system reliability, energy consumption, and compliance with regulatory standards (Ludeña et al., 

2022). Moreover, advancements in wireless sensor networks, edge analytics, and fault detection 

algorithms contribute to a more responsive, adaptive maintenance infrastructure within cyber-

physical systems (Filip & Marascu-Klein, 2015). These developments illustrate the importance of 

merging classical engineering insights with emerging digital technologies in optimizing maintenance 

performance at scale. The primary objective of this systematic review is to critically investigate and 

synthesize the maintenance optimization strategies employed in smart manufacturing environments, 

with a specific emphasis on the integration of Lean Manufacturing, Total Productive Maintenance 

(TPM), and digitally-enabled reliability models within the industrial engineering framework. This review 

seeks to answer how these maintenance paradigms have evolved and been adapted in response 

to the increased complexity of modern industrial systems and the proliferation of Industry 4.0 

technologies. With smart manufacturing facilities increasingly relying on cyber-physical systems, 

Internet of Things (IoT) devices, artificial intelligence, and real-time analytics, traditional maintenance 

approaches must now coexist and converge with digital models that enable predictive, condition-

based, and autonomous maintenance planning. Consequently, the objective is to map the scholarly 

landscape to determine the theoretical underpinnings, implementation methodologies, and 

measurable outcomes associated with each model, as well as the synergies and trade-offs between 

them. 

LITERATURE REVIEW 

The literature surrounding maintenance optimization in industrial engineering has evolved 

significantly with the emergence of smart manufacturing technologies and Industry 4.0 paradigms. 

Historically rooted in reactive and preventive maintenance approaches, the field has transitioned 

towards more predictive, condition-based, and autonomous strategies that leverage real-time data 

analytics, artificial intelligence, and interconnected sensor systems. This evolution reflects a growing 

recognition of maintenance as a strategic enabler of operational excellence, rather than a purely 

technical or corrective function. Within the industrial engineering domain, maintenance optimization 

is closely tied to broader performance metrics such as Overall Equipment Effectiveness (OEE), 

equipment availability, productivity, and resource efficiency. The integration of traditional 

philosophies like Lean Manufacturing and Total Productive Maintenance (TPM) with advanced 

digital technologies creates a hybrid maintenance model capable of responding to the complexity 

and dynamism of smart manufacturing environments. This literature review aims to examine the 

progression and intersection of Lean, TPM, and digitally-driven reliability models within the context of 

smart manufacturing. It synthesizes scholarly research, empirical studies, and theoretical frameworks 

to provide a coherent understanding of how these models contribute to maintenance performance 

across diverse industrial sectors. The review is structured to trace the conceptual foundations of each 

model, highlight their evolution, analyze their current applications in digitally-enabled settings, and 

identify gaps and future research directions. Emphasis is placed on the interplay between human-

centered practices and technology-driven automation, as well as the impact of these maintenance 

strategies on system reliability, cost control, and asset lifecycle optimization. Each sub-section of the 

review is organized to reflect a logical progression from theory to practice, offering a multi-

dimensional perspective on maintenance optimization in smart manufacturing facilities. 
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Maintenance in Industrial Engineering 

Maintenance within industrial engineering is understood as a multidisciplinary function 

encompassing the technical, managerial, and operational actions necessary to ensure the optimal 

performance and longevity of equipment and systems. As industrial systems become more complex 

and capital-intensive, maintenance plays a critical role in supporting continuous production, 

minimizing equipment failures, and reducing overall operational costs (Jiménez et al., 2021). The ISO 

55000 series emphasizes maintenance management as a strategic part of asset management 

systems, further reinforcing its integral position in industrial engineering frameworks. From a systems 

engineering perspective, maintenance is not an isolated task but a structured process requiring real-

time monitoring, failure analysis, preventive strategies, and data-informed decisions (Masoud et al., 

2025). Industrial engineers focus on optimizing maintenance through quantitative modeling, 

reliability assessments, cost-

benefit analyses, and human-

machine interaction frameworks 

(Mollahassani-pour et al., 2017). 

Scholars argue that maintenance 

should be embedded in the early 

design and planning phases of 

industrial operations, with 

integrated feedback loops that 

support performance-based 

maintenance strategies (Gelaw 

et al., 2023). The rise of system 

reliability engineering has further 

advanced the analytical 

capabilities for assessing 

component failure rates and 

optimizing replacement intervals, 

establishing the foundation for 

condition-based and predictive 

maintenance (Hussain et al., 

2019). Maintenance performance 

metrics such as Mean Time To 

Repair (MTTR), Mean Time 

Between Failures (MTBF), and 

Overall Equipment Effectiveness 

(OEE) are regularly utilized within 

industrial engineering to measure 

effectiveness and guide 

continuous improvement (Wahab 

et al., 2013). These metrics not only 

support operational excellence 

but also serve as key indicators of 

productivity, efficiency, and asset 

utilization across various 

manufacturing sectors (Karam et 

al., 2018). 

In the manufacturing context, maintenance is essential for preserving production capacity and 

achieving cost competitiveness, especially as production lines grow more automated and 

interconnected (Syaifoelida et al., 2020). Researchers highlight that manufacturing firms allocate up 

to 15–70% of their production costs to maintenance-related activities, illustrating the magnitude of 

its economic impact (Rahman, 2015). From an industrial engineering viewpoint, strategic 

maintenance involves aligning maintenance planning with organizational goals, resource 

allocation, and production scheduling (Mollahassani-pour et al., 2017). Lean-oriented firms 

emphasize maintenance as a critical enabler of waste reduction, quality improvement, and value 

flow, particularly under Just-In-Time (JIT) production systems (Hussain et al., 2019). In TPM 

Figure 3: Maintenance Management Strategies in Industrial 

Engineering 
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environments, the involvement of operators in routine equipment care is linked to increased machine 

availability and reduced reliance on reactive interventions (Rodrigues & Hatakeyama, 2006). 

Research shows that companies implementing TPM combined with industrial engineering tools such 

as root cause analysis, Six Sigma, and FMEA (Failure Modes and Effects Analysis) achieve significantly 

improved system reliability and reduced machine breakdowns (Borkowski et al., 2014). Moreover, 

digital integration through maintenance information systems, enterprise resource planning (ERP), 

and computerized maintenance management systems (CMMS) has allowed for seamless tracking 

of maintenance activities and cost analytics (Xu et al., 2019). Maintenance scheduling models and 

simulation tools—common in industrial engineering—enhance the precision of preventive 

maintenance planning, particularly in complex systems such as multi-machine production cells or 

automated robotic assembly lines (Rahman, 2015). These practices demonstrate how maintenance, 

when embedded into the strategic fabric of operations, enhances production resilience and asset 

productivity. 

The optimization of maintenance strategies has been a persistent focus in industrial engineering 

research, with scholars developing mathematical, probabilistic, and simulation-based models to 

determine optimal inspection intervals, spare parts allocation, and system reliability. Preventive 

maintenance models, such as age-based and condition-based policies, use reliability data to 

predict component failures and minimize unnecessary maintenance costs (Kose et al., 2022). 

Reliability-Centered Maintenance (RCM) frameworks have gained traction due to their focus on 

function-oriented decision-making, criticality analysis, and failure consequence evaluation. Studies 

show that combining RCM with real-time sensor data and machine learning algorithms increases 

diagnostic accuracy and improves predictive capabilities (Ahmadi et al., 2010). Industrial engineers 

also utilize queuing theory, Markov chains, and optimization algorithms to model system behavior 

under various maintenance policies. In high-reliability sectors such as aerospace and semiconductor 

manufacturing, maintenance optimization is tightly linked to system performance metrics, where 

even minor unavailability can lead to significant economic losses. The use of integer programming 

and genetic algorithms has also been applied to optimize complex maintenance schedules, 

particularly in environments with resource and manpower constraints (Wu & Castro, 2020). Moreover, 

industrial engineering literature emphasizes the importance of integrating maintenance models with 

production and inventory systems, where downtime can disrupt order fulfillment and lead to 

significant lead-time variability (Alsubaie & Yang, 2017). The continuous development of such models 

reflects the strategic imperative of maintenance as a lever for operational efficiency and process 

control. 

Lean Manufacturing Principles in Maintenance Optimization 

Lean Manufacturing, originally derived from the Toyota Production System (TPS), is grounded in the 

principle of waste minimization without sacrificing productivity or quality. Within the realm of 

maintenance, Lean principles are applied to identify and eliminate non-value-adding activities, 

streamline processes, and enhance equipment availability (Filip & Marascu-Klein, 2015). The 8 types 

of waste—overproduction, waiting, transportation, overprocessing, inventory, motion, defects, and 

underutilization of people—are increasingly mapped in maintenance contexts to reduce downtime 

and redundant activities (Jiménez et al., 2021). The application of Lean in maintenance leads to the 

creation of Lean Maintenance (LM), a structured approach where preventive, predictive, and 

autonomous maintenance tasks are integrated within lean thinking frameworks. Lean Maintenance 

aims to optimize maintenance schedules, reduce spare parts inventory, and empower operators 

through visual management and standard work protocols. Practices such as 5S (Sort, Set in order, 

Shine, Standardize, Sustain) and Visual Factory are foundational Lean tools that enhance 

maintenance workplace organization and eliminate unnecessary searching time, directly 

contributing to improved Mean Time to Repair (MTTR) and Mean Time Between Failures (MTBF) 

(Bhadu et al., 2021). Empirical studies from discrete manufacturing sectors, including electronics and 

automotive, report significant improvements in Overall Equipment Effectiveness (OEE) through the 

adoption of Lean Maintenance practices (Masoud et al., 2025). Lean thinking not only reduces 

physical waste but also enhances maintenance responsiveness and strategic alignment with 

production goals. The application of value stream mapping (VSM) to maintenance workflows allows 

organizations to visualize and remove bottlenecks in repair, inspection, and work order generation 

processes. 
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The convergence of Lean 

Manufacturing and Total 

Productive Maintenance 

(TPM) in maintenance 

optimization creates a 

synergistic approach aimed 

at reducing unplanned 

downtime, improving 

equipment reliability, and 

enhancing workforce 

involvement. TPM, which 

advocates for the 

participation of all 

employees in maintenance 

activities, complements 

Lean's focus on efficiency by 

embedding maintenance 

tasks into the daily 

responsibilities of operators 

and line staff (Kose et al., 

2022). Researchers have 

demonstrated that 

integrating TPM pillars—such 

as autonomous 

maintenance, planned 

maintenance, and focused improvement—within Lean frameworks helps develop maintenance 

systems that are both cost-efficient and resilient (Robertsone et al., 2021). For instance, Lean's Just-

in-Time (JIT) principles support TPM’s emphasis on eliminating over-maintenance and ensuring parts 

availability only when needed, thereby optimizing spare parts logistics and minimizing storage waste 

(Wahab et al., 2013). Several studies point to the effectiveness of 5S and Kaizen events in both 

standardizing maintenance routines and increasing employee ownership of maintenance 

outcomes. Furthermore, Single-Minute Exchange of Dies (SMED), a Lean technique, is often 

employed alongside TPM to reduce changeover times and equipment unavailability (Karam et al., 

2018). Data from case studies in the chemical, food, and beverage industries suggest that 

organizations adopting a Lean-TPM hybrid approach have achieved OEE improvements exceeding 

20%, while also reducing unplanned maintenance by more than 30% (Ludeña et al., 2022). The use 

of Total Involvement Maintenance (TIM) and cross-training, another feature of Lean-TPM systems, 

further reduces skill gaps and enables more responsive maintenance execution (Alblooshi et al., 

2022). This integration aligns with industrial engineering objectives, such as process standardization, 

reliability improvement, and system optimization. 

Metrics play a vital role in Lean Maintenance systems, providing quantitative benchmarks for 

tracking performance and identifying continuous improvement opportunities. Key performance 

indicators (KPIs) in Lean Maintenance include Overall Equipment Effectiveness (OEE), Total 

Maintenance Cost per Unit, Preventive Maintenance Compliance (PMC), and schedule adherence 

(Koç & Ecevit Alpar, 2023). These indicators are used not only to assess current performance but also 

to facilitate root cause analysis, Pareto charting, and process control interventions commonly 

employed by industrial engineers (Jobin, 2015). OEE, which combines availability, performance, and 

quality rates, is particularly important in Lean environments, as it directly reflects the operational 

impact of maintenance activities. Lean Maintenance promotes the use of daily maintenance audits, 

performance dashboards, and Gemba walks to increase transparency, accountability, and 

responsiveness (Saini & Singh, 2020). Empirical studies from high-mix, low-volume production systems 

show that continuous improvement tools such as PDCA (Plan-Do-Check-Act) and visual KPIs 

enhance fault detection and reduce response time (Keramida et al., 2023). Additionally, 

organizations leveraging Lean metrics in maintenance often deploy digital tools—such as CMMS 

(Computerized Maintenance Management Systems) and mobile maintenance applications—to 

monitor and visualize these KPIs in real time (Wahab et al., 2013). Studies conducted across Asia and 

Figure 4: Lean Maintenance Principles in Industrial Engineering 
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Europe report that Lean Maintenance systems supported by such tools lead to maintenance cost 

reductions ranging from 10% to 35% annually, while also decreasing emergency work orders (Karam 

et al., 2018). Continuous improvement, when institutionalized through Lean Maintenance 

frameworks, becomes a powerful driver for equipment reliability, worker empowerment, and 

systemic resilience. 

Total Productive Maintenance (TPM) in Manufacturing Systems 

Total Productive Maintenance (TPM), initially developed in Japan and formalized by Rodrigues and 

Hatakeyama (2006), is a holistic approach to equipment maintenance that seeks to maximize 

productivity by involving all levels of an organization. TPM is built on eight foundational pillars, 

including autonomous maintenance, focused improvement, quality maintenance, planned 

maintenance, and early equipment management, among others, which together aim to achieve 

zero breakdowns, zero defects, and zero accidents (Borkowski et al., 2014). Unlike traditional 

maintenance systems that assign maintenance tasks solely to specialized technicians, TPM promotes 

the involvement of machine operators in routine checks, cleaning, and minor repairs, fostering a 

sense of ownership and equipment awareness (Xu et al., 2019). Research shows that this cross-

functional collaboration enhances both operator morale and equipment reliability, particularly in 

high-throughput environments such as automotive and electronics manufacturing (Gelaw et al., 

2023). Autonomous maintenance, one of the core TPM pillars, is strongly linked to improved Overall 

Equipment Effectiveness (OEE), especially when implemented in conjunction with Lean practices 

such as 5S and visual management systems (Konecny & Thun, 2011).  

Moreover, TPM’s emphasis on planned maintenance activities—such as scheduled overhauls and 

usage-based interventions—helps extend equipment life and reduce Mean Time Between Failures 

(MTBF) (Singh & Ahuja, 2014). In food, beverage, and chemical manufacturing, TPM has proven 

effective in minimizing unplanned downtime and aligning maintenance execution with stringent 

hygiene and safety regulations (Kinney, 2006). The structured nature of TPM, combined with its 

integration of human factors and process standardization, positions it as a foundational strategy in 

the broader field of industrial maintenance engineering. 

Empirical studies across multiple industrial sectors affirm that the implementation of TPM leads to 

substantial improvements in productivity, quality, and maintenance efficiency. For instance, in a 

study of Indian manufacturing firms, Ferrua-Breña et al. (2021) found that TPM implementation 

resulted in a 50% reduction in machine breakdowns and a 35% increase in OEE. Similar results were 

documented in the European automotive sector, where TPM was associated with a 40% decline in 

emergency maintenance calls and a 25% improvement in first-pass yield (Kumar et al., 2014). In the 

Figure 5: The Eight Pillars of Total Productive Maintenance (TPM) 
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context of resource-intensive sectors such as cement and mining, TPM has been reported to 

enhance workforce utilization and reduce unplanned stoppages, contributing to better throughput 

and equipment availability (Sun et al., 2003). However, the successful implementation of TPM is often 

hindered by several challenges, including organizational resistance to change, lack of training, 

insufficient cross-departmental communication, and limited senior management engagement 

(Ribeiro et al., 2019). Studies also highlight that firms in developing economies face additional 

constraints such as low automation maturity and inconsistent data collection practices, which limit 

the scalability of TPM practices (Hardt et al., 2021; Purwanto & Jaqin, 2021). To mitigate these issues, 

researchers suggest adopting TPM Maturity Models and phased implementation strategies to align 

goals across departments and track performance incrementally (Hardt et al., 2021). Furthermore, 

the integration of TPM with digital platforms like CMMS and IoT-based condition monitoring tools 

enhances scheduling accuracy and allows real-time diagnostics, thus improving preventive 

maintenance compliance (Thomas et al., 2006). Evidence from Asia and South America shows that 

companies leveraging these integrations achieve superior maintenance performance, especially 

when TPM is tailored to the plant’s operational context and workforce capacity (Barriga et al., 2024). 

The collective body of literature underscores that TPM remains a vital framework for structured, 

participative, and performance-driven maintenance in modern manufacturing systems. 

Digitally-Driven Maintenance Models 

Digitally-driven maintenance represents a significant shift from traditional preventive and reactive 

models to proactive and intelligence-based systems, enabled by data analytics, sensor 

technologies, and cyber-physical integration (Jakaria et al., 2025). Central to this evolution are 

Condition-Based Maintenance (CBM) and Predictive Maintenance (PdM) frameworks, which rely on 

real-time and historical data to evaluate equipment health and forecast potential failures (Bashar 

et al., 2020; Siddiqui et al., 2023). CBM utilizes inputs from vibration analysis, thermography, oil analysis, 

and acoustic monitoring to 

assess current asset conditions 

and trigger interventions only 

when needed, reducing 

unnecessary downtime and 

maintenance costs (Alsubaie & 

Yang, 2017; Bhuiyan et al., 2025). 

PdM advances this concept by 

using statistical methods, 

machine learning algorithms, 

and prognostic models to 

predict the Remaining Useful Life 

(RUL) of components (Sohel, 

2025; Willmott & McCarthy, 

2001). The adoption of digitally-

driven models is accelerated by 

the growing availability of 

Industrial Internet of Things (IIoT) 

infrastructure, which facilitates 

seamless data collection from 

distributed assets and supports 

cloud-based analytics (Jain et 

al., 2015; Hossen et al., 2023). In 

complex manufacturing 

systems, these models enhance 

asset reliability and align maintenance operations with production goals, contributing to Overall 

Equipment Effectiveness (OEE) and Mean Time Between Failures (MTBF) (Gupta & Vardhan, 2016; 

Saiful et al., 2025). Reliability-Centered Maintenance (RCM), while older in origin, has been digitally 

extended to incorporate risk-based decision models and integrated diagnostic capabilities (Masud, 

2022; Singh & Gurtu, 2021). These approaches emphasize functionality, failure modes, and criticality, 

offering structured pathways to optimize maintenance tasks within industrial engineering (Md et al., 

2025). Collectively, the literature reveals that digital maintenance frameworks enhance system 

Figure 6: Digitally-Driven Maintenance Ecosystem 
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visibility, reduce maintenance backlogs, and enable agile responses to asset performance variations 

(Bashar et al., 2020; Alam et al., 2023). 

Artificial Intelligence (AI) and machine learning have become pivotal in advancing predictive 

maintenance capabilities, enabling maintenance systems to transition from rule-based models to 

data-driven prognostics (Siddiqui, 2025). Supervised and unsupervised machine learning algorithms 

are widely used to process large datasets from sensors, extract patterns, and detect early signs of 

equipment degradation (Islam et al., 2025; Stavropoulos et al., 2022). Algorithms such as Support 

Vector Machines (SVM), Random Forest, k-Nearest Neighbors (k-NN), and neural networks are 

frequently deployed for classification and regression tasks in maintenance diagnostics (Islam et al., 

2025; Cifuentes et al., 2024). Deep learning architectures, including convolutional neural networks 

(CNNs) and long short-term memory (LSTM) networks, are particularly effective in analyzing time-

series sensor data for fault prediction and anomaly detection (Shofiullah et al., 2024; Yazdi et al., 

2019). These intelligent systems are also integrated with prognostic health management (PHM) 

frameworks to estimate Remaining Useful Life (RUL) and optimize maintenance intervals (Cooper, 

2023; Islam et al., 2024). In aerospace and automotive industries, where asset failure can result in 

catastrophic outcomes, these AI-enhanced tools have significantly improved reliability metrics and 

reduced unscheduled maintenance events (Jahan, 2024; Kim & Hong, 2024). AI-based diagnostics 

are often embedded into Computerized Maintenance Management Systems (CMMS) and cloud 

platforms, facilitating real-time decision-making and automated alert generation (Islam, 2024; 

Stavropoulos et al., 2022). Moreover, digital twins—virtual replicas of physical assets—allow predictive 

simulations and maintenance scenario analysis based on live operational data, creating a closed-

loop system for continuous improvement. The growing body of research highlights the role of AI in 

reducing maintenance labor, improving equipment availability, and supporting cost-effective 

lifecycle management across diverse industrial sectors (Hossain et al., 2024; Cifuentes et al., 2024). 

The integration of Industrial Internet of Things (IIoT), cloud computing, and real-time analytics has 

transformed maintenance systems into adaptive, interconnected networks capable of autonomous 

performance tracking and decision-making. IIoT devices—comprising embedded sensors, RFID tags, 

and actuators—enable real-time data acquisition on critical parameters such as temperature, 

vibration, humidity, and power consumption, creating a digital footprint of asset health (Hasan et 

al., 2024; Yazdi et al., 2019). Cloud platforms serve as centralized hubs for aggregating and 

processing these data streams, offering scalable infrastructure for storage, analytics, and 

visualization dashboards (Balogun & Attoh-Okine, 2023; Dasgupta et al., 2024). Edge computing 

further enhances system responsiveness by conducting localized analysis close to the source of data, 

reducing latency in time-sensitive maintenance decisions (Cooper, 2023; Jahan, 2023). Studies 

across manufacturing sectors demonstrate that this architecture enhances predictive maintenance 

accuracy, increases data-driven insights, and reduces mean time to repair (MTTR) (Chowdhury et 

al., 2023; Cooper, 2023; Koković et al., 2024). In industrial engineering literature, this convergence 

supports a shift toward Maintenance 4.0—an intelligent, connected, and decentralized framework 

that enables condition-aware scheduling and self-diagnosing systems (Kim & Hong, 2024; Sohel et 

al., 2022). Integration with Enterprise Resource Planning (ERP) and Manufacturing Execution Systems 

(MES) further ensures that maintenance activities are aligned with production planning, labor 

allocation, and supply chain logistics (Ullah et al., 2023). Real-time analytics tools such as predictive 

dashboards, heat maps, and trend analysis applications empower maintenance personnel to 

proactively monitor system performance and prioritize interventions (Mourtzis et al., 2020). 

Researchers also point out that cybersecurity, data governance, and interoperability standards are 

essential in enabling the secure and seamless implementation of such digitally-integrated 

maintenance systems (Shafique et al., 2020). The literature affirms that the fusion of IIoT, cloud 

technologies, and analytics represents a cornerstone of modern maintenance engineering 

strategies in smart manufacturing. 

Artificial Intelligence and Machine Learning in Smart Maintenance 

Artificial Intelligence (AI) plays a pivotal role in the transformation of traditional maintenance 

strategies into smart, data-driven systems that enable predictive diagnostics and autonomous 

decision-making (Roksana et al., 2024). In smart manufacturing, AI contributes to the automation of 

condition monitoring, fault detection, and remaining useful life (RUL) estimation, offering a major 

improvement over manual inspection or fixed-interval maintenance (Bhuiyan et al., 2024; 

Stavropoulos et al., 2022). AI systems rely on real-time sensor data collected from machines and 
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equipment to process anomalies, learn behavioral patterns, and forecast failures with a high degree 

of precision (Cifuentes et al., 2024; Sarker, 2025). Tools such as expert systems, fuzzy logic, and 

Bayesian networks were among the first to model maintenance knowledge bases and uncertainty 

in fault analysis (Sarker et al., 2023; Yazdi et al., 2019). However, contemporary approaches focus on 

machine learning, where the system learns iteratively from labeled or unlabeled datasets to make 

predictions (Ammar et al., 2024; Balogun & Attoh-Okine, 2023). As noted by Cooper (2023), AI-driven 

maintenance enables a shift from time-based to condition-based strategies, allowing systems to self-

adjust according to contextual data inputs. Research in aerospace, automotive, and energy 

industries has shown that AI-enhanced maintenance improves reliability indices, reduces emergency 

repairs, and enhances cost-efficiency by eliminating unnecessary inspections (Kim & Hong, 2024; 

Koković et al., 2024). Integration with industrial control systems and cloud-based platforms enables 

seamless communication between AI models and operational teams, thus supporting real-time 

maintenance execution and dashboard-based visualization (Roksana, 2023; Ullah et al., 2023). These 

AI applications are now considered essential for achieving Maintenance 4.0 standards, where 

predictive, autonomous, and self-optimizing capabilities define the reliability culture within Industry 

4.0 frameworks (Maniruzzaman et al., 2023; Mourtzis et al., 2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Machine learning (ML), a subfield of AI, is instrumental in building predictive maintenance models 

that can analyze equipment behavior and forecast future failures based on historical and real-time 

data (Arafat Bin et al., 2023). Supervised learning models such as Decision Trees, Random Forest, 

Support Vector Machines (SVM), and Gradient Boosting algorithms are frequently used for 

classification and regression tasks, including the prediction of failure types, severity, and time to 

failure (Balogun & Attoh-Okine, 2023; Kumar et al., 2022). These models rely on labeled datasets 

where known failure outcomes are used to train the system, making them particularly effective in 

structured maintenance datasets (Hossen & Atiqur, 2022; Zhai et al., 2021). On the other hand, 

unsupervised learning models such as k-Means, Hierarchical Clustering, and Principal Component 

Analysis (PCA) help detect anomalies or hidden patterns in unlabeled datasets, enabling early 

detection of abnormal behavior in machinery (Koković et al., 2024; Majharul et al., 2022). In addition, 

semi-supervised learning approaches are emerging in situations where labeled data is scarce but 

model accuracy is still required (Galarza-Falfan et al., 2024; Mahfuj et al., 2022). Deep learning, a 

rapidly evolving area within ML, involves neural networks such as Convolutional Neural Networks 

(CNN) and Long Short-Term Memory (LSTM) networks, which have demonstrated excellent 

performance in analyzing sequential sensor data and performing time-series forecasting (Aklima et 

al., 2022; Mourtzis, Tsoubou, et al., 2023). Studies show that LSTM-based models outperform traditional 

regression approaches in RUL estimation, especially in complex manufacturing environments with 

high data variability (Galarza-Falfan et al., 2024; Helal et al., 2025; Shahin et al., 2023). Furthermore, 

hybrid models that integrate statistical and ML techniques offer robustness and interpretability, 

Figure 7: Integration of AI and Machine Learning in Predictive Maintenance Systems 
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essential for industrial stakeholders to act on AI-generated insights (Mourtzis, Tsoubou, et al., 2023; 

Shipu et al., 2024). These predictive analytics frameworks enhance maintenance planning accuracy 

and reduce costly equipment failures, particularly in capital-intensive sectors such as transportation, 

chemical processing, and power generation (Dey et al., 2024). 

The effectiveness of AI and ML applications in smart maintenance is heavily dependent on the 

quality and relevance of input data. Maintenance-related data are typically sourced from condition 

monitoring systems, which include vibration sensors, acoustic emission sensors, infrared 

thermography, ultrasonic detectors, and oil particle analyzers (Bhowmick & Shipu, 2024; Shahin et 

al., 2023). These heterogeneous data streams must be preprocessed and transformed into 

meaningful features before being fed into machine learning models—a process known as feature 

engineering (Islam & Helal, 2018; Mourtzis, Tsoubou, et al., 2023). Proper feature extraction helps the 

algorithm understand the relationships between equipment conditions and failure events, 

significantly improving model accuracy (Ahmed et al., 2022; Galarza-Falfan et al., 2024). For 

example, time-domain, frequency-domain, and time-frequency domain features are commonly 

used in rotating machinery diagnostics, especially in the detection of bearing and gear faults 

(Koković et al., 2024; Shahan et al., 2023). Domain knowledge from industrial engineering is crucial 

during this phase to identify relevant variables such as operating pressure, motor current, shaft 

misalignment, or thermal load that contribute to degradation (Hossain et al., 2024; Zhai et al., 2021). 

Data fusion techniques are also applied when information is gathered from multiple sources, such as 

SCADA systems, CMMS logs, and environmental sensors, to develop a more holistic picture of 

machine behavior (Balogun & Attoh-Okine, 2023; Sharif et al., 2024). Furthermore, anomaly 

labeling—critical for supervised model training—is often conducted through collaboration between 

maintenance engineers and data scientists using visual inspection, historical failure records, and 

expert judgment (Faria & Rashedul, 2025; Mourtzis, Angelopoulos, et al., 2023). These collaborative 

approaches ensure that AI models are not only statistically robust but also operationally relevant. 

Accurate preprocessing, dimensionality reduction, and feature selection thus constitute 

foundational tasks that determine the practical value and interpretability of AI-driven maintenance 

systems ((Khan, 2025; Serror et al., 2021). 

Cyber-Physical Systems and Maintenance Information Systems 

Cyber-Physical Systems (CPS) serve as the technological backbone of smart maintenance by 

integrating physical assets, computational models, and communication networks into cohesive 

systems capable of real-time monitoring, diagnosis, and decision-making (Dafflon et al., 2021). A CPS 

enables the collection and processing of high-resolution data from embedded sensors, actuators, 

and controllers installed in industrial equipment (Villalonga et al., 2021). These systems facilitate 

bidirectional communication between the physical layer and digital components through edge 

computing, IIoT frameworks, and cloud platforms (Vachálek et al., 2021). In the context of 

maintenance, CPS enable the creation of intelligent systems that support autonomous fault 

detection, remote diagnostics, and predictive decision-making based on current operating 

conditions (de Oliveira et al., 2024). A key advantage of CPS is their ability to operate in distributed 

environments and synchronize multiple subsystems across different machinery and locations, thereby 

optimizing resource allocation and system-level reliability (Tao et al., 2019). CPS also support the 

integration of digital twins—virtual replicas of physical machines—which simulate asset behavior and 

predict failure scenarios, enhancing maintenance strategy design. These dynamic digital models 

update continuously through sensor feedback and provide interactive environments for scenario 

analysis, reducing trial-and-error in maintenance scheduling (Alcaraz & Lopez, 2022). In smart 

manufacturing environments, CPS contribute to Maintenance 4.0 principles by enabling context-

aware and adaptive interventions that reduce Mean Time to Repair (MTTR) and increase Mean Time 

Between Failures (MTBF) (Somers et al., 2023). The real-time diagnostic capability of CPS enhances 

agility and decision accuracy, especially in mission-critical sectors like aerospace, oil and gas, and 

semiconductor manufacturing (Suhail et al., 2023). These findings collectively underscore the 

foundational role of CPS in transforming traditional reactive maintenance into a proactive, 

intelligent, and scalable system in line with Industry 4.0 goals. 

Maintenance Information Systems (MIS), including Computerized Maintenance Management 

Systems (CMMS) and Enterprise Asset Management (EAM) platforms, have become indispensable 

tools for planning, executing, and evaluating maintenance activities in smart factories. CMMS 

software is designed to store equipment histories, track preventive maintenance schedules, manage 
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spare parts inventories, and generate maintenance work orders based on predefined criteria or 

sensor-triggered events (Vachálek et al., 2021). These systems are increasingly cloud-enabled and 

integrated with mobile applications, allowing technicians to access maintenance records and 

update task completion in real time from field locations (de Oliveira et al., 2024). Advanced MIS 

platforms often incorporate dashboard interfaces, KPI monitoring tools, and analytics engines that 

provide actionable insights into maintenance performance, compliance rates, and failure patterns 

(Tao et al., 2019).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When integrated with Enterprise Resource Planning (ERP) and Manufacturing Execution Systems 

(MES), MIS ensures the synchronization of maintenance activities with production schedules, 

inventory management, and financial planning (Melesse et al., 2021). Predictive maintenance 

modules within modern MIS leverage machine learning models and sensor data to automatically 

recommend interventions based on asset condition, thus eliminating the guesswork associated with 

traditional time-based approaches (Roy et al., 2020). Furthermore, mobile-enabled MIS platforms 

empower frontline workers to perform autonomous maintenance and collaborate with supervisors in 

real time, reducing delays in fault reporting and corrective action (Minerva & Crespi, 2021). Industry 

case studies demonstrate that the use of CMMS reduces maintenance downtime by up to 30% and 

improves work order completion rates by over 40% when aligned with predictive analytics tools 

(Kuruvatti et al., 2022). The convergence of MIS, CPS, and IoT not only enhances transparency and 

traceability in maintenance operations but also facilitates continuous improvement through real-

time data feedback loops and historical trend analysis (Bellavista et al., 2024). 

Traditional vs. Digitally-Enhanced Maintenance Strategies 

Traditional maintenance strategies—including corrective maintenance, time-based preventive 

maintenance (TBPM), and basic reliability-centered maintenance (RCM)—have long served as the 

foundation of industrial asset management. Corrective maintenance responds to failures after they 

occur, often resulting in extended downtimes, high repair costs, and reduced equipment life (Lu et 

al., 2020). Preventive maintenance, though more proactive, often follows rigid schedules irrespective 

of equipment condition, leading to unnecessary part replacements and inefficient resource usage 

(Alcaraz & Lopez, 2022). These methods rely heavily on historical maintenance logs and expert 

judgment, lacking real-time input and predictive capabilities (Minerva et al., 2020). In contrast, 

digitally-enhanced maintenance strategies leverage data from cyber-physical systems (CPS), 

machine learning algorithms, and real-time analytics to make dynamic, context-aware decisions. 

Technologies such as condition-based maintenance (CBM), predictive maintenance (PdM), and 

digital twins allow for more accurate failure prediction, optimized scheduling, and improved 

equipment utilization. While traditional models prioritize routine and reactive tasks, digitally-driven 

Figure 8: Cyber-Physical Systems Architecture for Intelligent Maintenance and Decision-

Making in Smart Manufacturing 
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approaches integrate operational and machine health data to reduce Mean Time Between Failures 

(MTBF) and Mean Time to Repair (MTTR). Additionally, traditional systems often lack integration with 

enterprise-level systems, whereas modern tools like Computerized Maintenance Management 

Systems (CMMS) and ERP platforms enable seamless coordination between maintenance, inventory, 

and production workflows (Melesse et al., 2021). Comparative studies show that digitally-enhanced 

maintenance can reduce total maintenance costs by 20–30% and improve overall Equipment 

Effectiveness (OEE) by over 25% across sectors such as automotive, aerospace, and energy (Naseri 

et al., 2023). Thus, the operational and strategic distinctions between traditional and digital 

maintenance paradigms reflect broader shifts in industrial engineering towards real-time 

optimization and smart asset management. 

The comparative literature on traditional versus 

digitally-enhanced maintenance strategies 

consistently reveals the superior performance 

of the latter in predictive accuracy, 

operational efficiency, and cost reduction. 

Digitally-driven models such as Predictive 

Maintenance (PdM) and Reliability-Centered 

Maintenance 4.0 enable organizations to 

anticipate failures before they occur by 

continuously monitoring asset health through 

sensor networks and machine learning 

algorithms (Botín-Sanabria et al., 2022). These 

systems provide higher decision precision than 

conventional time-based methods, which 

often result in premature replacements or 

missed failure signals (Lu et al., 2020). In high-

reliability industries, including aviation and 

chemical processing, AI-integrated systems 

have reduced unplanned downtime by 35–

50%, compared to the marginal improvements 

recorded through routine preventive 

maintenance (Alcaraz & Lopez, 2022). 

Moreover, the digitalization of maintenance 

allows for real-time KPI tracking, dynamic scheduling, and integration with Enterprise Resource 

Planning (ERP) and Manufacturing Execution Systems (MES), significantly enhancing transparency 

and responsiveness (Roy et al., 2020). However, the adoption of digitally-enhanced maintenance 

also presents challenges such as high initial capital investment, cybersecurity risks, workforce 

resistance to AI adoption, and the need for continuous model updates (Singh et al., 2021). Traditional 

methods, although less efficient, are often preferred in low-capital SMEs or sectors with limited 

technical infrastructure due to their simplicity and low implementation cost (Naderi & Shojaei, 2023). 

Case studies in multinational corporations such as Siemens, Bosch, and General Electric have 

demonstrated that the integration of digital twins and AI-enhanced CMMS can improve 

maintenance schedule compliance, reduce spare parts usage, and extend equipment lifespan by 

over 20% (Batty, 2024). These empirical comparisons reaffirm the performance gap between 

traditional and digitally-enhanced strategies while also highlighting the contextual factors 

influencing technology selection in maintenance engineering. 

Maintenance Optimization in Automotive, Aerospace, and Food Processing 

The automotive and aerospace industries have been at the forefront of adopting smart 

maintenance systems due to the high capital intensity, regulatory scrutiny, and reliability demands 

inherent to their operations. In the automotive sector, maintenance optimization is crucial to ensuring 

lean production, minimal downtime, and high equipment availability, especially in Just-in-Time (JIT) 

and mass-customization environments (Lu et al., 2020). Automotive firms such as Toyota, BMW, and 

Tesla integrate Total Productive Maintenance (TPM) with Condition-Based Maintenance (CBM) and 

Predictive Maintenance (PdM) to enhance production efficiency and extend the lifespan of critical 

assets (Singh et al., 2021). Empirical studies show that integrating PdM systems with cyber-physical 

components and real-time monitoring tools has led to OEE improvements exceeding 20%, as well as 

Figure 9:  Traditional vs. Digitally-Enhanced 

Maintenance Strategies 
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a 30–40% reduction in unscheduled downtimes (Wang et al., 2022). Machine learning algorithms, 

particularly Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN), have been 

successfully deployed in predictive analytics for electric motor health, gear condition, and welding 

system failures in automotive plants (Lei et al., 2023). In the aerospace industry, the stakes are higher 

due to the catastrophic risks of equipment failure. As a result, aerospace maintenance systems rely 

heavily on Reliability-Centered Maintenance (RCM), digital twins, and AI-enabled diagnostics for 

continuous fault prediction (Jones et al., 2020). The use of digital twins in jet engine monitoring, 

implemented by companies like Rolls-Royce and General Electric, has led to increased flight safety, 

better asset utilization, and millions in cost savings through deferred maintenance (HazraAbhishek et 

al., 2021). These industries also deploy advanced CMMS platforms and integrated ERP systems to 

streamline maintenance planning with supply chain logistics, improving spare parts availability and 

technician scheduling (Villalonga et al., 2021). Collectively, these studies demonstrate that 

maintenance optimization in the automotive and aerospace sectors is heavily reliant on digital 

integration, predictive intelligence, and cross-functional coordination. 

Maintenance in the food processing industry presents unique challenges due to stringent health 

regulations, contamination risks, and the need for uninterrupted cold chain operations. Unlike in 

discrete manufacturing sectors, food processing environments require high-frequency cleaning, 

rapid changeovers, and compliance with safety protocols such as HACCP and ISO 22000, which 

significantly influence maintenance strategies (Vachálek et al., 2021). Traditional time-based 

maintenance approaches are often inefficient in this context, leading to both over-maintenance 

and potential non-compliance. As such, food manufacturers increasingly adopt smart maintenance 

strategies that combine TPM principles with digitally-enabled systems such as IoT-based sensors, 

mobile CMMS, and machine learning-powered fault detection (Human et al., 2023). Studies show 

that real-time monitoring of temperature, pressure, humidity, and vibration in food processing 

equipment significantly reduces contamination risks while enabling condition-based interventions 

(de Oliveira et al., 2024). In refrigerated environments, predictive models using sensor data have 

proven effective in maintaining equipment such as compressors, conveyor belts, and packaging 

machines, leading to lower energy consumption and minimized spoilage. The integration of 

maintenance scheduling with 

production planning systems 

ensures minimal disruption 

during routine checks or 

repairs, preserving batch 

integrity and throughput (Kosse 

et al., 2022). Moreover, 

predictive maintenance 

supported by AI tools helps 

food manufacturers anticipate 

wear and tear on critical 

equipment such as pasteurizers 

and bottling lines, enhancing 

safety and reducing product 

recall risks (Tao et al., 2019). 

Despite infrastructure and 

investment constraints, case 

studies in Europe and 

Southeast Asia indicate that 

small- and medium-sized food 

processors have achieved 

maintenance cost savings of 

up to 25% through smart 

maintenance initiatives 

supported by government and 

private-sector digitalization 

programs.  

 

Figure 10: Sustainability Drivers in Smart Maintenance Across Key 

Industries 
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Research Gaps in Maintenance Literature 

Despite substantial progress in maintenance research, a significant conceptual gap exists in 

integrating traditional frameworks like Total Productive Maintenance (TPM) and Reliability-Centered 

Maintenance (RCM) with digitally enhanced approaches such as AI-driven predictive maintenance 

and cyber-physical systems. Many studies treat these paradigms in isolation, lacking theoretical 

convergence that would explain how traditional philosophies can coexist with smart technologies 

(HazraAbhishek et al., 2021). While TPM emphasizes human involvement and autonomous 

maintenance, AI-based systems prioritize data automation and machine intelligence, often creating 

a mismatch in practice and culture (Human et al., 2023). The literature does not adequately address 

how lean practices like Kaizen or 5S can be adapted to the digital maintenance environment or 

how digital transformation affects organizational learning within maintenance teams. Moreover, 

theoretical models that explain the adoption behavior of predictive technologies are limited, 

especially in industrial engineering contexts where maintenance functions intersect with operations, 

logistics, and safety management. Although some scholars have attempted to propose hybrid 

maintenance models (e.g., combining CBM with TPM), these remain fragmented and lack empirical 

validation(de Oliveira et al., 2024). Another critical gap is the absence of comprehensive frameworks 

that integrate maintenance maturity models with digital readiness indicators, leaving practitioners 

without a clear path to smart maintenance transformation (Kosse et al., 2022). As such, the lack of 

integrated, multidisciplinary theories bridging traditional and digital maintenance paradigms 

presents a fertile ground for future research in industrial engineering. 

 

Figure 11: Identified Gaps for this study 

Category Description Key Issues Identified 

Conceptual 

Gaps 

Lack of integration between 

traditional frameworks (e.g., TPM, 

RCM) and digitally-driven systems 

(e.g., AI, CPS); limited hybrid 

models and weak theoretical 

convergence. 

 

Isolation of TPM/RCM and AI-based 

models; missing multidisciplinary theories; 

limited empirical validation of hybrid 

systems. 

Methodologica

l Gaps 

Inconsistent use and validation of 

performance metrics; limited large-

scale benchmarking; over-reliance 

on small case studies and lack of 

standardized ML evaluation 

frameworks. 

 

Overreliance on case studies; lack of 

meta-analysis; absence of longitudinal 

impact data; neglect of ML 

benchmarking challenges. 

Contextual 

Gaps 

Low representation of SMEs, 

emerging economies, and non-

manufacturing sectors; little 

attention to sector-specific 

regulations, regional challenges, 

and socio-cultural acceptance. 

Neglect of adoption challenges in SMEs 

and developing regions; weak linkage to 

regulatory frameworks and sustainability 

goals. 

 

The literature on maintenance optimization also reveals notable methodological gaps, particularly 

in performance measurement and benchmarking practices. While indicators such as Overall 

Equipment Effectiveness (OEE), Mean Time Between Failures (MTBF), and Mean Time to Repair (MTTR) 

are widely used, few studies critically examine the validity and consistency of these metrics across 

different industries, maintenance models, and digital maturity levels (Tao et al., 2019). The 

predominance of case study research and small-scale industrial trials has limited the generalizability 

of findings, and comprehensive meta-analyses or cross-industry benchmarking studies remain scarce 

(Villalonga et al., 2021). Moreover, many studies rely on self-reported data or qualitative surveys 

without integrating real-time sensor data, leading to potential biases in assessing maintenance 

effectiveness (Lv, 2023). Few papers consider the full lifecycle cost implications of maintenance 

strategy choices or incorporate multi-criteria decision-making methods for trade-off analysis (Bauer 
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et al., 2024). While machine learning algorithms are increasingly applied in predictive maintenance, 

their performance is rarely compared using standardized benchmarks, and issues such as overfitting, 

lack of interpretability, and data imbalance are often overlooked (Leng et al., 2021). Additionally, 

there is a lack of longitudinal studies evaluating the long-term effects of digital maintenance 

adoption on productivity, workforce adaptation, and ROI (Minerva & Crespi, 2021). Most research 

also fails to differentiate between implementation challenges and performance outcomes, making 

it difficult to isolate causal relationships between digital tool deployment and maintenance 

efficiency (Piroumian, 2021). These methodological limitations impede the development of 

evidence-based best practices and the ability to create robust decision-support systems in 

maintenance engineering. 

Another critical gap in the literature pertains to the contextual diversity of smart maintenance 

adoption, especially across small and medium enterprises (SMEs), emerging economies, and non-

manufacturing sectors. Most studies on digitally-driven maintenance are concentrated in 

technologically advanced industries such as automotive, aerospace, and petrochemicals, while 

low-tech sectors and service-oriented industries remain underrepresented (Leng et al., 2021). SMEs, 

which often lack the capital, digital infrastructure, and skilled workforce for AI-enabled maintenance 

systems, are rarely the focus of implementation research despite representing a majority of global 

industrial activity. In regions like South Asia, Africa, and Latin America, barriers such as inconsistent 

power supply, limited access to cloud services, and fragmented supply chains hinder the adoption 

of smart maintenance technologies, yet these regional challenges are scarcely addressed in 

empirical studies. Furthermore, sector-specific regulations and standards, such as HACCP in food 

processing or ISO 26262 in automotive safety systems, shape maintenance requirements in distinct 

ways, but their integration with digital maintenance protocols is rarely explored (Lu et al., 2020). 

Studies also overlook the socio-cultural factors affecting technology acceptance and resistance in 

different organizational settings. While some frameworks discuss digital maturity, few differentiate 

adoption stages across sectors, and almost none link maintenance innovation to broader 

sustainability goals or circular economy practices. This contextual narrowness limits the scalability of 

existing models and calls for more inclusive, sectorally diverse research that considers geographic, 

economic, and institutional variability in maintenance optimization. 

METHOD 

This study employed a systematic review methodology in accordance with the PRISMA 2020 

(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to ensure 

transparency, replicability, and scientific rigor throughout the review process. The PRISMA framework 

was selected for its robustness in organizing evidence-based research syntheses and its capacity to 

improve methodological quality across multidisciplinary fields, particularly in industrial and 

engineering studies. The process consisted of five key phases: identification, screening, eligibility, 

inclusion, and synthesis. Each phase is described in detail below to clarify how articles were selected, 

evaluated, and synthesized. 

Identification Phase 

The identification stage involved a comprehensive search strategy conducted across five reputable 

academic databases: Scopus, Web of Science, IEEE Xplore, ScienceDirect, and Google Scholar. The 

search was executed in January 2025 and included publications from January 2010 to December 

2024 to capture contemporary advancements in maintenance optimization. Keywords used in the 

search included “maintenance optimization,” “smart maintenance,” “predictive maintenance,” 

“lean maintenance,” “total productive maintenance (TPM),” “computerized maintenance 

management system (CMMS),” “industrial engineering,” and “cyber-physical systems in 

maintenance.” Boolean operators such as AND, OR, and NOT were used to refine the search queries 

and ensure relevant combinations were captured. The initial search yielded 1,456 records, including 

journal articles, conference proceedings, and peer-reviewed reviews relevant to automotive, 

aerospace, and food processing industries. 

Screening Phase 

In the screening phase, duplicate entries were removed using the automated tools available in 

EndNote 21 and Zotero. After removing 372 duplicates, the remaining 1,084 articles were subjected 

to title and abstract screening based on predefined inclusion and exclusion criteria. The inclusion 

criteria required that articles be peer-reviewed, written in English, and address at least one core 

dimension of maintenance optimization in industrial sectors. Exclusion criteria included non-peer-
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reviewed articles, commentaries, book chapters, dissertations, and papers unrelated to engineering 

or maintenance management. At the end of this phase, 438 articles were deemed potentially 

eligible for full-text review. 
Figure 12: PRISMA method adopted for this study 

 

 
 

Eligibility Phase 

During the eligibility phase, the full texts of the remaining 438 articles were carefully assessed for 

relevance, methodological quality, and alignment with the research objectives. Articles were 

excluded if they lacked a clear research methodology, focused solely on energy systems or 

transportation logistics without discussing maintenance frameworks, or did not involve a technical or 

data-driven approach to maintenance optimization. This stage resulted in the exclusion of 268 

studies that did not meet the criteria. The remaining 170 articles were deemed eligible and subjected 

to quality assessment and thematic synthesis. 

Inclusion and Quality Appraisal 

A total of 112 high-quality articles were included in the final synthesis after applying critical appraisal 

tools such as the Critical Appraisal Skills Programme (CASP) checklist and the Mixed Methods 

Appraisal Tool (MMAT), depending on whether the study was quantitative, qualitative, or mixed-

methods. Articles that scored low in research clarity, evidence strength, or relevance to digitally-

enhanced maintenance models were excluded from the final sample. Most of the included studies 

employed experimental design, case studies, simulation models, or empirical analysis of AI and 

digital integration in maintenance engineering. Articles were cross-checked independently by two 

reviewers to ensure inter-rater reliability and consensus. The final set of 112 articles provided the 

foundation for thematic categorization and sectoral comparison in the subsequent findings section. 

Data Extraction and Synthesis 

Data from the 112 included articles were systematically extracted into a structured review matrix. 

Information collected included publication year, study context (industry sector), methodology, type 

of maintenance model, technologies used (e.g., CMMS, digital twin, AI), and key findings. A narrative 

synthesis approach was adopted, supported by qualitative content analysis to identify recurring 

themes, gaps, and innovation clusters. These themes were organized under several key domains: 

lean and TPM frameworks, digitally-driven maintenance models, cyber-physical systems, artificial 

intelligence integration, and sector-specific applications in automotive, aerospace, and food 

processing. The synthesis also highlighted methodological diversity and contextual limitations across 

studies, allowing for a multidimensional understanding of the current state and future potential of 

maintenance optimization research. 
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FINDINGS 

One of the most prominent findings of this systematic review is the critical role of predictive 

maintenance systems in reducing unplanned downtime and increasing equipment availability 

across industrial sectors. Among the 112 reviewed articles, 20 studies specifically emphasized the 

effectiveness of predictive maintenance approaches, collectively amassing 2,913 citations. These 

articles documented the implementation of real-time monitoring systems, sensor-based diagnostics, 

and forecasting models that allowed manufacturers to transition from reactive to proactive 

maintenance regimes. The findings consistently show that predictive maintenance not only reduces 

equipment failure but also lowers maintenance costs and enhances production continuity. 

Moreover, predictive strategies supported by AI algorithms led to earlier detection of anomalies and 

more accurate failure forecasts, which in turn minimized the occurrence of emergency repairs and 

production stoppages. These systems proved especially beneficial in high-stakes industries such as 

aerospace and automotive, where operational continuity and safety are paramount. Across these 

studies, organizations experienced improvements in metrics such as Mean Time Between Failures 

(MTBF) and Overall Equipment Effectiveness (OEE), underscoring the tangible benefits of predictive 

models over time-based or corrective maintenance methods. The sheer volume of citations tied to 

these studies indicates a strong scholarly consensus on the value of predictive maintenance as a 

foundational element of maintenance optimization. 

 

Figure 13: Citation Trends by Maintenance Strategy Type (2010–2024) 

 
 

Another significant finding is the widespread adoption of Total Productive Maintenance (TPM) as a 

strategic maintenance framework that integrates workforce engagement, planned maintenance, 

and continuous improvement. Of the reviewed articles, 15 focused extensively on TPM models and 

collectively accumulated 3,447 citations. These articles revealed that TPM is particularly effective in 

environments where machine reliability and workforce empowerment are key performance drivers. 

TPM implementation often involves multi-tiered interventions such as autonomous maintenance, 

Kaizen practices, and cross-training of operators to assume basic maintenance responsibilities. The 

reviewed studies highlight that companies employing TPM strategies reported substantial 

improvements in production throughput, reduction in machine downtime, and stronger alignment 

between maintenance and production departments. A recurring theme was the importance of 

organizational culture in sustaining TPM practices, particularly the role of top management in 

ensuring buy-in and alignment across functions. The literature also emphasizes that TPM’s emphasis 
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on ownership and empowerment at the shop-floor level directly correlates with better equipment 

care, faster problem detection, and higher accountability. The high citation count of TPM-focused 

articles underlines their influence and the ongoing relevance of TPM as an integrated, people-

centered approach to maintenance optimization in both traditional and digitally-augmented 

environments. 

Digitally-enhanced maintenance systems emerged as a transformative trend across multiple sectors, 

particularly where real-time data integration and automation are achievable. Eighteen articles 

within the review discussed advanced digital maintenance platforms, including cloud-based 

Computerized Maintenance Management Systems (CMMS), digital twins, and machine learning-

enabled monitoring tools. These articles amassed a total of 3,201 citations, indicating robust scholarly 

attention. The studies consistently revealed that digital systems improve maintenance scheduling 

accuracy, reduce reliance on manual data entry, and streamline inventory management for spare 

parts. More importantly, they allow for real-time fault detection and remote diagnostics, significantly 

reducing response time in the event of system irregularities. Integration of CMMS with Enterprise 

Resource Planning (ERP) systems was a recurring best practice that allowed seamless alignment 

between production needs and maintenance resource allocation. The review also noted the 

increasing use of mobile maintenance apps and dashboard analytics, which empowered 

technicians with on-the-go access to asset data and task tracking. These capabilities directly 

enhanced technician productivity, response accuracy, and inter-departmental coordination. In 

industries such as food processing, where hygiene and compliance are tightly regulated, the 

deployment of such digital tools was particularly beneficial. The widespread use and high citation 

frequency of these articles signal a clear movement toward data-driven and connected 

maintenance ecosystems. 

The findings also show a critical impact of Artificial Intelligence (AI) and Machine Learning (ML) on 

modern maintenance paradigms, especially in enabling predictive diagnostics and autonomous 

maintenance decision-making. Of the total reviewed studies, 12 articles centered on AI/ML 

applications in maintenance optimization, accumulating 2,430 citations in total. These studies 

outlined various algorithmic models—including supervised learning, deep learning, and anomaly 

detection algorithms—used to analyze sensor data and predict failure events with high precision. 

The review found that industries adopting AI-based models saw considerable improvements in 

decision accuracy, early fault detection, and asset utilization. These systems were notably more 

responsive to operational variabilities, outperforming rule-based systems in diverse production 

environments. In sectors like automotive and aerospace, AI-driven diagnostics provided real-time 

insights that enabled quick interventions and minimized downtime. Additionally, AI tools were often 

integrated into digital twins to simulate maintenance scenarios and assess system behavior before 

actual interventions. Despite infrastructure and data requirements, the scalability of AI solutions was 

evident across case studies involving both large enterprises and technologically advanced SMEs. 

The emphasis across these highly cited articles demonstrates that AI is not just an emerging tool but 

a central enabler of smart maintenance, capable of aligning predictive intelligence with 

organizational goals. 

A comparative analysis of traditional versus digitally-enhanced maintenance strategies provided 

compelling evidence in favor of the latter, particularly in terms of cost-efficiency, scheduling 

precision, and asset longevity. Sixteen studies focused on comparative frameworks, collectively 

receiving 2,208 citations. These articles systematically contrasted the outcomes of time-based and 

corrective maintenance with those of AI-enabled predictive models and condition-based 

approaches. Findings suggest that digitally-enhanced strategies consistently outperform traditional 

methods across key metrics such as maintenance costs, failure rates, and resource utilization. For 

example, organizations using AI-integrated CMMS platforms reported reductions in unplanned 

downtime and improved compliance with preventive schedules. Furthermore, the review showed 

that digital systems allowed for better traceability of maintenance activities, audit readiness, and 

real-time visibility into performance indicators. A particularly noteworthy outcome was that 

organizations transitioning from manual to digital systems experienced a measurable reduction in 

spare parts consumption and labor redundancy. The comparative insights across these articles 

confirmed the limitations of rigid, periodic maintenance plans in dynamic environments, reinforcing 

the need for flexible, data-driven alternatives. The volume of citations these articles attracted 
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demonstrates the industry-wide relevance of transitioning to smarter, digitally-integrated 

maintenance models. 

The review also emphasized the increasing relevance of cyber-physical systems (CPS) and Industrial 

Internet of Things (IIoT) infrastructures in real-time maintenance monitoring and automation. Among 

the reviewed literature, 14 studies focused on CPS and IIoT applications, garnering a total of 2,598 

citations. These studies demonstrated that CPS enable seamless interaction between machines, 

sensors, and control systems, allowing organizations to perform real-time condition monitoring, 

dynamic failure prediction, and adaptive maintenance scheduling. In advanced manufacturing 

environments, CPS has enabled maintenance teams to remotely monitor equipment health and 

intervene before major failures occur, significantly reducing Mean Time to Repair (MTTR). Moreover, 

CPS provided the structural backbone for digital twins, enabling the simulation of operational 

scenarios and maintenance workflows. The inclusion of edge computing and embedded analytics 

in some case studies further enabled localized decision-making, reducing latency and increasing 

responsiveness. These studies also reported improved coordination between production and 

maintenance departments due to the transparency provided by CPS dashboards. The magnitude 

of citations connected to these works indicates that CPS is becoming foundational in next-

generation maintenance frameworks, supporting not just efficiency but also resilience and 

scalability. 

Several studies highlighted maintenance optimization within sector-specific contexts such as 

automotive, aerospace, and food processing industries. Nine key articles examined how 

maintenance strategies are tailored based on sectoral requirements, together receiving 1,796 

citations. In the automotive industry, predictive maintenance and lean-TMP hybrids were dominant, 

allowing real-time fault tracking in robotic assembly lines and automated inspection systems. 

Aerospace applications were particularly focused on safety-critical maintenance, emphasizing 

digital twins and reliability-centered maintenance for jet engines and avionics. Food processing, on 

the other hand, prioritized hygienic design and regulatory compliance, with studies emphasizing IoT-

based monitoring of temperature, contamination, and equipment sterilization cycles. Across all three 

sectors, digital tools such as CMMS and AI-enhanced dashboards were shown to streamline 

maintenance planning, ensure regulatory adherence, and support traceability. These studies 

showed that while the tools used may overlap across sectors, their application and configuration are 

highly context-dependent. The collective evidence shows that sectoral customization of 

maintenance strategies is not only viable but essential, a fact reflected in the significant scholarly 

engagement with these case-specific applications. Finally, the review uncovered several research 

gaps and challenges, particularly regarding maintenance strategy adoption in small and medium 

enterprises (SMEs) and in developing countries. Eight studies explored these themes and were cited 

a total of 1,399 times. These articles reported that SMEs face barriers such as limited financial 

resources, low digital maturity, and lack of skilled personnel, all of which inhibit the adoption of smart 

maintenance technologies. Furthermore, infrastructure challenges—such as unreliable internet 

access and limited sensor interoperability—make it difficult for smaller firms to implement real-time 

monitoring systems. Despite these challenges, some case studies showed that when properly 

supported by governmental programs or public-private partnerships, SMEs were able to achieve 

significant maintenance performance improvements through modular digital tools and open-source 

CMMS platforms. A key insight was the lack of longitudinal data on how digital maintenance tools 

perform over extended periods in resource-constrained environments. The relatively lower number 

of citations in this category suggests that more research is needed to develop scalable, affordable, 

and context-sensitive maintenance solutions for these underserved sectors. These findings reinforce 

the need for inclusive innovation strategies in maintenance research and practice. 

DISCUSSION 

The findings of this systematic review affirm the growing dominance of predictive maintenance as a 

transformative approach within industrial maintenance strategies. With 2,913 citations across 20 

reviewed articles, the current literature surpasses earlier reviews, which documented 2,400 citations 

in similar contexts. This suggests not only a surge in scholarly interest but also an evolution in the 

practical implementation of predictive models. Compared to earlier studies that focused on 

threshold-based triggers and static condition monitoring (Roy et al., 2020), recent advancements 

demonstrate a shift toward machine learning-enhanced predictive analytics and real-time anomaly 

detection. The reviewed articles showcase that predictive maintenance is now deeply integrated 
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into cyber-physical systems and cloud platforms, enabling context-aware and automated decision-

making. While previous research emphasized cost benefits and downtime reduction, current studies 

provide evidence of predictive maintenance contributing to operational resilience and lean 

manufacturing objectives. Notably, predictive maintenance in the current literature is not confined 

to large corporations; scalable applications are increasingly emerging for SMEs, a gap previously 

underexplored. This divergence marks a key progression in maintenance engineering, as it highlights 

how democratization of technology and digital infrastructure has made predictive strategies more 

accessible. However, discrepancies remain in standardizing data inputs and algorithm performance, 

which were also noted in earlier reviews. These limitations underscore the ongoing need for 

benchmark datasets and transparent validation frameworks to ensure broader applicability. 

The reviewed literature strongly supports the strategic integration of Total Productive Maintenance 

(TPM) and lean maintenance principles with digital technologies. The current set of 15 studies, cited 

3,447 times, significantly exceeds earlier studies with 2,100 citations, indicating a renewed scholarly 

and industrial emphasis on blending traditional frameworks with modern innovations. While early 

works on TPM focused largely on manual operator involvement, Kaizen, and equipment-centric 

practices (Jiang et al., 2021), the current findings show an evolutionary leap toward digital 

augmentation of these practices. Studies now explore how autonomous maintenance tasks are 

tracked using mobile CMMS tools, and how operator-driven insights are integrated into digital 

dashboards for real-time feedback loops. Compared to earlier frameworks where TPM was treated 

as a standalone philosophy, modern literature demonstrates its adaptability when aligned with 

Industry 4.0 technologies such as AI-based fault detection and IoT-enabled diagnostics. The high 

citation count suggests not only the theoretical importance of TPM but also its relevance in 

addressing real-world issues of human–machine collaboration. This evolution fills a critical conceptual 

gap highlighted in earlier studies, which called for a unifying framework that merges human-

centered practices with digital intelligence. Nevertheless, some friction points persist, particularly 

around workforce resistance to automation and the fading emphasis on operator skill development 

in fully digital plants. The literature continues to call for a balanced integration strategy that preserves 

the empowerment ethos of TPM while harnessing the analytical power of digital systems. 

Artificial Intelligence (AI) and Machine Learning (ML) are central themes in current maintenance 

optimization literature, though findings suggest a slight decrease in overall citation volume 

compared to earlier reviews. The present analysis includes 12 studies with 2,430 citations, while 

previous reviews reported approximately 3,200 citations. This shift may reflect a maturing of the AI 

field, where initial enthusiasm has given way to more targeted and rigorous evaluations of algorithm 

performance and deployment feasibility. Earlier studies often emphasized the potential of AI models, 

particularly neural networks and support vector machines, to outperform traditional statistical 

methods in failure prediction (Zeb et al., 2022). Current literature builds on this foundation but focuses 

more on deep learning architectures such as LSTM and CNNs, and their integration into edge 

computing and digital twins. Furthermore, a strong emphasis is placed on the practical challenges 

of AI deployment—such as data imbalance, model overfitting, and lack of interpretability—areas 

previously underrepresented (Paniagua & Delsing, 2021). The findings reveal that while AI can indeed 

enhance predictive accuracy, its true value lies in its integration with existing maintenance platforms, 

such as CMMS and ERP, allowing maintenance decisions to be executed in real time. Compared to 

past studies that were mostly theoretical or simulation-based, the current body of work includes more 

field implementations and real-world case studies, adding empirical strength (Malakuti et al., 2021). 

However, concerns around AI trustworthiness, ethical use of maintenance data, and workforce 

preparedness remain persistent barriers, echoing earlier findings that technology alone cannot drive 

transformation without cultural and institutional readiness. 

The role of digital tools such as Computerized Maintenance Management Systems (CMMS) and 

Enterprise Resource Planning (ERP) platforms has gained significant traction in recent years. The 

current findings, with 18 articles cited 3,201 times, represent a substantial increase from the 1,800 

citations recorded in earlier reviews. This growth in attention reflects a broader acceptance of digital 

integration as foundational to smart maintenance strategies. Previous literature often emphasized 

the administrative benefits of CMMS, such as task scheduling and spare parts tracking. However, 

current studies demonstrate that CMMS tools have evolved into dynamic platforms capable of 

interfacing with IoT sensors, mobile apps, and AI-driven alert systems. ERP integration, in particular, 

allows maintenance data to inform broader production, finance, and supply chain decisions, 

https://ajisresearch.com/index.php/ajis/about
https://doi.org/10.63125/xwvaq502


American Journal of Interdisciplinary Studies 

Volume 06, Issue 01 (2025) 

Page No:  144 – 173 

eISSN: 3067-5146  

DOI: 10.63125/xwvaq502 

166 

 

making maintenance a strategic rather than merely supportive function. Compared to earlier studies 

that treated maintenance data in isolation, modern literature showcases interconnected systems 

where maintenance KPIs contribute to holistic operational dashboards (Michael et al., 2022). 

Additionally, several reviewed articles highlight the impact of cloud-enabled CMMS in democratizing 

access to real-time asset data across geographically dispersed teams. The comparison reveals that 

earlier works primarily viewed digital maintenance as a technical tool, whereas current perspectives 

consider it an enabler of cross-functional collaboration, organizational agility, and strategic foresight. 

Cyber-Physical Systems (CPS) are receiving increasing attention in maintenance research, with the 

reviewed articles showing a significant rise in citations (2,598 in the current review vs. 1,500 previously). 

Earlier CPS studies focused heavily on their structural components—sensors, actuators, and 

communication protocols—but lacked extensive real-world validation (Negri et al., 2017). The current 

literature extends these foundations by providing rich empirical evidence on how CPS architectures 

enable predictive diagnostics, edge-based computing, and real-time intervention capabilities. 

Several case studies demonstrate that CPS frameworks facilitate machine-to-machine 

communication, automated fault classification, and even prescriptive maintenance decision-

making. This marks a departure from earlier conceptions of CPS as data aggregation platforms to 

their current role as intelligent decision-support systems embedded in manufacturing ecosystems. 

Furthermore, the use of CPS to operationalize digital twins represents a novel convergence of 

simulation and real-time analytics, a synergy largely unexplored in earlier works (Dobaj et al., 2022). 

The literature also reveals a growing recognition of cybersecurity and data governance challenges, 

which were overlooked in initial CPS explorations. Compared to earlier narratives that emphasized 

CPS potential, current findings validate their application through quantifiable improvements in Mean 

Time to Repair (MTTR), uptime percentages, and predictive compliance. This maturation of CPS 

literature shows how conceptual designs have evolved into tangible, high-performing maintenance 

infrastructures (Dafflon et al., 2021; Shlonsky & Wagner, 2005). 

Sectoral analysis of maintenance optimization reveals nuanced insights into how industry-specific 

conditions shape strategy adoption and effectiveness. The current findings show that 9 articles on 

automotive, aerospace, and food processing sectors attracted 1,796 citations, up from 1,400 in 

earlier literature. While earlier studies offered fragmented insights—typically isolated case studies 

without cross-sector comparison—the current body of work presents a more integrated 

understanding. For instance, in the automotive sector, predictive maintenance is closely tied to lean 

production systems, with real-time dashboards driving takt-time adherence and defect minimization. 

Aerospace, by contrast, has embraced digital twins and RCM frameworks with a focus on safety-

critical systems and zero-defect reliability. The food processing industry has shifted toward IoT-

enabled sanitation and contamination prevention mechanisms, showcasing maintenance as a 

compliance tool. These nuanced applications illustrate a move away from one-size-fits-all 

maintenance models toward adaptive strategies that align with sector-specific regulations, risks, and 

production processes. Moreover, several studies emphasized how digital transformation has allowed 

companies to reframe maintenance as a source of strategic advantage rather than a cost center. 

Compared to prior studies, which mostly treated maintenance as a support function, current 

research positions it as a critical enabler of competitive differentiation. However, the review also 

notes that while best practices are emerging within individual sectors, cross-industry benchmarking 

remains limited, suggesting a need for more comparative performance frameworks. 

A recurring theme across both past and current literature is the relative scarcity of research focused 

on small and medium enterprises (SMEs) and emerging economies. The current review includes 8 

relevant articles with 1,399 citations, compared to 900 in earlier reviews, suggesting modest growth 

in this area (Negri et al., 2017). While prior studies primarily documented barriers such as limited 

budgets, lack of digital literacy, and poor infrastructure, the present findings go further by examining 

how these constraints affect long-term maintenance outcomes. Some recent studies report 

successful adoption of open-source CMMS, modular predictive tools, and government-sponsored 

digitalization initiatives tailored to SME needs (Dobaj et al., 2022). This represents a meaningful 

progression from earlier reviews, which largely portrayed SMEs as passive recipients of innovation. 

However, the limited number of high-quality empirical studies from South Asia, Sub-Saharan Africa, 

and Latin America indicates a geographic and contextual bias in the literature (Dafflon et al., 2021). 

Furthermore, few longitudinal studies exist to evaluate the sustainability of maintenance innovations 

over time in these settings. Compared to large-scale industrial environments, SMEs often struggle with 
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integrating AI tools due to lack of labeled data and insufficient technical expertise. These findings 

highlight an enduring research gap: the need for scalable, cost-effective, and context-sensitive 

maintenance solutions that can accommodate diverse organizational and economic landscapes. 

The persistence of these issues across both past and current studies underscores their criticality and 

the need for targeted intervention. 

CONCLUSION 

The findings of this systematic review underscore a clear evolution in maintenance optimization 

practices, highlighting a paradigm shift from traditional, reactive, and time-based maintenance 

models toward intelligent, digitally-enhanced, and predictive frameworks. Through the synthesis of 

112 peer-reviewed articles with a cumulative citation count exceeding 20,000, the review 

demonstrates that maintenance has become a strategic function at the core of industrial 

performance, especially within the automotive, aerospace, and food processing sectors. Advanced 

technologies such as Artificial Intelligence, Machine Learning, Cyber-Physical Systems, and cloud-

integrated CMMS platforms are redefining how organizations predict, monitor, and respond to 

equipment failure. Additionally, the integration of lean methodologies like Total Productive 

Maintenance with real-time digital tools exemplifies the synergistic benefits of combining human-

centric practices with smart technologies. However, the review also reveals persistent research gaps, 

particularly in standardizing performance metrics, addressing contextual limitations in SMEs and 

developing regions, and ensuring ethical and secure implementation of AI-driven systems. While 

existing studies provide robust evidence of the operational, economic, and safety-related benefits 

of smart maintenance, there remains a critical need for more inclusive, scalable, and empirically 

validated models that can be adapted across different industries and organizational sizes. Overall, 

the review reinforces the significance of maintenance as not just a technical necessity, but as a key 

enabler of industrial sustainability, resilience, and competitiveness in the era of Industry 4.0. 
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