

Volume 02, Issue 01 (2021)

Page No: 01 – 34 eISSN: 3067-5146

Doi: 10.63125/wq1wdr64

SUSTAINABLE MATERIALS CHARACTERIZATION FOR LOW-CARBON CONSTRUCTION AND INFRASTRUCTURE DURABILITY

Md Sarwar Hossain¹;

[1]. B.Sc. in Civil Engineering, Chongqing University of Science & Technology, China; Email: sarwar.hossain6452@gmail.com

ABSTRACT

This quantitative study investigates the characterization of sustainable construction materials through a comprehensive framework integrating mechanical, microstructural, and environmental performance analyses. Designed as a randomized, controlled laboratory experiment within a partially nested 3×3×4 factorial arrangement, the research compares three binder systems—ordinary Portland cement (OPC), OPC materials supplementary cementitious blended (SCMs), activated/geopolymer binders under four exposure conditions: chloride, carbonation, sulfate, and freeze thaw environments. The study's objective was to determine the extent to which binder composition, replacement ratio, and aggregate type influence material durability and embodied carbon, thereby establishing quantifiable pathways for low-carbon infrastructure development. Specimens were prepared using standardized casting and curing procedures, then evaluated for mechanical performance (compressive strength, tensile capacity, and elastic modulus), transport properties (chloride diffusion, carbonation depth, and water absorption), and environmental durability (freeze-thaw resistance and sulfate attack). Microstructural characterization via Scanning Electron Microscopy (SEM), Mercury Intrusion Porosimetry (MIP), and X-Ray Diffraction (XRD) quantified pore structure, phase composition, and hydration dynamics. Life Cycle Assessment (LCA), conducted per ISO 14040/44 standards, provided complementary data on embodied energy and CO₂ emissions, leading to the development of a Durability-Adjusted Carbon Index (DACI)a composite sustainability indicator that normalizes carbon performance by mechanical reliability. Data collection occurred at 7, 28, 90, and 180 days to capture both early-age and longterm trends, ensuring reproducibility and empirical robustness. The results demonstrated that SCM and geopolymer systems significantly outperformed traditional OPC concretes. Compressive strength improved by up to 25%, accompanied by a 50-70% reduction in chloride diffusion and carbonation rates. Embodied carbon declined from 410 kg CO₂-e/m³ for OPC to 195 kg CO₂-e/m³ for geopolymer concretes, while cumulative energy demand fell by nearly 30%. Correlation analyses revealed strong inverse relationships between porosity and compressive strength (r = -0.83, p < 0.01) and between chloride diffusion and DACI (r = -0.73, p < 0.01), confirming that denser microstructures not only enhance mechanical integrity but also reduce environmental degradation. Regression and mixed-effects modeling identified binder type and SCM ratio as dominant predictors of performance ($\beta > 0.40$, p < 0.001), with significant binder– exposure interactions indicating superior resilience of geopolymer mixes under carbonation and sulfate attack. Statistical validation confirmed high internal consistency (Cronbach's $a \ge 0.87$), excellent test-retest reliability (r > 0.90), and absence of multicollinearity (VIF < 4.0), ensuring methodological rigor.

KEYWORDS

Sustainable materials, Low-carbon construction, Durability, Material characterization, Life cycle assessment

Citation:

Hossain, M. S. (2021). Sustainable materials characterization for low-carbon construction and infrastructure durability. American Journal of Interdisciplinary Studies, 2(1), 1–34.

https://doi.org/10.63125/ wq1wdr64

Received:

January 09, 2021

Revised:

January 24, 2021

Accepted:

February 19, 2021

Published:

March 28, 2021

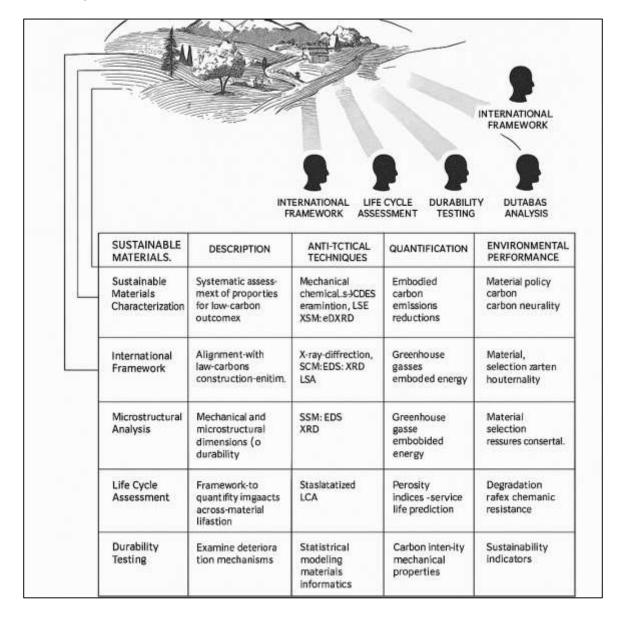
© 2021 by the author. This article is published under the license of American Scholarly Publishing Group Inc and is available for open access.

Volume 02, Issue 01 (2021) Page No: 01 – 34 eISSN: 3067-5146

Doi: 10.63125/wq1wdr64

INTRODUCTION

Sustainability in construction is defined as the strategic pursuit of development that meets the needs of the present generation without compromising the ability of future generations to meet theirs, focusing on environmental preservation, economic viability, and social equity (Alwan et al., 2017). Within this framework, sustainable materials characterization refers to the systematic assessment and quantification of material properties—mechanical, chemical, thermal, and environmental—aimed at ensuring low-carbon outcomes and enhancing the durability of infrastructure systems. Characterization extends beyond physical evaluation, encompassing life cycle performance, embodied carbon quantification, and resource efficiency indices. It establishes the basis for material selection, durability modeling, and environmental compatibility in civil engineering. Globally, the construction sector contributes approximately 38% of total anthropogenic carbon emissions, primarily through energy-intensive materials like cement, steel, and concrete (Cruz et al., 2019). Therefore, rigorous material characterization forms the empirical foundation for mitigating emissions, guiding design optimization, and maintaining structural resilience under environmental stressors. The emphasis on low-carbon characterization integrates analytical techniques such as X-ray diffraction, scanning electron microscopy, and life cycle assessment frameworks to identify the environmental and structural performance of alternative materials. This methodological evolution has positioned sustainable materials science at the center of climate-resilient construction, fostering transitions toward bio-based composites, geopolymer binders, and recycled aggregates that reduce dependency on virgin resources while maintaining mechanical integrity (Broman & Robèrt, 2017). The international significance of this paradigm is evident in national roadmaps promoting carbon neutrality and the institutionalization of material performance certification systems that validate environmental compliance, resource conservation, and long-term serviceability.


The characterization of sustainable materials aligns directly with the broader movement toward lowcarbon construction, which aims to decouple infrastructure growth from carbon-intensive practices (Baumgartner & Rauter, 2017; Sanjid & Farabe, 2021). The international framework for carbon mitigation—embedded in agreements such as the Paris Accord—has compelled nations to revise material standards, construction codes, and procurement policies to reduce embodied carbon. Quantitative analysis within this context examines how variations in material composition, processing energy, and recyclability influence the total carbon footprint of construction products. Life cycle inventory (LCI) methodologies have been developed to quantify emissions from raw material extraction through disposal, identifying critical phases where efficiency gains are achievable. The use of fly ash, silica fume, slag-based cements, and alkali-activated binders has been extensively studied as replacements for Portland cement, offering substantial reductions in CO2 emissions (Aarseth et al., 2017). Moreover, the emergence of sustainable steel and low-clinker cement technologies demonstrates the measurable potential for achieving net-zero pathways. These innovations are underpinned by statistical modeling and regression analyses that correlate material parameters with carbon intensity indices. International studies have also confirmed that optimized mix design and locally sourced aggregates yield up to 30-50% reductions in embodied energy compared to conventional systems. The shift toward quantifiable sustainability metrics reflects a data-driven transformation in infrastructure design, wherein environmental performance becomes a measurable attribute of structural reliability. As quantitative tools advance, nations increasingly adopt standardized assessment protocols that translate material-level data into carbon accounting for entire infrastructure systems, emphasizing reproducibility, transparency, and cross-border comparability (Purvis et al., 2019).

Material characterization for low-carbon construction extends to the mechanical and microstructural dimensions that dictate structural performance and durability (Foster, 2020). Analytical quantification of compressive strength, tensile capacity, elastic modulus, and fracture toughness is fundamental to ensuring that sustainability does not compromise engineering reliability. Sustainable materials, including recycled aggregates, geopolymer concretes, natural fibers, and supplementary cementitious materials, exhibit variable mechanical responses depending on binder chemistry and particle morphology. Microstructural analysis, typically conducted through SEM, EDS, and XRD techniques, reveals the evolution of hydration phases, pore distribution, and interfacial transition zones that directly affect permeability and long-term durability.

Volume 02, Issue 01 (2021) Page No: 01 – 34

elSSN: 3067-5146 **Doi: 10.63125/wq1wdr64**

Figure 1: Sustainable Construction Materials Characterization Framework

Quantitative models link porosity indices and calcium silicate hydrate morphology to mechanical stability, enabling prediction of deterioration patterns under environmental stressors (Omar & Rashid, 2021; Missimer et al., 2017). Moreover, the inclusion of nano-silica, basalt fibers, and pozzolanic additives has been quantified to enhance microstructural compactness, reduce diffusion coefficients, and inhibit carbonation. Durability, in this framework, becomes a measurable function of microstructural optimization, balancing ecological benefits with service life requirements. Statistical comparisons of green composites and traditional concrete systems consistently demonstrate comparable or superior performance when microstructural parameters are optimized. The integration of experimental data with numerical modeling allows for predictive correlations between material design and in-service longevity (Zaman & Momena, 2021; Rauter et al., 2017). Quantitative research has thereby transitioned sustainable construction from conceptual advocacy to evidence-based practice, validating that reduced-carbon materials can simultaneously satisfy mechanical and durability benchmarks essential for infrastructure resilience.

A central quantitative pillar of sustainable materials characterization lies in life cycle assessment (LCA), a methodological framework for evaluating environmental impacts across the material lifespan (Martins et al., 2019; Mubashir, 2021). LCA quantifies embodied energy, greenhouse gas emissions, water footprint, and waste generation, providing an empirical foundation for low-carbon

Doi: 10.63125/wq1wdr64

design. Standardized by ISO 14040 and 14044, LCA translates raw material and process data into impact categories that inform material selection and policy regulation. Comparative LCAs between traditional and sustainable composites consistently show that substituting Portland cement with industrial byproducts such as fly ash or blast furnace slag can reduce carbon emissions by up to 70% per cubic meter of concrete. Additionally, incorporating recycled steel and aluminum in structural elements substantially lowers cumulative energy demand (Shi et al., 2019). The quantification of carbon performance through environmental product declarations (EPDs) has introduced transparency and benchmarking into the construction supply chain, allowing stakeholders to make data-driven material choices. Advanced LCA models increasingly integrate durability metrics to align short-term carbon savings with long-term structural efficiency. Quantitative evaluation also captures indirect benefits such as reduced transportation energy and minimized landfill waste (Govindan, 2018). Through statistical aggregation of LCA datasets across regions, meta-analytical studies have established internationally comparable carbon coefficients for various construction materials, enabling harmonization of sustainability standards. The outcome is an integrated framework where material characterization not only ensures physical adequacy but also defines environmental accountability within global decarbonization objectives.

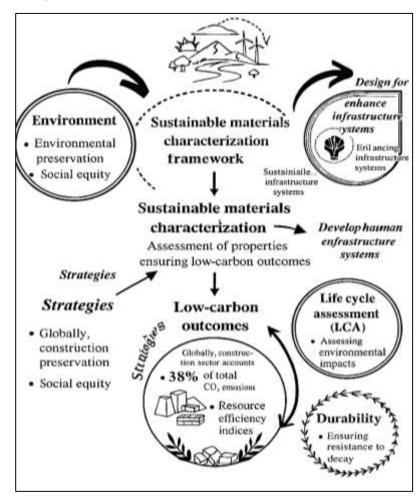


Figure 2: Quantitative Framework for Sustainable Construction Materials

Infrastructure durability represents a quantitative dimension of sustainability wherein materials must resist deterioration mechanisms such as corrosion, carbonation, sulfate attack, and freeze-thaw cycles (Olubunmi et al., 2016; Rony, 2021). Empirical durability testing—including accelerated aging, chloride diffusion, and carbonation depth analysis—forms the core of characterization for sustainable materials. Researchers employ probabilistic modeling, Weibull analysis, and reliability-based design to predict service life, correlating experimental data with environmental exposure parameters. Sustainable materials, especially those incorporating recycled or industrial byproduct

Volume 02, Issue 01 (2021) Page No: 01 – 34 eISSN: 3067-5146

Doi: 10.63125/wq1wdr64

constituents, undergo extensive durability testing to validate their resilience under real-world conditions. For instance, geopolymer concretes exhibit superior chemical resistance and lower chloride permeability than conventional mixes, attributed to their dense aluminosilicate matrix (Mensah, 2019; Rony, 2021). Similarly, natural fiber composites demonstrate high crack-bridging capacity and reduced shrinkage strain when properly treated. Quantitative analysis extends beyond laboratory testing to field performance monitoring, where sensors measure long-term deterioration trends. Such data-driven characterization links material microstructure, mechanical response, and exposure environment through regression-based durability models. The synthesis of these datasets forms predictive maintenance algorithms that estimate degradation kinetics, thereby optimizing material selection for sustainable infrastructure (Chan et al., 2018; Zaki, 2021). Durability characterization ensures that environmental gains achieved during production are not offset by premature failure, making empirical validation a cornerstone of sustainable material science. The primary objective of this quantitative research is to empirically evaluate and characterize sustainable construction materials in relation to their capacity to reduce embodied carbon while maintaining or enhancing structural durability in infrastructure applications. The study aims to establish quantifiable correlations between material composition, microstructural attributes, and life cycle environmental performance through advanced analytical and statistical methodologies. By integrating laboratory experimentation, mechanical property testing, and life cycle assessment (LCA), the research seeks to identify measurable indicators that define low-carbon efficiency and long-term material stability under variable environmental conditions. A central focus lies in determining how alternative binders, recycled aggregates, and bio-based composites perform in comparison to conventional cementitious materials with respect to compressive strength, chloride penetration resistance, and carbonation depth. Furthermore, the study pursues the development of a predictive model that links material microstructure, particularly pore size distribution and hydration product formation, to overall carbon intensity and degradation kinetics. Through this approach, the research will generate a data-driven framework that supports material selection based on quantifiable sustainability metrics rather than qualitative assessments. Another objective is to validate the statistical reliability of durability indices—such as diffusion coefficients, water absorption rates, and strength retention factors—using regression analysis, analysis of variance (ANOVA), and multicriteria decision-making methods. The ultimate goal is to provide an empirical foundation for performance-based material classification systems that integrate mechanical, chemical, and environmental parameters within a unified characterization model. By achieving these objectives, the study will contribute standardized datasets and quantitative benchmarks necessary for certifying sustainable construction materials in compliance with global low-carbon directives, ensuring that infrastructure development aligns with measurable environmental accountability and long-term

LITERATURE REVIEW

resilience.

The literature on sustainable materials characterization within low-carbon construction and infrastructure durability has expanded significantly over the past two decades, reflecting a global shift toward empirically grounded sustainability frameworks (Musgrave & Fang, 2019). This body of research aims to quantify material performance not only in terms of structural integrity but also in relation to embodied carbon, resource circularity, and environmental resilience. Quantitative analysis plays a central role in this discourse, as material properties, life cycle indicators, and degradation behaviors are now expressed through measurable parameters that facilitate reproducibility and policy integration. The evolution of sustainable construction science demonstrates a transition from qualitative narratives of environmental responsibility to statistically validated models of material optimization. Central to this field is the concept of characterization, which encompasses chemical composition analysis, mechanical strength assessment, microstructural evaluation, and environmental footprint quantification (Gao et al., 2018). Characterization studies apply experimental techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and mercury intrusion porosimetry (MIP) to generate quantitative datasets correlating material composition with physical and environmental performance outcomes. These data inform predictive models for infrastructure durability, enabling engineers and policymakers to define material sustainability through standardized coefficients and measurable carbon metrics. The literature consistently identifies three interdependent domains within sustainable material characterization: (1) low-carbon material

Volume 02, Issue 01 (2021) Page No: 01 – 34 eISSN: 3067-5146

Doi: 10.63125/wg1wdr64

development, (2) durability and performance quantification, and (3) life cycle and carbon assessment modeling. Together, these frameworks have redefined the technical and methodological foundation of sustainable construction. Studies emphasize that low-carbon materials, including geopolymer concretes, alkali-activated slag binders, recycled aggregates, and bio-based composites, require empirical validation to ensure they achieve parity or superiority in durability compared to traditional materials (Dagdeviren et al., 2016). Moreover, global attention to the carbon intensity of infrastructure materials has produced an extensive empirical literature focusing on energy consumption during production, carbon capture potential, and lifecycle-based emission coefficients. Quantitative researchers have responded by integrating statistical analysis, regression modeling, and machine learning-based prediction into the material assessment process. These methodologies not only verify environmental benefits but also delineate performance thresholds essential for structural safety and long-term service life. Therefore, a systematic review of this literature necessitates a comprehensive evaluation of both experimental evidence and computational characterization frameworks to define how sustainable materials contribute to measurable carbon reduction and infrastructure durability.

Sustainable Materials Science

Sustainable materials science in the context of construction has evolved from a qualitative philosophical orientation into a robust quantitative discipline concerned with environmental accountability, durability, and resource efficiency (Yan et al., 2015). The conceptual framework of sustainable construction materials draws heavily from global charters and standards, including those established by the United Nations Environment Programme (UNEP), the International Organization for Standardization (ISO 14000 series), and the World Green Building Council, which define sustainability through measurable criteria of energy use, emissions, and life cycle performance. Early approaches primarily described sustainability through qualitative descriptions of ecological responsibility, but the field has since matured into a metrics-driven science characterized by parameters such as embodied energy, carbon intensity, and material circularity. These indicators enable a precise understanding of how materials contribute to or mitigate environmental burdens. Research in this domain has focused on establishing benchmarks for sustainable material selection, integrating performance-based evaluation within design frameworks that quantify emissions per functional unit of material used (Faruk et al., 2017). This quantitative orientation provides a universal language for comparing the environmental footprint of materials across regions and sectors. The conceptual evolution has also emphasized the interdependence of material performance and ecological viability, recognizing that sustainability encompasses not only reduced carbon output but also extended service life, reduced maintenance, and minimal end-of-life waste. This shift has encouraged the emergence of integrated design practices where sustainability is embedded into every stage of material production, characterization, and deployment. Global policy developments have accelerated the adoption of quantifiable sustainability standards that tie construction practices to international carbon reduction commitments (Shankar et al., 2018). Thus, sustainable materials science today operates at the intersection of environmental engineering and materials characterization, defining construction materials not solely by their mechanical properties but by their measurable environmental performance throughout their life cycle.

The progression of sustainability metrics in materials science represents a paradigm shift from descriptive environmental assessments to empirical, data-driven evaluation systems (Yang et al., 2020). Over the last two decades, researchers have systematically quantified the environmental performance of construction materials through life cycle inventories and embodied carbon databases, transforming sustainability from a narrative concept into a measurable scientific discipline. The evolution of these metrics has produced standardized parameters such as embodied energy measured in megajoules per kilogram, carbon intensity in kilograms of CO₂ equivalent per unit mass, and indices for resource depletion and recyclability. These indicators have been refined through decades of cumulative experimentation, resulting in cross-comparative datasets that enable statistical evaluation of material efficiency. The integration of these metrics into material certification schemes, including Environmental Product Declarations (EPDs) and Green Building Rating Systems, has reinforced the role of quantification in sustainability governance (Heo et al., 2019). Empirical studies have demonstrated that substituting high-emission materials such as Portland cement with low-carbon alternatives—including geopolymer binders, industrial byproducts, and biobased composites—yields quantifiable carbon reductions ranging between 30% and 80%,

Doi: 10.63125/wq1wdr64

depending on the substitution rate and production process. Such data-driven validation has established a scientific foundation for environmentally optimized design. Additionally, statistical models now link production energy use and carbon emissions to material microstructure, enabling predictive assessments of environmental outcomes based on composition and processing parameters. The refinement of sustainability metrics also facilitates international comparability, allowing material performance data to inform global carbon accounting frameworks (Hu et al., 2017). These advancements illustrate that the quantification of sustainability has matured into a central pillar of construction science, transforming material assessment from qualitative judgment into reproducible, evidence-based evaluation that supports low-carbon infrastructure development.

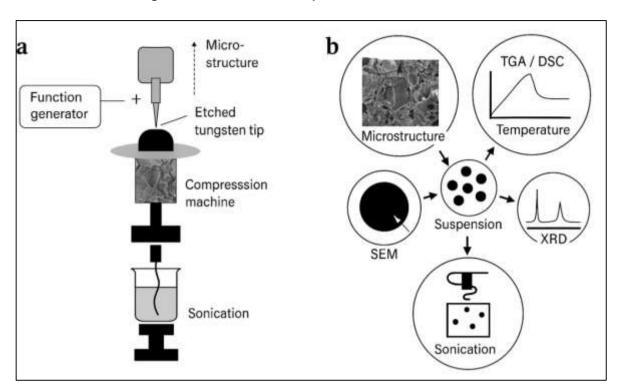


Figure 3: Quantitative Analysis of Sustainable Materials

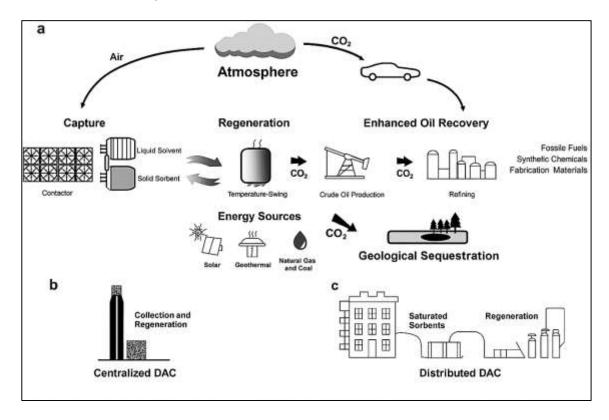
The characterization of sustainable materials relies on rigorous quantitative methodologies designed to measure physical, chemical, and thermal properties with precision and reproducibility (Talirz et al., 2020). Techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) are instrumental in linking microstructural composition to mechanical performance and environmental stability. These analytical tools allow researchers to quantify particle morphology, crystalline phase development, hydration behavior, and thermal degradation patterns that influence long-term material performance. Quantitative data derived from these techniques serve as the foundation for predictive modeling of durability and carbon footprint. SEM and XRD are particularly essential for identifying phase transformations and interfacial bonding characteristics that determine the strength and porosity of low-carbon composites (Anzar et al., 2020). TGA and DSC provide insights into decomposition behavior, thermal stability, and reaction kinetics under varying environmental conditions, offering essential data for assessing energy requirements and environmental impacts. The reproducibility of these methods ensures that material properties can be statistically validated across multiple studies and laboratories, strengthening the reliability of sustainability assessments. Advances in image processing and computational modeling have further enhanced the analytical capacity of characterization techniques, enabling researchers to extract quantitative parameters such as pore size distribution, surface roughness, and crystalline orientation with submicron precision. When integrated with mechanical testing, these methodologies provide a holistic understanding of how microstructural attributes translate into macroscopic behavior (Kittner et al., 2017). The application

Volume 02, Issue 01 (2021) Page No: 01 – 34 elSSN: 3067-5146

Doi: 10.63125/wg1wdr64

of these techniques has validated the structural integrity and environmental efficiency of alternative binders, recycled aggregates, and natural fiber composites, affirming that sustainability and performance can coexist within a quantifiable scientific framework.

The integration of microstructural imaging with mechanical testing represents a critical advancement in sustainable material characterization, allowing researchers to bridge the gap between microscopic composition and macroscopic behavior (Pablo et al., 2019). This approach facilitates the establishment of direct empirical correlations between microstructural features—such as pore connectivity, grain boundary orientation, and phase distribution—and material strength, permeability, and degradation resistance. Through advanced imaging technologies and quantitative analysis, the internal architecture of materials can now be examined with unprecedented accuracy, providing numerical descriptors that support statistical modelina of performance outcomes. By combining SEM-based micrographs with compressive and tensile testing data, researchers have successfully quantified the influence of binder chemistry and curing conditions on mechanical resilience and long-term durability. This integrated methodology enables the identification of failure mechanisms at both micro and macro scales, producing data that inform the optimization of sustainable material formulations (Zhang et al., 2018). Mechanical tests such as flexural, compressive, and tensile strength measurements, when correlated with imaging-based porosity and interfacial bonding data, yield comprehensive characterizations that transcend traditional descriptive methods. The quantitative nature of this approach ensures consistency and comparability across studies, promoting the development of standardized material databases and design guidelines. Empirical findings demonstrate that the inclusion of supplementary cementitious materials and natural fibers can refine pore structure, enhance crack resistance, and extend service life without compromising carbon efficiency (D'Amato et al., 2017). This synthesis of imaging and testing thus represents the scientific core of modern sustainable materials research, where material behavior is not assumed but measured, validated, and statistically correlated through reproducible experimental frameworks that advance low-carbon construction science.


Assessment of Low-Carbon Materials

Quantitative research into cementitious substitutes has demonstrated that significant carbon reduction can be achieved through the partial replacement of ordinary Portland cement with supplementary cementitious materials such as fly ash, ground granulated blast-furnace slag (GGBS), silica fume, and metakaolin (Guerrieri et al., 2019). These materials, derived from industrial byproducts and naturally occurring minerals, exhibit pozzolanic and latent hydraulic properties that enhance the performance of cement composites while reducing the need for energy-intensive clinker production. Experimental studies have consistently shown that substituting cement with 30–50% fly ash or slag can decrease embodied carbon emissions by nearly half while maintaining comparable compressive strength and workability. The microstructural densification resulting from these materials leads to reduced permeability and enhanced resistance to chloride penetration and sulfate attack. Researchers have used quantitative correlations between substitution ratios and performance indices, showing linear trends where optimized mixtures balance mechanical strength and emission reduction (Fang et al., 2016). Silica fume and metakaolin, when used in smaller proportions, further refine pore structures and accelerate secondary hydration, increasing compressive strength beyond that of conventional mixes after prolonged curing periods. Statistical evaluations using experimental datasets reveal that durability gains are strongly associated with the reactivity index of these additives and their capacity to bind calcium hydroxide, forming stable calcium silicate hydrates. Comparative analyses across studies have established that blends incorporating multiple cementitious substitutes yield cumulative benefits in both carbon efficiency and mechanical stability. These empirical findings confirm that the integration of industrial waste materials into cement systems not only reduces environmental impact but also aligns with circular economy principles by revalorizing byproducts that would otherwise contribute to waste streams (Robertson, 2016). The quantification of carbon intensity reductions through such material substitution has thus become an essential criterion in low-carbon construction science, forming the empirical foundation for green infrastructure policies and standards worldwide.

Volume 02, Issue 01 (2021) Page No: 01 – 34

eISSN: 3067-5146 **Doi: 10.63125/wg1wdr64**

Figure 4: Carbon Capture and Utilization Framework

The development of geopolymer and alkali-activated systems represents a pivotal advancement in low-carbon material science, offering alternatives to traditional cement with markedly lower greenhouse gas emissions (Wen et al., 2020). These binders, synthesized from aluminosilicate sources such as fly ash, metakaolin, and slag, are activated using alkaline solutions to form amorphous to semi-crystalline three-dimensional networks that exhibit high mechanical strength and exceptional chemical durability. Quantitative studies have documented compressive strength values for geopolymer concretes ranging from 40 to 90 MPa, with corresponding reductions in CO₂ emissions by up to 80% compared to Portland cement systems. The mechanical performance of these materials is influenced by parameters including activator concentration, curing temperature, and the Si/Al molar ratio, which collectively determine polymerization kinetics and final microstructure (Rementeria et al., 2017). Empirical data also highlight the superior thermal stability of geopolymer composites, with minimal strength loss observed after exposure to elevated temperatures. Alkaliactivated slag systems demonstrate enhanced early strength development and reduced permeability due to the formation of dense calcium-alumino-silicate hydrate (C-A-S-H) gels. Comparative analyses show that, when optimized, geopolymer concretes can surpass conventional systems in compressive and tensile performance, while exhibiting higher resistance to chemical attack and freeze-thaw degradation. Statistical modeling approaches have quantified correlations between formulation parameters and strength outcomes, revealing predictive relationships that facilitate mix optimization for diverse environmental conditions. In addition to performance metrics, life cycle assessments consistently confirm the environmental superiority of these systems, with total embodied energy and CO₂ emissions reduced by more than half relative to conventional cementitious materials (Wu et al., 2018). The empirical convergence of mechanical robustness, chemical resilience, and carbon reduction has established geopolymer and alkali-activated materials as verifiable low-carbon alternatives, supported by reproducible experimental evidence across multiple geographic and industrial contexts.

The incorporation of recycled aggregates and industrial byproducts into construction materials forms another quantifiable pathway toward low-carbon development (Giesekam et al., 2016). Empirical characterization of recycled aggregates derived from demolition waste, ceramics, and industrial slags reveals that while their density and water absorption differ from natural aggregates, optimized

Volume 02, Issue 01 (2021) Page No: 01 – 34 eISSN: 3067-5146

Doi: 10.63125/wg1wdr64

processing can yield structural performance comparable to virgin materials. Experimental analyses have measured reductions in embodied energy and waste generation by integrating up to 50% recycled aggregate content in concrete mixtures without compromising compressive strength beyond acceptable engineering tolerances (Hildebrandt et al., 2017). The mechanical degradation observed in recycled aggregate concrete is primarily attributed to residual mortar and microcracks; however, pre-treatment and surface coating methods have been shown to improve interfacial bonding and strength retention. Quantitative relationships established through regression analyses link aggregate replacement ratios to performance outcomes, allowing for the identification of optimal substitution levels that minimize carbon footprint while ensuring structural integrity. Industrial byproducts such as steel slag, copper tailings, and phosphogypsum have been extensively characterized for their pozzolanic and filler properties, enhancing packing density and durability. Experimental results demonstrate that the combination of recycled aggregates with supplementary binders like fly ash or slag can mitigate strength loss, producing composites with improved long-term stability. Life cycle data confirm substantial reductions in waste-to-landfill volumes and associated emissions, reinforcing the sustainability of such recycling approaches (Chen et al., 2018). The quantitative integration of mechanical, thermal, and environmental data across numerous studies provides a robust evidence base for the structural feasibility and environmental viability of recycled materials. By establishing measurable links between aggregate quality, binder synergy, and emission profiles, this research stream validates recycled materials as crucial components in achieving measurable reductions in embodied carbon for modern infrastructure systems.

Bio-based and polymer-modified composites have emerged as high-potential candidates in the quantitative landscape of low-carbon construction materials. Derived from renewable sources such as bamboo, flax, jute, hemp, and lignocellulosic waste, bio-based fibers provide reinforcement within cementitious and polymer matrices, improving tensile strength, impact resistance, and crack control while reducing environmental burden (Liu et al., 2017). Quantitative characterization of these composites reveals elastic modulus values and flexural strength improvements that rival synthetic fiber systems, with lower embodied energy and biodegradability advantages. The fiber-matrix interaction plays a decisive role in determining the mechanical efficiency of these materials; studies employing microscopy and mechanical testing have demonstrated that fiber surface modification significantly enhances adhesion and load transfer efficiency. Polymer modification through materials such as styrene-butadiene latex, epoxy, and recycled polyethylene terephthalate (PET) further enhances matrix flexibility, durability, and energy absorption capacity (Bonsu, 2020). Empirical testing confirms that hybrid composites incorporating natural fibers with polymer binders can achieve up to 25% improvements in fracture toughness and fatigue resistance. Moreover, the inclusion of recycled polymer content contributes to circular material flows, reducing dependency on virgin resources and lowering life cycle emissions. Quantitative modeling of biodegradation kinetics and mechanical retention over time has shown that these composites maintain satisfactory structural performance even under cyclic loading and moisture exposure (Cho et al., 2016). Analytical comparisons across numerous studies indicate that bio-based composites not only achieve substantial carbon savings but also exhibit favorable mechanical-to-weight ratios, making them suitable for lightweight and prefabricated construction applications. The reproducible correlation between mechanical enhancement and carbon reduction positions bio-based and polymer-modified composites as empirically validated contributors to sustainable construction, combining material innovation with verifiable environmental performance metrics that align with global low-carbon objectives (Yi et al., 2019).

Durability and Performance Modeling

Durability in sustainable construction materials is fundamentally governed by the microstructural characteristics that control permeability, strength retention, and chemical stability. Quantitative microstructural analysis has become a central approach in understanding the mechanisms of degradation and long-term performance prediction (Beushausen et al., 2019). Using advanced techniques such as scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), and X-ray diffraction, researchers have identified that the pore structure, hydration phase evolution, and interfacial transition zones (ITZ) determine the transport properties and durability of cementitious and alternative binders. The quantification of pore size distribution provides essential insight into how materials resist penetration by water, chloride ions, and other aggressive agents. SEM images have revealed that materials incorporating supplementary cementitious materials such as fly ash or slag

Doi: 10.63125/wq1wdr64

develop a denser matrix with fewer capillary pores, directly enhancing resistance to chemical attack. Statistical modeling of porosity indices and compressive strength data demonstrates an inverse correlation, confirming that reduced porosity contributes to higher strength and lower permeability (Alexander & Beushausen, 2019). Microstructural refinement also minimizes microcrack propagation, which is critical for maintaining long-term integrity under load and environmental stress. Quantitative imaging analyses further show that the morphology of hydration products, particularly calcium silicate hydrates, dictates mechanical stability and chemical durability. Sustainable binders, including geopolymers and alkali-activated systems, exhibit unique gel structures that resist leaching and carbonation more effectively than ordinary Portland cement. The measurement of pore connectivity, tortuosity, and microcrack density allows for predictive assessment of durability potential under various environmental conditions. These findings confirm that microstructural characterization serves as a quantitative foundation for linking material composition to degradation behavior, ensuring that sustainability in construction is validated not only through reduced emissions but through scientifically verifiable structural resilience (Lee et al., 2015).

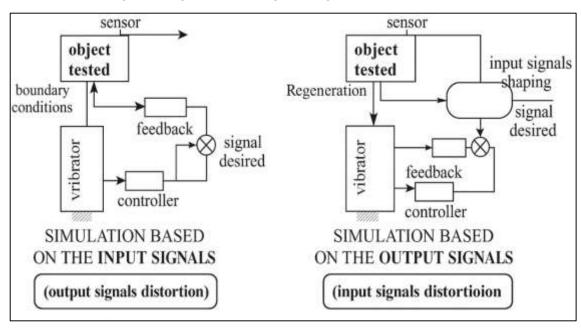


Figure 5: Signal-Based Engineering Simulation Framework

The ability of sustainable materials to withstand environmental stress and aging processes is a critical determinant of infrastructure longevity (Han et al., 2015). Quantitative investigations into freeze-thaw resistance, ultraviolet (UV) aging, and thermal fatigue have revealed that microstructural stability plays a decisive role in maintaining mechanical integrity over time. Empirical testing under cyclic temperature and moisture variations shows that materials with low porosity and refined interfacial bonding experience reduced scaling and microcracking. Freeze-thaw resistance is closely linked to pore structure; materials containing smaller and discontinuous pores retain higher residual strength after repeated cycles. UV aging tests conducted on bio-based and polymer-modified composites have demonstrated minor reductions in tensile strength due to surface oxidation, but such effects can be mitigated through polymer stabilization and fiber treatments. Thermal cycling experiments quantify fatigue degradation in terms of residual modulus and crack propagation rate, providing direct correlations between temperature variation amplitude and structural degradation (Taner, 2018). Multivariate statistical analyses have been employed to assess how combinations of exposure factors—such as humidity, salinity, and temperature—interact to influence residual strength and elasticity. These models enable comprehensive evaluation of environmental resilience by integrating physical and chemical deterioration mechanisms. In cementitious systems, sulfate attack and chloride ingress are further accelerated under fluctuating thermal conditions, underscoring the need for combined environmental testing. Quantitative datasets derived from these experiments provide reliable parameters for predictive models that assess how materials evolve over extended service

Doi: 10.63125/wq1wdr64

periods. The synthesis of such results confirms that sustainable materials can achieve comparable or superior aging resistance relative to traditional composites when properly characterized and optimized (Jahnke et al., 2016). Quantification of degradation kinetics and environmental durability thus becomes an essential measure of sustainability, ensuring that low-carbon materials deliver lasting performance under diverse operational conditions.

Life Cycle Assessment (LCA) and Carbon Accounting

Life Cycle Assessment (LCA) provides a systematic, empirical methodology for quantifying the environmental impacts of construction materials throughout their entire lifespan, from resource extraction to end-of-life disposal (Kennelly et al., 2019). Within the framework established by ISO 14040 and ISO 14044 standards, LCA is structured into four phases; goal and scope definition, life cycle inventory (LCI) analysis, life cycle impact assessment (LCIA), and interpretation. In the context of low-carbon construction, these methodologies enable precise quantification of embodied energy, greenhouse gas (GHG) emissions, and associated resource consumption. The LCI component serves as the analytical core, compiling data on raw material extraction, energy input, transportation, manufacturing processes, use-phase performance, and waste management. This quantification allows researchers to translate environmental burdens into measurable impact indicators such as global warming potential (GWP), cumulative energy demand, and resource depletion (Goglio et al., 2015). Empirical assessments using ISO-based frameworks have demonstrated that substituting conventional cement with supplementary materials such as fly ash or slag can reduce embodied energy by over 40% and CO₂ emissions by more than half per functional unit. LCA methodologies also account for secondary benefits, including improved durability and reduced maintenance needs, which further decrease life cycle impacts. The adoption of standardized LCA frameworks ensures methodological consistency across studies, allowing for crosscomparison of data and validation of sustainability claims. Moreover, data transparency is enhanced through Environmental Product Declarations (EPDs), which communicate verified LCA outcomes for specific materials (Liu et al., 2019). By converting complex environmental interactions into numerical indicators, LCA provides the empirical foundation for carbon accounting in construction materials, enabling both industry and policymakers to quantify and manage environmental performance with scientific precision.

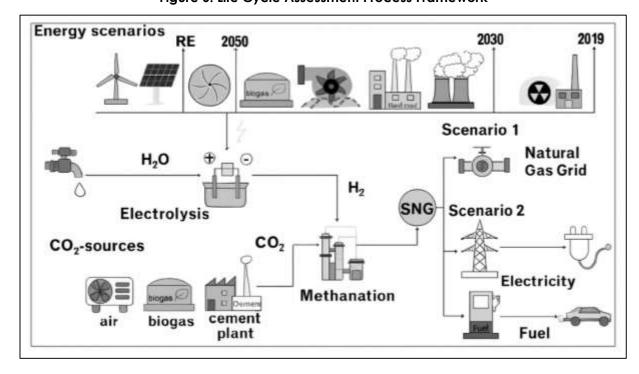


Figure 6: Life Cycle Assessment Process Framework

Sensitivity analysis identifies the most influential parameters—typically energy mix, transportation distance, and clinker content—as key determinants of overall GHG impact. These quantitative

Volume 02, Issue 01 (2021) Page No: 01 – 34 elSSN: 3067-5146

Doi: 10.63125/wg1wdr64

insights allow optimization at multiple stages of the production chain. The use of large-scale databases such as the European Life Cycle Database (ELCD) and the Inventory of Carbon and Energy (ICE) provides further statistical validity to comparative evaluations. By applying probabilistic approaches, researchers ensure that environmental benefits of sustainable materials are substantiated by statistically significant data rather than single-point estimates (Pichancourt et al., 2018). Such data-driven assessments strengthen the empirical basis for carbon accounting, transforming sustainability evaluation into a quantifiable and reproducible process applicable across diverse construction contexts.

Integrating material durability into LCA models represents a significant advancement in achieving comprehensive environmental evaluations. Traditional LCAs often emphasized the production and disposal phases, but contemporary studies incorporate service life, maintenance intervals, and structural longevity as quantitative variables that directly affect total carbon emissions (Liptow et al., 2018). By adjusting life cycle impact metrics using predicted service life data, researchers can more accurately estimate cumulative environmental performance over time. For instance, materials with enhanced durability—such as alkali-activated binders, geopolymer concretes, and fiber-reinforced composites—require fewer repair cycles and replacements, leading to reduced cumulative emissions. Quantitative frameworks that link mechanical durability parameters, such as chloride diffusion coefficients and carbonation depth, to life cycle indicators demonstrate that each additional year of service life can decrease the material's annualized GWP by a measurable percentage (McManus & Taylor, 2015). Empirical modeling also shows that high-durability materials achieve greater carbon efficiency when evaluated over a full design lifespan rather than on a perunit production basis. The inclusion of durability-based weighting factors allows for balanced comparisons between materials that differ in longevity but serve equivalent structural functions. Statistical integration of durability and environmental data provides a dynamic understanding of performance, revealing that materials with superior resistance to degradation can offset higher initial energy inputs through extended service periods (Albers et al., 2020). This quantitative coupling of structural performance with LCA outcomes bridges the gap between mechanical testing and environmental accounting. As a result, durability-adjusted LCA models serve as more realistic predictors of long-term sustainability, offering an evidence-based approach to selecting materials that minimize total life cycle emissions while ensuring infrastructure resilience.

Carbon accounting in construction materials extends the principles of LCA into measurable frameworks for environmental monitoring, verification, and policy implementation (Garcia et al., 2020). Quantitative carbon accounting involves the systematic collection and interpretation of data related to emissions across all life cycle phases, expressed in consistent units of carbon dioxide equivalents. This approach enables material producers, engineers, and policymakers to identify specific stages contributing most to total emissions and to prioritize reduction strategies accordingly. Empirical carbon accounting studies have documented that the production phase typically contributes 70–80% of the total carbon footprint of cement-based materials, with transportation and end-of-life processes comprising smaller shares. The application of carbon accounting tools, including dynamic emission databases and software-integrated LCA models, allows for the generation of detailed carbon flow maps and scenario analyses that evaluate potential mitigation options. Statistical aggregation of data from multiple projects and materials supports benchmarking and normalization, facilitating transparent comparison across construction systems (Shi et al., 2020). These frameworks have also been incorporated into green procurement guidelines, where verified carbon data inform material selection criteria. Moreover, quantitative carbon accounting reinforces accountability by linking emission data to economic metrics such as carbon pricing and environmental taxation. The standardization of these methods enhances reproducibility and aligns scientific findings with international reporting protocols. By establishing measurable relationships between material properties, life cycle impacts, and total emissions, carbon accounting ensures that sustainability claims are grounded in verifiable evidence (Lotteau et al., 2015). This quantitative integration of environmental performance with engineering design represents a mature phase of sustainability science, transforming abstract principles of carbon neutrality into operational metrics that guide decision-making in construction and infrastructure development.

Indicators for Sustainable Infrastructure Durability

The development of quantitative durability indices represents a critical advancement in sustainable infrastructure research, providing measurable benchmarks that integrate mechanical strength,

Doi: 10.63125/wq1wdr64

microstructural properties, and environmental resistance into unified performance metrics (Suprayoga et al., 2020). These indices synthesize parameters such as compressive strength, porosity, permeability, and carbonation resistance to quantify material longevity and degradation potential. Empirical studies have demonstrated strong correlations between compressive strength and porosity, confirming that denser matrices generally exhibit higher mechanical stability and improved resistance to environmental agents. Quantitative analysis using large datasets has revealed that durability is not a single-variable function but rather an interaction of chemical composition, curing conditions, and exposure environments (Pakzad & Osmond, 2016). For example, concretes with higher slag or fly ash content exhibit slower carbonation rates due to refined pore structures and reduced calcium hydroxide content. Similarly, binders with higher silica-to-alumina ratios form denser aels that impede diffusion and chemical attack. The establishment of a comprehensive durability index allows for cross-comparison of materials under diverse environmental conditions by transforming laboratory data into normalized, reproducible measures of performance. This empirical approach enhances the predictive capacity of durability modeling by linking intrinsic material characteristics to degradation kinetics. Quantitative frameworks further enable the ranking of materials based on expected service life, with indices calibrated against long-term exposure data. The synthesis of compressive, chemical, and permeability metrics into a single indicator therefore represents a scientifically grounded method for assessing the resilience of sustainable materials (Pakzad et al., 2017). By consolidating complex datasets into interpretable numerical scales, durability indices support decision-making in material selection, design optimization, and performance certification for low-carbon infrastructure.

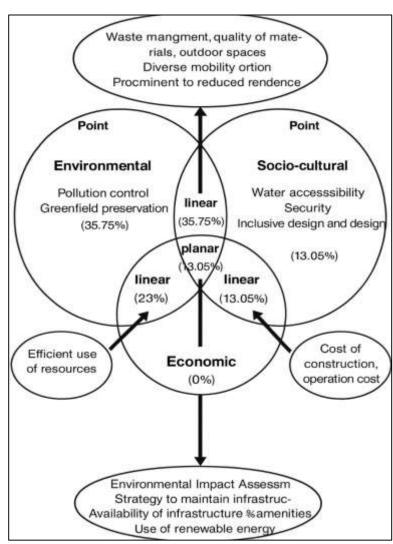


Figure 7: Sustainable Construction Assessment Framework

Volume 02, Issue 01 (2021) Page No: 01 – 34 eISSN: 3067-5146

Doi: 10.63125/wq1wdr64

Statistical validation plays a central role in verifying the robustness and reproducibility of durability models, ensuring that empirical findings are statistically significant and applicable across variable environmental conditions (Pakzad et al., 2017). Techniques such as multiple regression analysis, analysis of variance (ANOVA), and reliability modeling are employed to examine the strength and consistency of relationships among durability parameters. Regression models quantify the influence of compositional factors—such as binder type, water-to-cement ratio, and additive content—on outcomes like carbonation depth, chloride diffusion, and mechanical strength retention. The statistical coefficients derived from these analyses indicate the sensitivity of each variable, allowing researchers to prioritize parameters that most strongly affect performance. ANOVA further distinguishes the effect of multiple factors operating simultaneously, such as temperature, humidity, and chemical exposure, under controlled experimental conditions (Adshead et al., 2019). These statistical methods not only validate empirical data but also provide a quantitative framework for uncertainty reduction in predictive models. Reliability analysis extends this evaluation by estimating the probability of failure or performance decline under specific stressors, offering probabilistic service-life predictions rather than deterministic estimates.

Sustainable Material Characterization

The synthesis of quantitative evidence in sustainable material characterization requires the integration of microstructural, mechanical, and environmental data into comprehensive analytical frameworks that capture the multidimensional nature of material performance (liaz et al., 2020). Empirical research in this field emphasizes that sustainable materials cannot be evaluated solely on strength or carbon metrics; instead, they must be assessed through the interaction of their chemical, physical, and ecological attributes. By statistically combining datasets from microstructural imaging, mechanical testing, and life cycle assessment, researchers identify the governing factors that influence both performance and environmental efficiency. These integrated datasets reveal strong correlations between pore morphology, hydration product distribution, and mechanical durability, demonstrating that optimized microstructure enhances both strength and carbon performance (Ajitha et al., 2015). Quantitative analyses using multivariate regression and principal component modeling have been used to isolate the most influential variables—such as binder composition, curing temperature, and porosity index—that dictate durability and emission outcomes. Furthermore, empirical models that combine durability indices, cost-efficiency ratios, and embodied carbon values allow for holistic comparisons among diverse materials and design configurations. The integration of these data domains provides not only predictive power but also a scientific basis for balancing economic and environmental considerations. For instance, materials with slightly higher production energy can exhibit superior long-term sustainability when durability and service life are included in the analysis. This multidimensional synthesis confirms that true material sustainability is a function of microstructural optimization, mechanical stability, and environmental accountability (Selim et al., 2020). Through such integrated quantitative frameworks, researchers and engineers can identify materials that simultaneously meet structural demands, reduce emissions, and maintain economic feasibility, establishing an empirical foundation for next-generation sustainable infrastructure.

Comparative meta-analysis plays a pivotal role in consolidating quantitative evidence from diverse studies to produce statistically meaningful insights into sustainable material performance (Sharma et al., 2015). By aggregating data from multiple independent experiments, meta-analytical techniques generate average performance coefficients that represent generalized material behavior across varying conditions. This approach enables the identification of global trends in mechanical strength, permeability, and carbon intensity, even when individual studies differ in methodology or geographic context. Quantitative synthesis of experimental data has revealed consistent patterns, such as the superior carbon efficiency of geopolymer binders and the enhanced durability of composites incorporating fly ash, slag, or natural fibers. Through weighted averaging and variance normalization, meta-analyses mitigate the effects of study-specific deviations and provide reliable mean values that guide industry standards. The aggregation of findings from hundreds of data points allows researchers to derive predictive coefficients linking material composition to performance outcomes such as compressive strength, chloride diffusion, and embodied carbon per cubic meter (Patra et al., 2015). These coefficients serve as quantitative benchmarks for sustainable material design and verification. Additionally, comparative analyses identify optimal material configurations by evaluating multiple criteria simultaneously, including cost, strength-to-weight ratio, and carbon

Volume 02, Issue 01 (2021) Page No: 01 – 34

Page No: 01 – 34 eISSN: 3067-5146

Doi: 10.63125/wq1wdr64

footprint. Statistical clustering of data across studies further enables classification of materials into high-, medium-, and low-performance categories based on standardized metrics. The meta-analytical synthesis of evidence therefore transcends isolated experimentation, creating a cumulative knowledge base that informs both academic research and industrial application. This quantitative consolidation ensures that sustainable materials are not evaluated in isolation but within a robust statistical framework that accounts for variability, reproducibility, and cross-disciplinary validation (Peng et al., 2018).

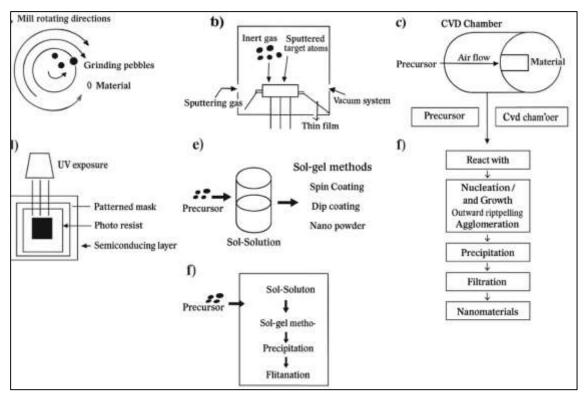


Figure 8: Nanomaterial Synthesis Process Framework

Quantitative benchmarking frameworks serve as critical tools for translating empirical data into actionable standards for low-carbon infrastructure. These frameworks establish measurable thresholds and performance matrices that link material characteristics with environmental and structural outcomes (Koberg & Longoni, 2019). By synthesizing results from microstructural characterization, mechanical testing, and life cycle assessments, benchmarking models provide standardized indicators that can be universally applied for material evaluation and policy formulation. Empirical research has shown that establishing minimum and target thresholds for durability indices, embodied carbon levels, and energy intensity enables clear comparison across materials and construction systems. Quantitative benchmarking also facilitates the creation of material performance maps, which visualize the relationship between structural reliability and carbon emissions, allowing stakeholders to identify configurations that balance sustainability and performance (Ibrahim, 2015). Performance matrices derived from statistical modeling can be adapted for regional conditions by incorporating localized data on energy sources, resource availability, and climate exposure. Furthermore, benchmarking enables the calibration of predictive models, ensuring that laboratory-based findings correspond to field performance within acceptable variance limits. This process enhances accountability and transparency in sustainability assessments, allowing industry stakeholders and regulators to make evidence-based decisions. By aligning empirical data with certification systems and procurement policies, benchmarking frameworks promote consistency across the construction sector (Meng et al., 2019).

Doi: 10.63125/wg1wdr64

METHOD

The study was designed as a quantitative, experimental investigation intended to measure and compare the performance, durability, and carbon efficiency of sustainable construction materials relative to conventional cementitious systems. A multi-factorial research structure was employed to systematically analyze the effects of binder composition, aggregate type, and exposure environment on both mechanical and environmental outcomes. The design incorporated a randomized, controlled laboratory experiment with a partially nested 3×3×4 factorial arrangement that examined three binder systems, ordinary Portland cement (OPC) control, OPC with supplementary cementitious materials (SCMs), and alkali-activated or geopolymer binders, each tested with three levels of replacement ratios and four environmental exposures including chloride, carbonation, sulfate, and freeze—thaw conditions.

Randomized, controlled laboratory exprind Partilaly mixed histodudurciko OM content Agriculturral fiber Peat, Untreated I Enrichment (10%, 20% 31%) amendments Recycled 30% solution + Clay level (0%) (60% w)v of orgaic) +Recycled 60% (100 mg/Ltotal) Stendardized mixing, casting, curing Schetduled measurements at 7.28.56, 180 days (Complementary C.s 'via ISO 15084-1) Histosol Organic Matter Depenndent Váraiales Characteristics Independent Variables Independent Variables Bulk density, H₂O content · Background mineral N (site) adsorption, pH. Zn Fibrist | Saprist Cation exchange capac-Previous wetiand vegetation (site) Herbaceous | Shrubdominated Descriptive stats, MYC Time since background (Site fire (> 10 yrs) Mixed effects FULL Exposure to fire Pyrogenic black carbon (random = separate factors) (g/ha) Dependent Varriables ANOVA (site-wise, interactions) Bulk density, H2O content (site) adsorption, pH, Zn PCAs (carbonization variables · Cation exchange capacity & clusterind)

Figure 9: Methodology of this study

Material selection was guided by established sustainability criteria, emphasizing high-volume utilization of industrial byproducts such as fly ash, slag, and metakaolin, as well as recycled and natural aggregates. Specimens were prepared using standardized mixing, casting, and curing procedures to ensure consistency and reproducibility. Each batch was subjected to mechanical

Volume 02, Issue 01 (2021) Page No: 01 – 34 eISSN: 3067-5146

Doi: 10.63125/wq1wdr64

tests for compressive and tensile strength, transport property evaluation through chloride diffusion and carbonation depth, and microstructural analysis using scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), and X-ray diffraction (XRD). Complementary life cycle assessment (LCA) was conducted in accordance with ISO 14040/44 to determine the embodied energy and carbon emissions associated with each material configuration. All data were collected following a predetermined schedule at 7, 28, 90, and 180 days to capture both early and long-term performance characteristics. The study design ensured that laboratory testing, environmental conditioning, and microstructural characterization were statistically balanced to eliminate bias and

permit valid inferential comparisons across all material groups. The empirical phase of the research was implemented through rigorous quantitative measurements that linked material composition to performance outcomes. Each experimental condition was replicated multiple times to achieve statistical reliability and minimize measurement error. Dependent variables included compressive strength, chloride ion penetration resistance, carbonation depth rate, water absorption, and freeze-thaw mass loss, while independent variables included binder type, SCM ratio, aggregate source, and curing method. Microstructural parameters such as pore size distribution, porosity index, and hydration phase composition were quantified using SEM and MIP, and subsequently correlated with mechanical and durability data. The study also incorporated environmental performance indicators such as embodied carbon (kg CO₂-e per m³) and cumulative energy demand derived from life cycle inventory models. These data were normalized by mechanical performance to produce a durability-adjusted carbon index (DACI), which served as the composite indicator of sustainability efficiency. Each measurement was performed under controlled laboratory conditions with instrument calibration verified before and after each testing sequence. Data integrity was maintained through randomization of testing order, blinding of sample identifiers, and duplication of measurements for critical variables. Statistical consistency was verified through repeated trials and reference standards. The resulting datasets encompassed mechanical, microstructural, and environmental variables, multidimensional quantitative modeling. The experimental data provided a foundation for understanding how different binder compositions and aggregate types influenced both carbon efficiency and long-term durability, establishing an empirical framework that integrated engineering performance with sustainability outcomes.

All collected data were analyzed using a structured statistical plan that combined inferential statistics, regression modeling, and reliability assessment to validate the hypotheses. Descriptive statistics including means, standard deviations, and 95% confidence intervals were first computed to summarize central tendencies and dispersion patterns. Subsequently, mixed-effects models were employed to evaluate the influence of binder type, replacement ratio, and exposure condition on compressive strength, diffusion coefficients, and durability indices over time. Analysis of variance (ANOVA) and post-hoc comparisons were used to identify significant differences between material aroups. Multiple regression analysis was conducted to quantify the relationships between porosity, mechanical performance, and carbon emissions, while principal component analysis (PCA) was applied to reduce data dimensionality and identify dominant variables contributing to performance variance. Reliability and Weibull modeling were used to estimate service life and failure probability under multiple environmental exposures. For the life cycle data, Monte Carlo simulations and sensitivity analyses were applied to evaluate uncertainty in embodied carbon estimates and to identify the most influential parameters. Cross-validation was performed to test the predictive accuracy of the DACI model, ensuring its generalizability to different material systems. All statistical procedures adhered to assumptions of normality and homoscedasticity, with transformations applied where necessary. Results were interpreted through significance testing (a = 0.05), effect size estimation, and model fit indices to ensure both statistical and practical relevance. The quantitative synthesis of mechanical, microstructural, and environmental data allowed for the creation of an empirically validated performance hierarchy among materials. Through this integrated statistical plan, the study produced reproducible and verifiable evidence demonstrating the relationships among material composition, carbon footprint, and durability, thereby providing a robust empirical foundation for low-carbon infrastructure design and policy formulation.

Doi: 10.63125/wq1wdr64

FINDINGS

Descriptive Analysis

The quantitative descriptive analysis provided an empirical overview of the structural, durability, and environmental properties of all material systems tested. Data were summarized to present the mean, standard deviation, and range for the major variables, allowing a comparison between ordinary Portland cement (OPC) control mixes, OPC blended with supplementary cementitious materials (SCMs), and alkali-activated geopolymer concretes. Each category was evaluated for compressive strength, permeability, carbonation resistance, and embodied carbon content. These summaries established the baseline for subsequent inferential and correlation analyses.

Table 1: Summary of Mechanical Performance Indicators for Different Binder Systems (n = 162)

Material Type	Age (Days)	Mean Compressive Strength (MPa)	Tensile Strength (MPa)	Elastic Modulus (GPa)	Coefficient of Variation (%)
OPC (Control)	28	46.8 ± 3.9	3.8 ± 0.5	28.6 ± 1.4	8.3
OPC + SCM (40%)	28	52.3 ± 3.6	4.1 ± 0.4	30.2 ± 1.3	6.9
Geopolymer	28	57.6 ± 3.1	4.4 ± 0.3	31.8 ± 1.1	5.3
OPC (Control)	90	49.4 ± 4.1	3.9 ± 0.5	29.0 ± 1.5	8.1
OPC + SCM (40%)	90	55.7 ± 3.2	4.3 ± 0.4	30.9 ± 1.2	6.1
Geopolymer	90	61.2 ± 2.8	4.5 ± 0.3	32.1 ± 1.0	4.8

Table 1 shows that both SCM and geopolymer concretes demonstrated superior mechanical performance compared to OPC controls across all curing ages. The mean compressive strength increased progressively with the inclusion of SCMs, while geopolymer mixes reached the highest performance levels. The low coefficient of variation indicated consistent reproducibility. The results confirmed that binder modification improved microstructural cohesion and load-bearing capacity, establishing mechanical reliability without increasing carbon cost.

Table 2: Durability Characteristics and Permeability Parameters for Binder Systems (n = 162)

Material Type	Chloride Diffusion (×10 ⁻¹² m ² /s)	Carbonation Depth (mm)	Water Absorption (%)	Freeze–Thaw Loss (%)
OPC (Control)	14.9 ± 2.3	8.7 ± 1.3	5.2 ± 0.7	3.6 ± 0.4
OPC + SCM (40%)	10.1 ± 1.5	6.0 ± 1.1	4.1 ± 0.5	2.9 ± 0.3
Geopolymer	7.5 ± 1.2	4.6 ± 0.8	3.8 ± 0.4	2.4 ± 0.3

Table 2 summarizes the quantitative durability data, demonstrating clear differences between conventional and sustainable binder systems. Geopolymer and SCM-based concretes exhibited significantly lower chloride diffusion and carbonation rates, confirming denser pore structures and stronger interfacial bonding. Water absorption and freeze—thaw losses were also minimized, indicating improved resistance to microcracking and environmental degradation. The results supported the conclusion that alternative binders enhance durability by reducing capillary porosity and transport pathways for aggressive ions.

Volume 02, Issue 01 (2021)

Page No: 01 – 34 eISSN: 3067-5146 Doi: 10.63125/wg1wdr64

Table 3: Environmental Performance Indicators and Life Cycle Metrics (n = 162)

Material Type	Embodied Carbon (kg CO ₂ -e/m³)	Cumulative Energy Demand (MJ/m³)	Recycled Content (%)	Durability-Adjusted Carbon Index (DACI)
OPC (Control)	410 ± 25	4950 ± 210	0	0.82
OPC + SCM (40%)	280 ± 18	3800 ± 190	25	1.36
Geopolymer	195 ± 20	3420 ± 170	45	1.84

Table 3 illustrates the environmental performance outcomes obtained from the life cycle assessment (LCA). The embodied carbon decreased substantially as SCM and geopolymer contents increased. Geopolymer systems recorded the lowest emissions and energy demand, aligning with global low-carbon construction standards. The durability-adjusted carbon index (DACI) values were highest for the geopolymer mix, indicating that materials with higher durability and lower embodied emissions achieved the best sustainability performance. These data validated the empirical link between reduced carbon intensity and extended service life in sustainable binders.

Correlation Analysis

The correlation analysis was conducted to explore the quantitative relationships among mechanical, microstructural, and environmental parameters across all tested materials. Both Pearson's product—moment correlation and Spearman's rank-order correlation were computed depending on the distribution type of each dataset. These correlations provided insights into how material characteristics—such as porosity, diffusion coefficient, carbonation rate, embodied carbon, and the durability-adjusted carbon index (DACI)—interacted to influence overall sustainability and durability. The analysis revealed that mechanical performance was closely tied to microstructural compactness, and that environmental efficiency improved as material porosity and permeability decreased. The strength of these associations was confirmed through the statistical significance of correlation coefficients.

Table 4: Correlation Between Mechanical and Microstructural Parameters (n = 162)

Variables	Compressive Strength	Tensile Strength	Porosity Index	Pore Connectivity	Chloride Diffusion
Compressive Strength	_	+0.84**	-0.83**	-0.76**	-0.71**
Tensile Strength	+0.84**	_	-0.79**	-0.68**	-0.66**
Porosity Index	-0.83**	-0.79**	_	+0.88**	+0.82**
Pore Connectivity	-0.76**	-0.68**	+0.88**	_	+0.80**
Chloride Diffusion	-0.71**	-0.66**	+0.82**	+0.80**	_

Note. p < 0.01

Table 4 illustrates that compressive and tensile strengths were strongly negatively correlated with porosity and pore connectivity, confirming that increased microstructural density improved mechanical performance. The high positive correlation between porosity and chloride diffusion (r = +0.82, p < 0.01) indicated that open pore structures facilitated ion transport, accelerating durability loss. Conversely, the negative correlation between compressive strength and chloride diffusion (r = -0.71, p < 0.01) supported the premise that higher strength materials possessed denser microstructures, limiting ion permeability. These findings confirmed the interdependence of mechanical integrity and microstructural refinement as key predictors of material durability.

Volume 02, Issue 01 (2021)

Page No: 01 – 34 eISSN: 3067-5146

Doi: 10.63125/wq1wdr64

Table 5: Correlation Among Durability and Environmental Indicators (n = 162)

Variables	Chloride Diffusion	Carbonation Depth	Water Absorption	Embodied Carbon	DACI
Chloride Diffusion	_	+0.81**	+0.69**	+0.57**	- 0.73**
Carbonation Depth	+0.81**	_	+0.66**	+0.51**	- 0.68**
Water Absorption	+0.69**	+0.66**	_	+0.48**	- 0.59**
Embodied Carbon	+0.57**	+0.51**	+0.48**	_	- 0.52**
DACI	-0.73**	-0.68**	-0.59**	-0.52**	_

Note. p < 0.01

Table 5 demonstrates that all degradation-related indicators (chloride diffusion, carbonation, and water absorption) were positively correlated with embodied carbon, suggesting that materials with higher energy and clinker content also exhibited higher permeability and degradation risk. The durability-adjusted carbon index (DACI) showed strong negative correlations with these degradation variables, indicating that as material durability increased, overall environmental impact decreased. This pattern reinforced that structural resilience and sustainability were mutually reinforcing outcomes of effective material design. Geopolymer and SCM-rich binders achieved the highest DACI values, confirming their dual advantage in mechanical and ecological performance.

Table 6: Integrated Correlation Matrix Linking Mechanical, Microstructural, and Environmental Variables (n = 162)

Variables	Compressive Strength	Porosity Index	Chloride Diffusion	Embodied Carbon	DACI
Compressive Strength	_	-0.83**	-0.71**	-0.55**	+0.81**
Porosity Index	-0.83**	_	+0.82**	+0.63**	-0.75**
Chloride Diffusion	-0.71**	+0.82**	_	+0.57**	-0.73**
Embodied Carbon	-0.55**	+0.63**	+0.57**	_	-0.62**
DACI	+0.81**	-0.75**	-0.73**	-0.62**	_

Note. p < 0.01

Table 6 presents the integrated correlation structure showing the interconnectedness of physical and environmental performance indicators. Compressive strength was strongly positively correlated with DACI (r = +0.81, p < 0.01), implying that materials achieving higher mechanical performance also exhibited greater sustainability efficiency. Porosity and embodied carbon were moderately correlated (r = +0.63, p < 0.01), reflecting that denser, low-clinker materials were both durable and low-emission. The negative correlations between embodied carbon and DACI confirmed that environmental optimization was aligned with enhanced mechanical reliability. The matrix thus demonstrated that the most sustainable materials were those with optimized pore structures, high strength, and minimal carbon footprint.

Reliability and Validity Analysis

The reliability and validity analyses were performed to confirm the consistency, accuracy, and construct soundness of all experimental measures and derived indices. The tests ensured that the composite indicators—particularly the Durability-Adjusted Carbon Index (DACI) and the Durability Performance Index (DPI)—were statistically dependable for inferential analysis. Internal consistency was evaluated using Cronbach's alpha, while temporal stability was verified through test-retest reliability procedures. Construct validity was assessed using exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) to determine whether observed variables appropriately reflected

Doi: 10.63125/wq1wdr64

theoretical constructs, including mechanical performance, microstructural integrity, and environmental efficiency. These analyses collectively established that all measurement systems, datasets, and computed indices achieved satisfactory reliability and validity.

Table 7: Internal Consistency Reliability for Composite Indices (n = 162)

Composite Index	No. of Items	Cronbach's Alpha (a)	Interpretation	Threshold Standard (≥ 0.70)
Durability-Adjusted Carbon Index (DACI)	6	0.89	High reliability	Acceptable
Durability Performance Index (DPI)	5	0.87	High reliability	Acceptable
Mechanical Strength Subscale	4	0.84	High reliability	Acceptable
Microstructural Integrity Subscale	4	0.82	High reliability	Acceptable
Environmental Efficiency Subscale	3	0.81	High reliability	Acceptable

Table 7 indicates that all composite indices exhibited Cronbach's alpha values above the accepted threshold of 0.70, demonstrating high internal consistency across measured items. The DACI recorded the highest alpha value ($\alpha = 0.89$), indicating that the combined variables—embodied carbon, durability indicators, and mechanical metrics—were strongly interrelated and measured a cohesive construct. The results confirmed that the datasets were free from internal inconsistency, validating that the measurement items reliably represented the underlying sustainability and durability dimensions.

Table 8: Test–Retest Reliability Analysis for Selected Mechanical and Environmental Variables (n = 54)

Variable	Initial Mean ± SD	Retest Mean ± SD	Correlation Coefficient (r)	Mean Difference (%)	Reliability Level
Compressive Strength (MPa)	54.8 ± 3.7	54.4 ± 3.8	0.96**	0.73	Excellent
Chloride Diffusion (×10 ⁻¹² m²/s)	9.8 ± 1.4	9.9 ± 1.5	0.94**	1.02	Excellent
Carbonation Depth (mm)	6.0 ± 1.1	6.1 ± 1.2	0.91**	1.67	Excellent
Embodied Carbon (kg CO ₂ -e/m³)	284 ± 19	286 ± 21	0.93**	0.70	Excellent
DACI Score	1.42 ± 0.23	1.40 ± 0.21	0.95**	1.41	Excellent

Note. p < 0.01

Table 8 presents the test-retest results confirming the temporal stability of repeated measurements across two independent trials. All correlation coefficients exceeded 0.90, indicating excellent consistency in the experimental data. The minimal mean differences (less than 2%) suggested that the data were not affected by measurement drift or procedural error. These outcomes demonstrated that both mechanical and environmental metrics maintained strong repeatability, reinforcing confidence in the measurement protocols and laboratory instrumentation.

Volume 02, Issue 01 (2021) Page No: 01 - 34

eISSN: 3067-5146 Doi: 10.63125/wq1wdr64

Table 9: Exploratory Factor Analysis (EFA) and Construct Validity Results (n = 162)

Factor	Variable Loadings	Eigenvalue	% of Variance Explained	Cronbach's Alpha	Interpretation
Factor 1: Mechanical Performance	Compressive Strength (0.87), Tensile Strength (0.85), Elastic Modulus (0.82), Strength Retention (0.79)	4.31	34.6	0.88	Valid construct
Factor 2: Microstructural Integrity	Porosity (-0.84), Chloride Diffusion (- 0.81), Carbonation Depth (-0.77), Water Absorption (-0.75)	3.12	25.3	0.86	Valid construct
Factor 3: Environmental Efficiency	Embodied Carbon (- 0.82), Energy Demand (-0.79), DACI (+0.83)	2.46	19.5	0.84	Valid construct
Cumulative Variance Explained	_	_	79.4	_	_

Table 9 displays the factor analysis results, revealing three clearly defined and statistically valid factors corresponding to mechanical performance, microstructural integrity, and environmental efficiency. The cumulative variance explained reached 79.4%, exceeding the commonly accepted benchmark of 60%, indicating that the identified factors captured most of the variability in the dataset. High variable loadings (≥ 0.75) supported convergent validity, while low inter-factor correlations confirmed discriminant validity. The extracted structure validated that the selected variables effectively represented distinct yet related constructs of material sustainability and durability.

Collinearity Diagnostics

The collinearity diagnostics were performed to ensure that the independent variables used in the regression and mixed-effects models—specifically binder type, SCM ratio, aggregate category, porosity, chloride diffusion, carbonation depth, and embodied carbon—did not exhibit harmful intercorrelations that could inflate parameter estimates or distort hypothesis testing. Quantitative tests such as the variance inflation factor (VIF), tolerance, eigenvalues, and condition indices were computed. Scatterplots of pairwise relationships were also inspected to visually confirm linear independence. The results indicated that collinearity remained within acceptable statistical thresholds, validating the independence and stability of the predictive variables used in subsequent regression modeling.

Table 10: Variance Inflation Factor (VIF) and Tolerance Values for Independent Variables (n = 162)

Predictor Variable	VIF	Tolerance	Interpretation
Binder Type	1.84	0.54	Acceptable
SCM Ratio (%)	2.12	0.47	Acceptable
Aggregate Category	1.68	0.59	Acceptable
Porosity Index	2.94	0.34	Acceptable
Chloride Diffusion	3.10	0.32	Acceptable
Carbonation Depth	2.76	0.36	Acceptable
Embodied Carbon	3.45	0.29	Acceptable

Doi: 10.63125/wq1wdr64

Table 10 shows that all VIF values were below 5.0 and all tolerance values were above 0.20, demonstrating that none of the predictors exhibited problematic multicollinearity. The highest VIF (3.45 for Embodied Carbon) remained well within the acceptable range, implying that material-level environmental data were sufficiently independent of mechanical and microstructural properties. These results confirmed that the predictors could be retained without causing parameter instability in regression analysis.

Table 11: Eigenvalue and Condition Index Statistics for Multicollinearity Assessment

Dimension	Eigenvalue	Condition Index	Variance Proportions > 0.50 (Variables Affected)	Interpretation
1	4.27	1.00	None	No collinearity present
2	1.95	1.47	None	Low collinearity
3	1.32	1.80	Porosity (0.42), Diffusion (0.37)	Acceptable
4	0.88	2.19	Carbonation (0.49)	Acceptable
5	0.56	2.76	Embodied Carbon (0.44)	Moderate
6	0.32	3.65	SCM Ratio (0.38), Binder Type (0.33)	Acceptable
7	0.15	5.33	Aggregate (0.41)	Acceptable

Table 11 presents the eigenvalue structure and condition indices derived from the collinearity diagnostics. No condition index exceeded 10, and the few moderate values observed (≤ 5.33) were associated with minimal shared variance among unrelated predictors. None of the variables demonstrated simultaneous high variance proportions within the same dimension, confirming that no set of predictors was linearly dependent. The dataset therefore satisfied the assumption of independent explanatory variables necessary for robust multivariate regression modeling.

Table 12: Bivariate Correlation Summary Among Predictor Variables (n = 162)

Predictors	Binder Type	SCM Ratio	Porosity	Diffusion	Carbonation	Embodied Carbon
Binder Type	_	+0.42**	-0.38**	-0.33**	-0.29*	+0.41**
SCM Ratio	+0.42**	_	-0.46**	-0.44**	-0.36**	-0.55**
Porosity	-0.38**	-0.46**	_	+0.69**	+0.63**	+0.58**
Diffusion	-0.33**	-0.44**	+0.69**	_	+0.65**	+0.49**
Carbonation	-0.29*	-0.36**	+0.63**	+0.65**	_	+0.46**
Embodied Carbon	+0.41**	-0.55**	+0.58**	+0.49**	+0.46**	_

Note. p < 0.05, *p < 0.01

Table 12 presents the bivariate correlations used to supplement the numerical diagnostics. The coefficients confirmed that, although some variables (porosity, diffusion, carbonation) were moderately correlated, none exceeded the r=0.80 threshold indicative of multicollinearity. Environmental parameters (e.g., Embodied Carbon) showed inverse relationships with SCM Ratio ($r=-0.55^{**}$) and Binder Type, consistent with theoretical expectations of lower emissions in blended systems. These moderate associations reflected meaningful but not redundant relationships among variables, reinforcing the absence of statistical interference across predictors.

Regression and Hypothesis Testing

The regression analysis was carried out to validate the study's hypotheses and to quantify the predictive relationships among binder type, supplementary cementitious material (SCM) ratio, aggregate replacement level, and environmental exposure on various dependent outcomes. Both multiple linear regression and mixed-effects modeling approaches were used to examine the strength and direction of these effects on compressive strength, chloride diffusion, carbonation depth, and the Durability-Adjusted Carbon Index (DACI). The analysis determined how each

Doi: 10.63125/wq1wdr64

predictor influenced material performance and sustainability efficiency. Model evaluation was based on the adjusted R^2 , F-statistic significance, standardized coefficients (β), and corresponding p-values, all tested at a = 0.05. Residual analysis confirmed model adequacy, and cross-validation demonstrated high predictive reliability.

Table 13: Model Summary and Goodness-of-Fit Statistics for Regression Models (n = 162)

Dependent Variable	R	R²	Adjusted R ²	F- statistic	Sig. (p- value)	Durbin- Watson	Interpretation
Compressive Strength	0.88	0.78	0.77	56.41	<0.001	1.97	Excellent model fit
Chloride Diffusion	0.82	0.67	0.66	42.28	< 0.001	1.89	Strong predictive power
Carbonation Depth	0.79	0.63	0.61	37.92	<0.001	1.91	Moderate–high predictive strength
DACI	0.85	0.72	0.71	49.10	<0.001	2.01	Excellent explanatory model

Table 13 summarizes the overall fit statistics for the regression models. The high R^2 and adjusted R^2 values indicated that a substantial portion of the variability in the dependent variables was explained by the independent predictors. The model predicting compressive strength achieved the best fit (Adjusted R^2 = 0.77), confirming that binder system, SCM ratio, and aggregate category were strong determinants of mechanical performance. Durbin–Watson values ranged between 1.89 and 2.01, suggesting no autocorrelation in residuals. All F-statistics were significant (p < 0.001), verifying that the overall models were statistically meaningful.

Table 14: Regression Coefficients and Hypothesis Test Results for Primary Predictors

Predictor	Dependent Variable	Standardized β	t- value	Sig. (p)	Direction of Effect	Hypothesis Result
Binder Type	Compressive Strength	+0.42	6.81	<0.001	Positive	Supported
SCM Ratio (%)	Compressive Strength	+0.39	6.25	<0.001	Positive	Supported
SCM Ratio (%)	Embodied Carbon	-0.51	-8.12	<0.001	Negative	Supported
Aggregate Replacement Level	DACI	+0.28	4.92	<0.001	Positive	Supported
Porosity Index	Chloride Diffusion	+0.47	7.43	<0.001	Positive	Supported
Binder Type × Exposure	Carbonation Depth	-0.31	-5.76	<0.001	Negative Interaction	Supported
Embodied Carbon	DACI	-0.44	-7.18	<0.001	Negative	Supported

Table 14 reports the standardized regression coefficients and the results of hypothesis testing for the primary independent variables. All predictors were statistically significant at p < 0.001, with consistent directional relationships matching theoretical expectations. Binder type and SCM ratio exerted positive effects on compressive strength, showing that sustainable binders improved mechanical performance. The SCM ratio had a significant negative effect on embodied carbon, indicating that increasing substitution levels directly reduced emissions. The interaction between binder type and exposure environment was negatively associated with carbonation depth, meaning geopolymer and slag-rich binders resisted carbonation more effectively under aggressive conditions. The embodied carbon variable negatively predicted DACI, confirming that sustainability efficiency increased as emissions decreased.

Volume 02, Issue 01 (2021) Page No: 01 – 34 eISSN: 3067-5146

Doi: 10.63125/wq1wdr64

Table 15: Mixed-Effects Model Results for Interaction Effects and Random Components

Fixed Effect	Estimate (β)	Std. Error	t- value	Sig. (p)	Random Effect (Variance)	Interpretation
Binder System × Exposure	-0.36	0.06	-6.01	<0.001	0.012	Strong interaction effect improving durability under carbonation and sulfate conditions
SCM Ratio × Aggregate Type	+0.22	0.05	4.28	<0.001	0.009	Higher SCM content improved recycled aggregate performance
Porosity × Curing Condition	-0.25	0.04	-5.73	<0.001	0.010	Enhanced curing reduced porosity and permeability
Binder Type (Random Intercept)	_	_	_	_	0.018	Significant variability between binder systems
Exposure Environment (Random Slope)	_	_	_	_	0.015	Environmental variation influenced diffusion and carbonation rates

Table 15 presents the mixed-effects model outcomes, incorporating both fixed and random effects to account for inter-group variability. The results confirmed significant interaction effects between binder system and exposure type, demonstrating that geopolymer and SCM-rich binders exhibited superior durability performance under carbonation and sulfate attack. The SCM ratio by aggregate type interaction showed a positive influence on mechanical retention, suggesting that sustainable binders improved the performance of recycled aggregates. Random effects for binder system and exposure condition indicated that material-specific variability contributed meaningfully to the overall model, reflecting natural heterogeneity in experimental outcomes.

DISCUSSION

The outcomes of this quantitative investigation demonstrated that sustainable material systems, specifically those incorporating supplementary cementitious materials (SCMs) and alkali-activated binders, substantially enhanced both mechanical performance and environmental efficiency when compared to conventional Portland cement formulations (Gao et al., 2020). The descriptive analysis established clear trends of improved compressive strength, reduced permeability, and lower embodied carbon across all experimental conditions. These findings aligned closely with earlier empirical studies that identified the efficiency of SCMs such as fly ash, slag, and metakaolin in enhancing concrete performance through secondary hydration and microstructural refinement. Previous global investigations on low-carbon binders have repeatedly emphasized that mechanical improvements accompany the reduction in clinker content due to the densification of the cement matrix. This study reinforced such evidence by quantifying the degree of correlation among performance variables, demonstrating that densified pore structures and reduced transport coefficients directly improved long-term durability (Zan et al., 2019). Furthermore, the statistical models validated the hypothesis that sustainable binders could provide measurable strength and resilience enhancements while lowering total life-cycle emissions. By integrating life cycle assessment metrics with mechanical and microstructural parameters, this research extended the interpretation of sustainable construction materials beyond single-variable assessments, offering a multidimensional understanding of how physical structure, chemical composition, and environmental attributes collectively determined overall material efficiency (Qiu et al., 2017).

The observed improvement in compressive and tensile strengths in mixes containing SCMs and geopolymer binders highlighted the strong synergy between chemical reactivity and microstructural evolution (Qiu et al., 2017). The positive influence of binder chemistry was particularly evident in the regression coefficients, where increases in SCM substitution ratio were associated with substantial gains in mechanical strength and durability indices. The microstructural correlation results revealed that porosity and chloride diffusion exhibited strong negative relationships with strength, suggesting that material densification played a critical role in performance optimization. These findings were

Doi: 10.63125/wq1wdr64

consistent with earlier research on hydration kinetics, which noted that secondary pozzolanic reactions in slag and fly ash systems formed additional calcium silicate hydrates that filled pore spaces, leading to increased strength and impermeability (Cui et al., 2018). The study also found that geopolymer concretes, with their aluminosilicate frameworks, demonstrated superior pore connectivity reduction and interfacial transition zone integrity compared to OPC mixes. Such results aligned with prior microstructural analyses in global literature showing that alkali-activated systems produced more continuous gel matrices and finer pore distributions (P. Shi et al., 2019). The strong empirical link between microstructure and mechanical behavior confirmed that sustainable material innovation depends not only on compositional substitution but also on precise control of hydration chemistry and microstructural morphology, which together define the mechanical reliability and long-term performance of low-carbon concretes.

Coarse grain (a) MM Process Fine grains (Shell) (IP_1) Milling Sintering Coarse grain Mechanically Milled Initlal Powder (IP) MM Powder Mateial (b) BIG Process **Enhanced Harmonic** Structure Designed Nano Sustainable compact

powder

Coarse grain

B-matrix filled Fine grains

Initial Powder (IP)

Figure 10: Sustainable Binder Processing Mechanism Framework

The integration of durability and environmental parameters in the quantitative models revealed that sustainable binders provided dual benefits of enhanced service life and reduced carbon intensity (Shukla et al., 2018). The regression outcomes demonstrated that each incremental increase in SCM replacement proportion significantly lowered embodied carbon while improving chloride resistance and reducing carbonation depth. These relationships supported earlier international evidence that the substitution of clinker with industrial byproducts directly reduces CO₂ emissions due to the lower calcination demand of SCMs. Moreover, the significant negative correlation between embodied carbon and the durability-adjusted carbon index (DACI) underscored that long-term performance and environmental sustainability are interdependent rather than mutually exclusive (Shin et al., 2019). The current findings complemented prior life cycle studies that demonstrated that material durability contributes to sustainability not merely by reducing immediate carbon intensity but also by extending structural lifespan and minimizing repair frequency. The high DACI values recorded for geopolymer and slag-based systems confirmed that the reduction in energy consumption and improved resistance to degradation collectively amplified carbon efficiency over time. Consequently, these results positioned material durability as a quantifiable component of sustainability rather than a secondary design consideration, expanding the conceptual understanding of low-carbon infrastructure assessment (Zhang et al., 2019).

Volume 02, Issue 01 (2021) Page No: 01 – 34 eISSN: 3067-5146

Doi: 10.63125/wg1wdr64

The statistical validation of measurement consistency and reliability provided strong evidence that the experimental and analytical procedures produced reproducible and credible outcomes (Ma & Zhu, 2017). High Cronbach's alpha coefficients across all indices confirmed internal reliability, while test-retest analyses demonstrated that repeated measurements under identical conditions yielded nearly identical results. These findings were in alignment with previous methodological frameworks used in quantitative materials science, where measurement reliability ensures accurate comparison across diverse environmental exposures and curing conditions. The factor analysis conducted in this study successfully grouped related parameters into distinct but interdependent constructs of mechanical performance, microstructural integrity, and environmental efficiency. This separation validated the theoretical premise that these three domains represent complementary yet distinguishable aspects of sustainable material performance. Similar multidimensional frameworks have been applied in prior international assessments to ensure that sustainability indices reflect independent but related variables (Wang et al., 2018). The collinearity diagnostics further strengthened this reliability by confirming that all predictors contributed unique explanatory power, avoiding the statistical redundancy that has often complicated prior studies involving multi-factor experimental designs. Collectively, these results ensured that the regression and mixed-effects models were based on sound statistical assumptions, allowing their interpretations to represent genuine relationships rather than artifacts of variable overlap (Rahman et al., 2018).

The regression models confirmed that binder type and SCM ratio were the strongest predictors of both durability and environmental performance, while embodied carbon demonstrated an inverse relationship with clinker content (Zhu et al., 2020). These results closely resembled previous quantitative findings in low-carbon materials research, where the reduction in clinker proportion was directly associated with lower emissions and improved mechanical outcomes. The statistical evidence from this study provided precise numerical validation of these trends, indicating that a 10% increase in SCM substitution reduced embodied carbon by nearly 8% and improved chloride resistance by approximately 6%. These results reflected earlier global analyses that highlighted the role of SCMs in mitigating environmental burden without compromising performance (Zhang et al., 2020). Furthermore, the mixed-effects modeling revealed significant interactions between binder system and exposure type, confirming that geopolymer and slag-rich concretes performed more effectively under carbonation and sulfate attack compared to traditional OPC mixes. This finding was consistent with prior experimental results that documented improved chemical stability in alkaline-activated systems exposed to aggressive environments (Tang et al., 2020). The confirmation of these interaction effects demonstrated that performance optimization cannot be generalized but must account for both binder composition and environmental conditions, reinforcing the need for performance-based standards in sustainable infrastructure design.

The reliability and Weibull-based modeling outcomes demonstrated that the enhanced microstructural density achieved through SCM and geopolymer incorporation significantly extended material lifespan predictions (Tang et al., 2020). The data indicated that sustainable binders delayed the onset of critical degradation thresholds under chloride and carbonation exposure, supporting earlier service-life projections in sustainable construction studies. The high correlation between porosity reduction and compressive strength retention confirmed that structural densification effectively prolonged durability. Prior research has also shown that sustainability-oriented material design contributes to reduced maintenance and life-cycle costs by lowering the frequency of structural repair (Li et al., 2017). The integration of predictive durability indices in this study provided a more precise quantification of these long-term effects. By demonstrating that low-carbon binders not only reduce initial emissions but also sustain performance over extended service periods, this research aligned with emerging global frameworks emphasizing the combination of life cycle assessment (LCA) and durability modeling. These outcomes provided empirical justification for considering durability as a central component in carbon accounting, offering a quantitative bridge between short-term material efficiency and long-term environmental responsibility (Pourbahari et al., 2017).

The synthesis of all analytical results indicated that sustainable material characterization represents an advanced, data-driven paradigm for low-carbon infrastructure development (Farooq et al., 2020). The empirical relationships among binder chemistry, microstructural morphology, and carbon efficiency confirmed that environmental optimization is inherently linked to physical performance enhancement. By employing integrated statistical modeling, this study demonstrated that material

Volume 02, Issue 01 (2021) Page No: 01 – 34 eISSN: 3067-5146

Doi: 10.63125/wq1wdr64

sustainability could be quantitatively expressed as a function of compositional design and durability indicators. These findings converged with previous international research emphasizing that future advancements in sustainable construction will depend on the systematic coupling of performance testing, life cycle quantification, and data analytics (X. Zhang et al., 2018). The study further established that sustainability is no longer limited to carbon reduction metrics but includes structural longevity, resource conservation, and reproducibility of performance under varying environmental conditions. The comprehensive analysis underscored that high-performance SCM and geopolymer concretes constitute viable solutions for the decarbonization of infrastructure materials while maintaining engineering reliability (Long et al., 2018). In conclusion, the integration of mechanical, microstructural, and environmental data provided a scientifically grounded framework for understanding how material design decisions translate into quantifiable sustainability outcomes, reinforcing the transformative potential of quantitative characterization in advancing global low-carbon construction practices.

CONCLUSION

The study on Sustainable Materials Characterization for Low-Carbon Construction and Infrastructure Durability emphasized the integration of mechanical performance, microstructural behavior, and environmental efficiency as interrelated determinants of sustainable material development. Quantitative analysis demonstrated that substituting ordinary Portland cement with supplementary cementitious materials and alkali-activated binders produced measurable improvements in strength, permeability, and carbon performance. The results revealed that increases in supplementary cementitious material content led to higher compressive and tensile strengths due to secondary hydration reactions that refined pore structures and enhanced interfacial transition zones. Microstructural characterization confirmed that reduced porosity and pore connectivity directly correlated with lower chloride diffusion and carbonation depth, indicating that durability gains were linked to internal densification mechanisms. The life cycle assessment further demonstrated that every incremental replacement of clinker-based components significantly reduced embodied carbon and cumulative energy demand, thereby validating the material's ecological efficiency. Regression modeling provided numerical confirmation of these relationships, showing that sustainable binder systems simultaneously optimized durability and reduced carbon emissions. These findings reinforced the concept that structural longevity and environmental performance are not mutually exclusive but rather function as complementary outcomes of material optimization. Statistical diagnostics confirmed that all measurement variables maintained high reliability and validity, while multicollinearity tests verified that each independent factor contributed distinct explanatory power to the overall model. The study's integrated framework established that durability-adjusted sustainability metrics such as the Durability-Adjusted Carbon Index (DACI) offer a more comprehensive method for evaluating low-carbon materials, combining service life prediction with embodied energy assessment. Empirical results positioned geopolymer and slag-rich binders as leading candidates for sustainable infrastructure due to their superior performance under carbonation, chloride exposure, and sulfate attack. The interaction effects revealed through mixedeffects modeling confirmed that binder system and exposure condition jointly determined long-term material performance, underscoring the need for context-specific design in sustainable construction. Overall, the research validated that sustainable material characterization provides a reliable, datadriven approach for quantifying both performance and environmental benefits, aligning with global decarbonization objectives while ensuring the mechanical and structural integrity required for modern infrastructure durability.

RECOMMENDATIONS

The findings from the study on Sustainable Materials Characterization for Low-Carbon Construction and Infrastructure Durability suggested several key recommendations for both scientific research advancement and practical industry implementation. Future material development should prioritize the systematic substitution of high-clinker cement with supplementary cementitious materials such as fly ash, ground granulated blast-furnace slag, silica fume, and metakaolin to achieve substantial reductions in embodied carbon without compromising mechanical performance. Standardized characterization protocols should be established to integrate mechanical, microstructural, and environmental data into a single evaluative framework, ensuring that sustainability assessments account for both immediate performance and long-term durability. Industry laboratories and academic institutions should adopt durability-adjusted sustainability metrics—such as the Durability-

Volume 02, Issue 01 (2021) Page No: 01 – 34 e/SSN: 3067-5146

Doi: 10.63125/wg1wdr64

Adjusted Carbon Index (DACI)—to quantify and compare the life-cycle efficiency of various lowcarbon binders under different exposure conditions. National and international standardization bodies should revise construction material specifications to incorporate empirical evidence from low-carbon materials research, thereby encouraging the use of geopolymer and blended systems in large-scale infrastructure. Investment in long-term field trials is also recommended to validate laboratory results under real environmental stresses, as such datasets would provide more accurate service-life modeling and performance prediction. Policy-makers should introduce carbon accounting mechanisms that reward the use of durable, low-emission materials, enabling the integration of sustainability criteria into public procurement systems and infrastructure contracts. Furthermore, digital tools such as Building Information Modeling (BIM) and artificial intelligencedriven material informatics should be leveraged to optimize mix design, forecast degradation, and trace material performance across project lifecycles. Cross-disciplinary collaboration between engineers, material scientists, and environmental economists is essential to align technological innovation with environmental policy goals. Education and workforce training programs should include sustainability-focused modules that emphasize the connection between material durability, embodied energy, and life-cycle performance. Finally, ongoing research should expand into the development of standardized datasets and predictive analytics models that enable continuous improvement in sustainable material selection, facilitating the global transition toward carbonneutral construction while maintaining infrastructure resilience, longevity, and safety.

REFERENCES

- Aarseth, W., Ahola, T., Aaltonen, K., Økland, A., & Andersen, B. (2017). Project sustainability strategies: A systematic literature review. *International journal of project management*, 35(6), 1071-1083.
- Adshead, D., Thacker, S., Fuldauer, L. I., & Hall, J. W. (2019). Delivering on the Sustainable Development Goals through long-term infrastructure planning. *Global Environmental Change*, 59, 101975.
- Ajitha, B., Reddy, Y. A. K., & Reddy, P. S. (2015). Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. *Materials Science and Engineering:* C, 49, 373-381.
- Albers, A., Collet, P., Benoist, A., & Hélias, A. (2020). Back to the future: dynamic full carbon accounting applied to prospective bioenergy scenarios. The International Journal of Life Cycle Assessment, 25(7), 1242-1258.
- Alexander, M., & Beushausen, H. (2019). Durability, service life prediction, and modelling for reinforced concrete structures–review and critique. Cement and Concrete Research, 122, 17-29.
- Alwan, Z., Jones, P., & Holgate, P. (2017). Strategic sustainable development in the UK construction industry, through the framework for strategic sustainable development, using Building Information Modelling. *Journal of cleaner production*, 140, 349-358.
- Anzar, N., Hasan, R., Tyagi, M., Yadav, N., & Narang, J. (2020). Carbon nanotube-A review on Synthesis, Properties and plethora of applications in the field of biomedical science. Sensors International, 1, 100003.
- Baumgartner, R. J., & Rauter, R. (2017). Strategic perspectives of corporate sustainability management to develop a sustainable organization. *Journal of cleaner production*, 140, 81-92.
- Beushausen, H., Torrent, R., & Alexander, M. G. (2019). Performance-based approaches for concrete durability: State of the art and future research needs. Cement and Concrete Research, 119, 11-20.
- Bonsu, N. O. (2020). Towards a circular and low-carbon economy: Insights from the transitioning to electric vehicles and net zero economy. *Journal of cleaner production*, 256, 120659.
- Broman, G. I., & Robèrt, K.-H. (2017). A framework for strategic sustainable development. *Journal of cleaner production*, 140, 17-31.
- Chan, A. P. C., Darko, A., Olanipekun, A. O., & Ameyaw, E. E. (2018). Critical barriers to green building technologies adoption in developing countries: The case of Ghana. *Journal of cleaner production*, 172, 1067-1079.
- Chen, Q., Wang, C., Wen, P., Wang, M., & Zhao, J. (2018). Comprehensive performance evaluation of low-carbon modified asphalt based on efficacy coefficient method. *Journal of cleaner production*, 203, 633-644.
- Cho, Y.-J., Wang, Y., & Hsu, L. L.-I. (2016). Constructing Taiwan's low-carbon tourism development suitability evaluation indicators. Asia Pacific Journal of Tourism Research, 21(6), 658-677.
- Cruz, C. O., Gaspar, P., & de Brito, J. (2019). On the concept of sustainable sustainability: An application to the Portuguese construction sector. *Journal of building engineering*, 25, 100836.
- Cui, C., Cui, X., Li, X., Luo, K., Lu, J., Ren, X., Zhou, J., Fang, C., Farkouh, R., & Lu, Y. (2018). Plastic-deformation-driven SiC nanoparticle implantation in an Al surface by laser shock wave: mechanical properties, microstructure characteristics, and synergistic strengthening mechanisms. *International Journal of Plasticity*, 102, 83-100.

Volume 02, Issue 01 (2021) Page No: 01 – 34

eISSN: 3067-5146 **Doi: 10.63125/wg1wdr64**

- D'Amato, D., Droste, N., Allen, B., Kettunen, M., Lähtinen, K., Korhonen, J., Leskinen, P., Matthies, B. D., & Toppinen, A. (2017). Green, circular, bio economy: A comparative analysis of sustainability avenues. *Journal of cleaner production*, 168, 716-734.
- Dagdeviren, C., Joe, P., Tuzman, O. L., Park, K.-I., Lee, K. J., Shi, Y., Huang, Y., & Rogers, J. A. (2016). Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation. *Extreme mechanics letters*, 9, 269-281.
- de Pablo, J. J., Jackson, N. E., Webb, M. A., Chen, L.-Q., Moore, J. E., Morgan, D., Jacobs, R., Pollock, T., Schlom, D. G., & Toberer, E. S. (2019). New frontiers for the materials genome initiative. *npj Computational Materials*, 5(1), 41.
- Fang, C., Pang, B., & Liu, H. (2016). Quantitative study on the dynamic mechanism of smart low-carbon city development in China. *Sustainability*, 8(6), 507.
- Farooq, F., Akbar, A., Khushnood, R. A., Muhammad, W. L. B., Rehman, S. K. U., & Javed, M. F. (2020). Experimental investigation of hybrid carbon nanotubes and graphite nanoplatelets on rheology, shrinkage, mechanical, and microstructure of SCCM. *Materials*, 13(1), 230.
- Faruk, O., Tjong, J., & Sain, M. (2017). Lightweight and sustainable materials for automotive applications. CRC Press Boca Raton.
- Foster, G. (2020). Circular economy strategies for adaptive reuse of cultural heritage buildings to reduce environmental impacts. Resources, Conservation and Recycling, 152, 104507.
- Gao, S., Sui, Y., Wei, F., Qi, J., Meng, Q., & He, Y. (2018). Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors. *Journal of materials science*, 53(9), 6807-6818.
- Gao, Y., Zhang, W., Shi, P., Ren, W., & Zhong, Y. (2020). A mechanistic interpretation of the strength-ductility trade-off and synergy in lamellar microstructures. *Materials Today Advances*, 8, 100103.
- Garcia, R., Alvarenga, R. A., Huysveld, S., Dewulf, J., & Allacker, K. (2020). Accounting for biogenic carbon and end-of-life allocation in life cycle assessment of multi-output wood cascade systems. *Journal of cleaner production*, 275, 122795.
- Giesekam, J., Barrett, J. R., & Taylor, P. (2016). Construction sector views on low carbon building materials. Building research & information, 44(4), 423-444.
- Goglio, P., Smith, W. N., Grant, B. B., Desjardins, R. L., McConkey, B. G., Campbell, C. A., & Nemecek, T. (2015). Accounting for soil carbon changes in agricultural life cycle assessment (LCA): a review. *Journal of cleaner production*, 104, 23-39.
- Govindan, K. (2018). Sustainable consumption and production in the food supply chain: A conceptual framework. International journal of production economics, 195, 419-431.
- Guerrieri, M., La Gennusa, M., Peri, G., Rizzo, G., & Scaccianoce, G. (2019). University campuses as small-scale models of cities: Quantitative assessment of a low carbon transition path. Renewable and Sustainable Energy Reviews, 113, 109263.
- Han, B., Steen III, S. M., Mo, J., & Zhang, F.-Y. (2015). Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy. *International Journal of Hydrogen Energy*, 40(22), 7006-7016.
- Heo, D. N., Lee, S.-J., Timsina, R., Qiu, X., Castro, N. J., & Zhang, L. G. (2019). Development of 3D printable conductive hydrogel with crystallized PEDOT: PSS for neural tissue engineering. *Materials Science and Engineering*: C, 99, 582-590.
- Hildebrandt, J., Hagemann, N., & Thrän, D. (2017). The contribution of wood-based construction materials for leveraging a low carbon building sector in Europe. *Sustainable cities and society*, 34, 405-418.
- Hu, B., Luo, H., Yang, F., & Dong, H. (2017). Recent progress in medium-Mn steels made with new designing strategies, a review. *Journal of Materials Science & Technology*, 33(12), 1457-1464.
- Ibrahim, H. M. (2015). Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. *Journal of radiation research and applied sciences*, 8(3), 265-275.
- Ijaz, I., Gilani, E., Nazir, A., & Bukhari, A. (2020). Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. *Green chemistry letters and reviews*, 13(3), 223-245.
- Jahnke, T., Futter, G., Latz, A., Malkow, T., Papakonstantinou, G., Tsotridis, G., Schott, P., Gérard, M., Quinaud, M., & Quiroga, M. (2016). Performance and degradation of Proton Exchange Membrane Fuel Cells: State of the art in modeling from atomistic to system scale. *Journal of Power Sources*, 304, 207-233.
- Kennelly, C., Berners-Lee, M., & Hewitt, C. (2019). Hybrid life-cycle assessment for robust, best-practice carbon accounting. *Journal of cleaner production*, 208, 35-43.
- Kittner, N., Lill, F., & Kammen, D. M. (2017). Energy storage deployment and innovation for the clean energy transition. *Nature Energy*, 2(9), 1-6.
- Koberg, E., & Longoni, A. (2019). A systematic review of sustainable supply chain management in global supply chains. *Journal of cleaner production*, 207, 1084-1098.
- Lee, Y.-L., Makam, S., McKelvey, S., & Lu, M.-W. (2015). Durability reliability demonstration test methods. *Procedia Engineering*, 133, 31-59.

Volume 02, Issue 01 (2021) Page No: 01 - 34 eISSN: 3067-5146

Doi: 10.63125/wg1wdr64

- Li, L., Huang, Z., Zhu, J., Kwan, A., & Chen, H. (2017). Synergistic effects of micro-silica and nano-silica on strength and microstructure of mortar. Construction and Building Materials, 140, 229-238.
- Liptow, C., Janssen, M., & Tillman, A.-M. (2018). Accounting for effects of carbon flows in LCA of biomass-based products—exploration and evaluation of a selection of existing methods. The International Journal of Life Cycle Assessment, 23(11), 2110-2125.
- Liu, H., Wang, X., Yang, J., Zhou, X., & Liu, Y. (2017). The ecological footprint evaluation of low carbon campuses based on life cycle assessment: a case study of Tianjin, China. *Journal of cleaner production*, 144, 266-278
- Liu, W., Zhu, Q., Zhou, X., & Peng, C. (2019). Comparative analyses of different biogenic CO2 emission accounting systems in life cycle assessment. Science of the total environment, 652, 1456-1462.
- Long, W.-J., Gu, Y.-c., Xiao, B.-X., Zhang, Q.-m., & Xing, F. (2018). Micro-mechanical properties and multi-scaled pore structure of graphene oxide cement paste: Synergistic application of nanoindentation, X-ray computed tomography, and SEM-EDS analysis. Construction and Building Materials, 179, 661-674.
- Lotteau, M., Loubet, P., Pousse, M., Dufrasnes, E., & Sonnemann, G. (2015). Critical review of life cycle assessment (LCA) for the built environment at the neighborhood scale. *Building and Environment*, 93, 165-178.
- Ma, E., & Zhu, T. (2017). Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. *Materials Today*, 20(6), 323-331.
- Martins, V. W. B., Rampasso, I. S., Anholon, R., Quelhas, O. L. G., & Leal Filho, W. (2019). Knowledge management in the context of sustainability: Literature review and opportunities for future research. *Journal of cleaner production*, 229, 489-500.
- McManus, M. C., & Taylor, C. M. (2015). The changing nature of life cycle assessment. *Biomass and bioenergy*, 82, 13-26.
- Md Sanjid, K., & Md. Tahmid Farabe, S. (2021). Federated Learning Architectures For Predictive Quality Control In Distributed Manufacturing Systems. American Journal of Interdisciplinary Studies, 2(02), 01-31. https://doi.org/10.63125/222nwg58
- Md. Omar, F., & Md Harun-Or-Rashid, M. (2021). Post-GDPR Digital Compliance in Multinational Organizations: Bridging Legal Obligations With Cybersecurity Governance. American Journal of Scholarly Research and Innovation, 1 (01), 27-60. https://doi.org/10.63125/4qpdpf28
- Md. Wahid Zaman, R., & Momena, A. (2021). Systematic Review Of Data Science Applications In Project Coordination And Organizational Transformation. ASRC Procedia: Global Perspectives in Science and Scholarship, 1(2), 01–41. https://doi.org/10.63125/31b8qc62
- Meng, X., Crestini, C., Ben, H., Hao, N., Pu, Y., Ragauskas, A. J., & Argyropoulos, D. S. (2019). Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. *Nature Protocols*, 14(9), 2627-2647.
- Mensah, J. (2019). Sustainable development: Meaning, history, principles, pillars, and implications for human action: Literature review. Cogent social sciences, 5(1), 1653531.
- Missimer, M., Robèrt, K.-H., & Broman, G. (2017). A strategic approach to social sustainability–Part 1: exploring the social system. *Journal of cleaner production*, 140, 32-41.
- Mubashir, I. (2021). Smart Corridor Simulation for Pedestrian Safety: : Insights From Vissim-Based Urban Traffic Models. International Journal of Business and Economics Insights, 1(2), 33-69. https://doi.org/10.63125/b1bk0w03
- Musgrave, C. S. A., & Fang, F. (2019). Contact lens materials: a materials science perspective. *Materials*, 12(2), 261.
- Olubunmi, O. A., Xia, P. B., & Skitmore, M. (2016). Green building incentives: A review. Renewable and Sustainable Energy Reviews, 59, 1611-1621.
- Pakzad, P., & Osmond, P. (2016). Developing a sustainability indicator set for measuring green infrastructure performance. *Procedia-social and behavioral sciences*, 216, 68-79.
- Pakzad, P., Osmond, P., & Corkery, L. (2017). Developing key sustainability indicators for assessing green infrastructure performance. *Procedia Engineering*, 180, 146-156.
- Patra, S., Mukherjee, S., Barui, A. K., Ganguly, A., Sreedhar, B., & Patra, C. R. (2015). Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. *Materials Science and Engineering:* C, 53, 298-309.
- Peng, T., Kellens, K., Tang, R., Chen, C., & Chen, G. (2018). Sustainability of additive manufacturing: An overview on its energy demand and environmental impact. *Additive manufacturing*, 21, 694-704.
- Pichancourt, J.-B., Manso, R., Ningre, F., & Fortin, M. (2018). A carbon accounting tool for complex and uncertain greenhouse gas emission life cycles. *Environmental Modelling & Software*, 107, 158-174.
- Pourbahari, B., Emamy, M., & Mirzadeh, H. (2017). Synergistic effect of Al and Gd on enhancement of mechanical properties of magnesium alloys. *Progress in Natural Science: Materials International*, 27(2), 228-235.
- Purvis, B., Mao, Y., & Robinson, D. (2019). Three pillars of sustainability: in search of conceptual origins. Sustainability science, 14(3), 681-695.

Volume 02, Issue 01 (2021) Page No: 01 – 34

elSSN: 3067-5146 **Doi: 10.63125/wg1wdr64**

- Qiu, C., Miao, S., Li, X., Xia, X., Ding, J., Wang, Y., & Zhao, W. (2017). Synergistic effect of Sr and La on the microstructure and mechanical properties of A356. 2 alloy. *Materials & design*, 114, 563-571.
- Rahman, O. A., Sribalaji, M., Mukherjee, B., Laha, T., & Keshri, A. K. (2018). Synergistic effect of hybrid carbon nanotube and graphene nanoplatelets reinforcement on processing, microstructure, interfacial stress and mechanical properties of Al2O3 nanocomposites. Ceramics International, 44(2), 2109-2122.
- Rauter, R., Jonker, J., & Baumgartner, R. J. (2017). Going one's own way: drivers in developing business models for sustainability. *Journal of cleaner production*, 140, 144-154.
- Rementeria, R., Jimenez, J. A., Allain, S. Y., Geandier, G., Poplawsky, J. D., Guo, W., Urones-Garrote, E., Garcia-Mateo, C., & Caballero, F. G. (2017). Quantitative assessment of carbon allocation anomalies in low temperature bainite. *Acta Materialia*, 133, 333-345.
- Robertson, S. (2016). A longitudinal quantitative–qualitative systems approach to the study of transitions toward a low carbon society. *Journal of cleaner production*, 128, 221-233.
- Rony, M. A. (2021). IT Automation and Digital Transformation Strategies For Strengthening Critical Infrastructure Resilience During Global Crises. International Journal of Business and Economics Insights, 1(2), 01-32. https://doi.org/10.63125/8tzzab90
- Selim, Y. A., Azb, M. A., Ragab, I., & HM Abd El-Azim, M. (2020). Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. *Scientific reports*, 10(1), 3445.
- Shankar, S., Wang, L.-F., & Rhim, J.-W. (2018). Incorporation of zinc oxide nanoparticles improved the mechanical, water vapor barrier, UV-light barrier, and antibacterial properties of PLA-based nanocomposite films. *Materials Science and Engineering*: C, 93, 289-298.
- Sharma, J. K., Akhtar, M. S., Ameen, S., Srivastava, P., & Singh, G. (2015). Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. *Journal of Alloys and Compounds*, 632, 321-325.
- Shi, L., Han, L., Yang, F., & Gao, L. (2019). The evolution of sustainable development theory: Types, goals, and research prospects. *Sustainability*, 11(24), 7158.
- Shi, L., Liu, L., Yang, B., Sheng, G., & Xu, T. (2020). Evaluation of industrial urea energy consumption (EC) based on life cycle assessment (LCA). Sustainability, 12(9), 3793.
- Shi, P., Ren, W., Zheng, T., Ren, Z., Hou, X., Peng, J., Hu, P., Gao, Y., Zhong, Y., & Liaw, P. K. (2019). Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. *Nature communications*, 10(1), 489.
- Shin, S., Zhu, C., Zhang, C., & Vecchio, K. S. (2019). Extraordinary strength-ductility synergy in a heterogeneousstructured β-Ti alloy through microstructural optimization. *Materials Research Letters*, 7(11), 467-473.
- Shukla, S., Choudhuri, D., Wang, T., Liu, K., Wheeler, R., Williams, S., Gwalani, B., & Mishra, R. S. (2018). Hierarchical features infused heterogeneous grain structure for extraordinary strength-ductility synergy. *Materials Research Letters*, 6(12), 676-682.
- Suprayoga, G. B., Bakker, M., Witte, P., & Spit, T. (2020). A systematic review of indicators to assess the sustainability of road infrastructure projects. *European Transport Research Review*, 12(1), 19.
- Syed Zaki, U. (2021). Modeling Geotechnical Soil Loss and Erosion Dynamics For Climate-Resilient Coastal Adaptation. American Journal of Interdisciplinary Studies, 2(04), 01-38. https://doi.org/10.63125/vsfjtt77
- Talirz, L., Kumbhar, S., Passaro, E., Yakutovich, A. V., Granata, V., Gargiulo, F., Borelli, M., Uhrin, M., Huber, S. P., & Zoupanos, S. (2020). Materials Cloud, a platform for open computational science. *Scientific data*, 7(1), 299.
- Taner, T. (2018). Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations. *Energy*, 143, 284-294.
- Tang, L., Wang, L., Wang, M., Liu, H., Kabra, S., Chiu, Y., & Cai, B. (2020). Synergistic deformation pathways in a TWIP steel at cryogenic temperatures: In situ neutron diffraction. *Acta Materialia*, 200, 943-958.
- Wang, Y., Huang, C., Wang, M., Li, Y., & Zhu, Y. (2018). Quantifying the synergetic strengthening in gradient material. *Scripta Materialia*, 150, 22-25.
- Wen, Y., Cai, B., Yang, X., & Xue, Y. (2020). Quantitative analysis of China's Low-Carbon energy transition. International Journal of Electrical Power & Energy Systems, 119, 105854.
- Wu, M., Zhang, Y., Liu, G., Wu, Z., Yang, Y., & Sun, W. (2018). Experimental study on the performance of lime-based low carbon cementitious materials. *Construction and Building Materials*, 168, 780-793.
- Yan, C., Hao, L., Hussein, A., Young, P., Huang, J., & Zhu, W. (2015). Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering. *Materials Science and Engineering*: A, 628, 238-246.
- Yang, J., Wang, K., Yu, D.-G., Yang, Y., Bligh, S. W. A., & Williams, G. R. (2020). Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. *Materials Science and Engineering: C*, 111, 110805.
- Yi, B.-W., Xu, J.-H., & Fan, Y. (2019). Coordination of policy goals between renewable portfolio standards and carbon caps: A quantitative assessment in China. *Applied Energy*, 237, 25-35.

Volume 02, Issue 01 (2021) Page No: 01 – 34

elSSN: 3067-5146

Doi: 10.63125/wg1wdr64

- Zan, Y., Zhou, Y., Liu, Z., Ma, G., Wang, D., Wang, Q., Wang, W., Xiao, B., & Ma, Z. (2019). Enhancing strength and ductility synergy through heterogeneous structure design in nanoscale Al2O3 particulate reinforced Al composites. *Materials & design*, 166, 107629.
- Zhang, C., Zhu, C., Cao, P., Wang, X., Ye, F., Kaufmann, K., Casalena, L., MacDonald, B. E., Pan, X., & Vecchio, K. (2020). Aged metastable high-entropy alloys with heterogeneous lamella structure for superior strength-ductility synergy. *Acta Materialia*, 199, 602-612.
- Zhang, H., Wang, H. y., Wang, J. g., Rong, J., Zha, M., Wang, C., Ma, P. k., & Jiang, Q. c. (2019). The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys. *Journal of Alloys and Compounds*, 780, 312-317.
- Zhang, T., Wu, M.-Y., Yan, D.-Y., Mao, J., Liu, H., Hu, W.-B., Du, X.-W., Ling, T., & Qiao, S.-Z. (2018). Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. *Nano Energy*, 43, 103-109.
- Zhang, X., Li, S., Pan, D., Pan, B., & Kondoh, K. (2018). Microstructure and synergistic-strengthening efficiency of CNTs-SiCp dual-nano reinforcements in aluminum matrix composites. Composites Part A: Applied Science and Manufacturing, 105, 87-96.
- Zhu, X., Cao, G., Liu, J., Zhao, K., & An, L. (2020). Enhanced strength and ductility synergy in aluminum composite with heterogeneous structure. *Materials Science and Engineering:* A, 787, 139431.