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Abstract

This systematic literature review examines the development and application of artificial intelligence (Al)-
enabled neurobiological diagnostic models for the early detection of post-traumatic stress disorder (PTSD) and
trauma-related disorders. The review synthesizes findings from 124 peer-reviewed studies published between
2010 and 2025, encompassing approximately 6,800 total citations, to evaluate how machine learning (ML) and
deep learning (DL) approaches utilize neurobiological, physiological, and multimodal data to enhance diagnostic
precision. Following the PRISMA 2020 framework, seven databases were systematically searched — PubMed,
Embase, PsycINFO, Scopus, Web of Science, IEEE Xplore, and arXiv — using defined inclusion criteria and the
PICOS model to ensure methodological transparency. Eligible studies included Al applications to
neuroimaging, electrophysiological, autonomic, endocrine, and genetic biomarkers for PTSD detection, risk
prediction, or classification. The findings demonstrate that Al-based models consistently outperform traditional
statistical approaches, achieving average classification accuracies above 80% and area-under-the-curve values
near 0.85. Neuroimaging studies revealed reliable identification of functional alterations within the amygdala,
hippocampus, and medial prefrontal cortex, while multimodal frameworks integrating imaging, heart-rate
variability, and cortisol levels achieved accuracies exceeding 90% in early PTSD detection. Explainable Al
techniques, including SHAP, LIME, and Grad-CAM, enhanced interpretability by linking algorithmic
predictions to biologically meaningful patterns of neural and physiological dysregulation. However, significant
limitations were noted, including small sample sizes, heterogeneous diagnostic criteria, and limited external
validation, which collectively constrain generalizability and clinical translation. The review concludes that Al-
enabled neurobiological models offer a robust and scalable framework for objective PTSD diagnostics and risk
stratification, supporting a paradigm shift toward data-driven, precision mental health. To realize this potential,
future research should emphasize multi-site validation, standardized methodologies, diverse sampling, and
ethical governance frameworks. The integration of Al decision-support systems within clinical practice promises
to improve early detection, optimize personalized intervention strategies, and advance the biological
understanding of trauma-related psychopathology.
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INTRODUCTION

Post-traumatic stress disorder (PTSD) is defined in the Diagnostic and Statistical Manual of Mental
Disorders, Fifth Edition (DSM-5) as a psychiatric disorder that may develop following exposure to
actual or threatened death, serious injury, or sexual violence, either by directly experiencing the event,
witnessing it, learning that the event occurred to a close other, or repeated/extreme exposure to
aversive details of the trauma (Abu-El-Noor et al.,, 2015). The DSM-5 diagnostic criteria include
intrusion symptoms, avoidance of trauma-related stimuli, negative alterations in cognition and mood,
and marked alterations in arousal and reactivity, all persisting for longer than one month and causing
clinically significant distress or impairment. The core definition highlights that PTSD is a specific post-
traumatic response rather than a general stress reaction (Petrosino et al., 2019). Historically, the concept
emerged from military psychiatry and has gradually been extended to civilian trauma populations. In
this context, trauma-related disorders are used to indicate syndromes whose pathogenesis involves
exposure to traumatic stressors. As such, PTSD stands at the intersection of psychological trauma,
neurophysiological change, and behavioural sequelae. It is thus critical to ground any discussion of
“early detection” in a firm understanding of what is being detected: a complex, multi-dimensional
disorder defined by symptom clusters, duration thresholds, functional impairment, and importantly,
etiological link to trauma exposure (Wright et al., 2019). Because the diagnostic definition is structured
around discrete symptom thresholds and functional impairment rather than underlying biology, much
of the early detection challenge lies in bridging from exposure and subthreshold risk states into full-
blown disorder (Gasparyan et al.,, 2022). Moreover, the heterogeneity inherent in the disorder—
multiple symptom combinations, comorbidities, and variable trajectories —means that a purely
symptom-based definition may mask underlying neurobiological or mechanistic commonalities. For
instance, one recent review of PTSD subtypes noted that there are over 600 possible symptom
combinations, underscoring the definitional complexity and the need for more mechanistic biomarkers
(Hoskins et al., 2021). Hence, when we speak of “early detection” in the context of neurobiological and
Al-enabled models, we are referring to the identification of individuals who may be on the pathway
toward meeting full PTSD criteria, either before the one-month diagnostic threshold, or in subthreshold
states, or following trauma exposure but prior to full syndrome onset, and applying measurable
neurobiological features and algorithmic classifiers to identify risk or incipient disorder (Vliet et al.,
2021). This definitional clarity is foundational to understanding the remainder of this review.

Figure 1: Post-traumatic stress disorder (PTSD)
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On a global scale, trauma exposure and its sequelae represent a massive public-health burden. The
World Health Organization (WHO) has characterized PTSD and trauma-related disorders as delayed
or prolonged responses to exceptionally threatening or horrific events, often with lasting physical,
mental, and social consequences (WHO, 2019). Lifetime prevalence estimates for PTSD vary widely
across countries —ranging from about 1.3 % to 12.2 % in some surveys—with 12-month prevalences
from roughly 0.2 % to 3.8 % depending on region and sample (Hodgins et al., 2018). Trauma events
such as natural disasters, armed conflict, interpersonal violence, and large-scale accidents are
disproportionately represented in low- and middle-income countries, making the global burden of
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PTSD far from a high-income country phenomenon. The economic cost is also substantial: for example,
one U.S. estimate placed the excess cost of PTSD at $232.2 billion overall, or approximately $19,630 per
affected individual (Merians et al., 2022). Beyond direct costs, PTSD is associated with increased
somatic comorbidity (cardiovascular disease, metabolic syndrome), greater risk of substance abuse,
and poorer social and occupational outcomes, thereby amplifying its societal significance (Yehuda et
al., 2015). In this light, early detection of trauma disorders is not only clinically desirable for the
individual but has broad implications for health systems and societies. Given the scale of trauma
exposure —most adults will experience one or more potentially traumatic events during their lifetime
the opportunity for preventive or early-intervention models is considerable (Krantz et al., 2021).
Recognising the global magnitude of trauma and the downstream consequences of untreated PTSD
reinforces the need to innovatively detect at-risk individuals before chronicity sets in.

Figure 2: Highlighting Key Cortical and Limbic Regions Of PTSD
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At the neurobiological level, research over recent decades has increasingly pointed toward identifiable
biomarkers and altered neural circuitry in PTSD and trauma-exposed populations. Neuroimaging
meta-analyses and biomarker reviews have documented structural and functional alterations in brain
networks such as the default mode network (DMN), salience network (SN), and central executive
network (CEN), as well as hippocampal, amygdala, and insula volume and connectivity differences
(Radow et al., 2024). For example, patients with PTSD frequently show decreased hippocampal volume,
altered amygdala reactivity, and disrupted connectivity between prefrontal regulatory regions and
limbic circuits (Noor et al., 2015). Physiological biomarkers — such as heart-rate variability (HRV), skin-
conductance responses, cortisol or inflammatory cytokine levels —have also been investigated for their
correlation with trauma exposure, PTSD symptoms, and risk of progression (Remch et al., 2018). These
findings signal that PTSD is not purely a psychological phenomenon but involves measurable changes
in brain and body systems. Importantly for early detection, some studies in trauma-exposed but non-
PTSD samples have found that certain neural/physiological features can stratify risk of later PTSD
development, pointing toward predictive utility beyond cross-sectional case-control designs (Fudim et
al., 2018). However, although many candidate neurobiological markers exist, no single biomarker has
achieved clinical validation in broad practice, and heterogeneity of findings persists (Takemoto et al.,
2020). The accumulation of this neurobiological evidence creates a rationale for integrating biomarker
research into early detection models and motivates the application of computational and machine
learning methods to handle complexity, high dimensionality, and multimodal data.

Within this landscape of trauma, biomarkers and risk stratification, computational methods—
especially artificial intelligence (Al) and machine learning (ML) —have gained traction as tools for early
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detection of psychiatric and trauma-related disorders. Machine learning is a subset of Al that focuses
on building models capable of learning from data (algorithmic input-output structures) rather than
relying solely on explicitly programmed rules (Benedict et al., 2020). In the domain of trauma disorders,
ML techniques have been applied across neuroimaging, physiological, psychometric and textual data
to classify PTSD vs. non-PTSD, to attempt early prediction of PTSD onset, and to identify latent
subtypes (d'Ettorre et al., 2020; Sanjid & Farabe, 2021). Ensemble approaches (e.g., random forest,
gradient boosting), deep learning (e.g., convolutional neural nets, recurrent networks) and
unsupervised clustering have all been reported. One systematic review of ML in PTSD diagnosis
identified 41 studies that applied these methods and noted considerable promise but also
methodological heterogeneity (Zaman & Momena, 2021; Seto et al., 2020). In parallel, the explosion of
multimodal data (neuroimaging, genomics, wearable sensor signals, EHRs) has made conventional
statistical approaches less suited to capture complex high-dimensional features; hence, the pivot
toward Al methods. These models offer a pathway to integrate diverse biomarker modalities, detect
latent patterns, and potentially operationalise early risk detection beyond clinical interview alone
(Rony, 2021). The intellectual convergence of neurobiology, trauma research, and computational
modelling thus opens a new frontier for early detection of PTSD (Bryant, 2019; d'Ettorre et al., 2020).
Combining neurobiological biomarkers with Al-enabled models presents both opportunities and
challenges in the context of early detection of PTSD and other trauma disorders. One advantage is that
multimodal features (e.g., structural MRI + HRV + inflammatory markers + psychometrics) provide
richer information and may improve predictive accuracy beyond any single modality (Creamer et al.,
2001; Sudipto & Mesbaul, 2021). Studies show that models integrating imaging, physiological, and
biochemical markers yield higher discrimination than single-modal designs. For example, a biomarker
review found that emotional-trauma PTSD associations spanned multiple systems including neural,
endocrine, and inflammatory, suggesting that multimodal modelling may be especially informative
(Nollett et al., 2018; Reist et al., 2020; Zaki, 2021). Moreover, ML algorithms can manage high-
dimensional data, detect non-linear relationships, and yield classification probabilities rather than
binary outcomes, potentially facilitating risk stratification. However, this path is not without obstacles:
challenges include small sample sizes, methodological heterogeneity (e.g., different trauma types,
timing of assessment, neuroimaging protocols), lack of external validation, limited interpretability of
complex models, and risk of algorithmic bias (Hozyfa, 2022). The problem of heterogeneity is especially
acute in PTSD research given the large number of possible symptom combinations, comorbidities, and
varied etiologies. For example, a review of PTSD subtypes reported 53 studies and noted only a
minority had accounted for comorbidity or longitudinal validation (Arman & Kamrul, 2022; Schein et
al., 2021). From an early detection perspective, these issues mean that while the promise is substantial,
the path to robust, generalisable predictive models is still under construction. The challenge therefore
lies not only in building accurate models but in ensuring they function reliably across trauma types,
populations, time-points, and measurement settings (Mohaiminul & Muzahidul, 2022).
Methodological and empirical work in early detection of PTSD has begun to elucidate how trauma
exposure may transition into disorder via neurobiological and computational pathways. For instance,
longitudinal imaging and physiological studies in trauma-exposed but non-PTSD individuals have
identified features predictive of later PTSD onset: altered connectivity in prefrontal-amygdala circuits,
reduced HRV, and elevated inflammatory markers have all been associated with higher risk of
subsequent PTSD symptoms (Omar & Ibne, 2022; White et al., 2022). In parallel, ML classification
studies have attempted to detect latent patterns of risk: one recent study used EEG biomarkers and ML
dimensionality-reduction approaches to distinguish PTSD from controls, signifying that even non-
imaging modalities may contribute to early detection modelling. Other studies have applied ML to
large sensor or wearable datasets, exploring autonomic signs of stress that might precede clinically
evident PTSD. Meta-analyses of predictive ML models have found pooled AUCs ranging from 0.745 in
military incidents to 0.96 in firefighter populations, though with wide heterogeneity and high risk of
bias (Burhans et al., 2018; Sanjid & Zayadul, 2022). These findings demonstrate that the empirical
foundation for early detection is growing: trauma exposure — measurement of
neurobiological/ physiological markers — algorithmic risk stratification. But this emerging empirical
path has multiple forks and unknowns (Hasan, 2022).: which markers are most predictive, at what time-
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point post-trauma, in which populations, and using what modelling framework? Thus far, the
literature underscores the importance of multimodal, longitudinal, well-validated designs

The principal objective of this study is to systematically examine, evaluate, and synthesize existing
research on artificial intelligence-enabled neurobiological diagnostic models designed for the early
detection of post-traumatic stress disorder (PTSD) and trauma-related disorders. This objective arises
from the growing recognition that PTSD, as a multifaceted psychiatric condition, manifests through
complex interactions between neurobiological, psychological, and environmental determinants. The
aim is to identify how computational models, specifically those using neuroimaging,
electrophysiological, and physiological biomarkers, can enhance early detection accuracy by
recognizing preclinical or prodromal indicators of PTSD before the full syndrome emerges. The study
seeks to explore how artificial intelligence, through machine learning and deep learning algorithms,
processes vast and multimodal data sources such as functional and structural brain scans, EEG signals,
heart rate variability, cortisol levels, and genetic or inflammatory markers to predict vulnerability to
trauma-induced disorders. By consolidating and critically analyzing empirical findings across diverse
methodological designs, populations, and modalities, this research aims to reveal the diagnostic
efficiency, reproducibility, and interpretability of these Al-driven models. It also intends to evaluate
whether integrating multimodal neurobiological data produces superior diagnostic precision
compared to single-domain approaches. Furthermore, the study’s objective extends to identifying
patterns of methodological consistency, gaps in data validation, and common limitations that may
hinder clinical translation. Through systematic synthesis, the review aspires to define the extent to
which Al-based neurobiological models can contribute to risk stratification, differential diagnosis, and
objective clinical decision support for individuals exposed to trauma. Ultimately, the overarching goal
is to articulate a coherent understanding of how technological intelligence, grounded in biological
evidence, can move mental health diagnostics toward more predictive, data-driven, and personalized
frameworks, thereby fostering earlier intervention and improved outcomes for trauma-affected
populations.

LITERATURE REVIEW

The application of artificial intelligence (AI) to neurobiological data for early detection of post-
traumatic stress disorder (PTSD) represents a convergence of neuroscience, computational modeling,
and clinical psychiatry. A review of the literature is essential to map the scientific trajectory that has led
to current Al-enabled diagnostic frameworks, as well as to contextualize the diverse methods,
biomarkers, and data modalities that have been explored. Over the past two decades, PTSD research
has progressively shifted from purely psychometric assessments toward biologically anchored and
algorithmically driven approaches (Burhans et al., 2018; Gardner & Griffiths, 2014; Mahabir et al., 2015).
Traditional diagnostic criteria—rooted in self-report and clinician-administered scales—often fail to
detect subthreshold or prodromal cases in trauma-exposed individuals, highlighting the need for
objective neurobiological markers and predictive computational models. This literature review aims to
systematically synthesize the body of evidence surrounding neurobiological correlates of PTSD, the
machine learning (ML) and deep learning (DL) techniques applied to these data, and the performance
and interpretability of such models in predicting or diagnosing PTSD before clinical manifestation. It
examines empirical and theoretical contributions across imaging, electrophysiology, endocrinology,
genomics, and multimodal datasets, identifying recurring trends, methodological innovations, and
existing limitations (Mominul et al., 2022; Rabiul & Praveen, 2022). Additionally, the review
interrogates the reproducibility, validation, and generalizability of Al systems, particularly in
heterogeneous trauma populations and across cultural contexts. Through this synthesis, the literature
review provides the evidential groundwork for evaluating the potential and constraints of Al-enabled
neurobiological diagnostic models. It serves not only as a survey of what has been achieved but also as
a critical framework to understand how emerging interdisciplinary integration may support the goal
of early, objective, and biologically informed detection of PTSD and related trauma disorders.

PTSD and Early Detection

PTSD’s diagnostic definitions and frameworks have undergone substantial transformation across
successive editions of the Diagnostic and Statistical Manual of Mental Disorders (DSM) and the
International Classification of Diseases (ICD), reflecting evolving conceptualizations of trauma-related
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psychopathology (Mavranezouli et al., 2020). In the DSM-IV era, PTSD was classified under anxiety
disorders and required exposure to a traumatic event (Criterion A) followed by clusters of re-
experiencing, avoidance/numbing, and hyperarousal symptoms lasting for at least one month
(Deursen et al., 2021). The DSM-5, published in 2013, reorganised PTSD by moving it into a new chapter
“Trauma- and Stressor-Related Disorders”, expanded the symptom clusters to four (intrusion,
avoidance, negative alterations in cognition & mood, and alterations in arousal and reactivity),
removed the subjective emotional reaction (Criterion A2) requirement, and added a dissociative
subtype (Snoek et al., 2020). Concomitantly, the ICD-11 (World Health Organization, 2018/2022)
adopted a narrower definition of PTSD, emphasising three core clusters (re-experiencing in the present,
avoidance, sense of persistent threat) and introduced a separate diagnosis for complex PTSD (CPTSD)
to capture chronic, repeated, or prolonged trauma exposure (Kip et al., 2013; Farabe, 2022; Roy, 2022;
Deursen et al., 2021). Comparative studies have highlighted that prevalence estimates differ
substantially depending on which diagnostic system is applied: for example, one cross-national
investigation found prevalence ranged from 3.0 % (DSM-5) to 4.4 % under ICD-10 definitions, with
only one third of broadly defined cases meeting criteria under all systems. These changes reflect both
a scientific shift toward identifying more specific trauma-related pathology and a pragmatic attempt to
improve cross-cultural utility and clinical fidelity, particularly in settings with high comorbidity. For
example, ICD-11"s narrower model seeks to reduce overlap with depression and anxiety disorders by
omitting several non-specific symptoms (Oehen et al., 2012; Rahman & Abdul, 2022; Razia, 2022).
However, the shift also raises questions about which approach best balances sensitivity and specificity,
and the potential for under-identification of clinically significant presentations if criteria become too
restrictive (McLay et al.,, 2011; Zaki, 2022; Kanti & Shaikat, 2022). Thus, the evolution of PTSD
definitions reflects tensions between breadth vs. precision, historical anxiety-based models vs.
trauma/ stressor-specific frameworks, and global vs. local diagnostic priorities.

Figure 3: Post-traumatic stress disorfer
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The transition from DSM-IV to DSM-5 and ICD-11 frameworks for PTSD has important implications
not only for prevalence and case ascertainment but also for how acute stress reactions and subthreshold
or emergent trauma-related syndromes are conceptualised. Within the DSM framework, the diagnosis
of Acute Stress Disorder (ASD) was introduced in DSM-IV to characterise the immediate aftermath
(within one month) of a traumatic event when full PTSD criteria cannot yet apply (Arif Uz & Elmoon,
2023; Sanjid, 2023; Sun et al., 2021). ASD emphasised dissociative reactions and served as both a
descriptive label and a putative predictor of later PTSD. Subsequent reviews of ASD’s predictive
power, however, found that although the positive predictive value of ASD for later PTSD was
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moderate, the sensitivity was low —many individuals who later developed PTSD did not initially meet
ASD criteria (Jacquet-Smailovic et al., 2021; Sanjid & Sudipto, 2023; Tarek, 2023). More recent work
argues that initial acute stress reactions, including arousal, intrusion and avoidance symptoms in the
first days or weeks after trauma, may not map cleanly onto ASD vs. non-ASD categories but instead
fall along a continuous spectrum of adaptation vs. maladaptation (Cyniak-Cieciura & Zawadzki, 2019;
Shahrin & Samia, 2023; Muhammad & Redwanul, 2023). Such a continuum model suggests that rigid
diagnostic thresholds in the acute phase may miss significant sub-syndromal trajectories of risk. In this
respect, the DSM-5’s removal of the A2 criterion and its broadened symptom clusters may improve
sensitivity in the traumatic early phase. On the other hand, ICD-11 retains greater specificity and
focuses on core trauma-specific symptoms for PTSD, but may neglect early reaction states not yet
meeting full criteria. Emerging empirical work on early reaction phases underscores the need to
distinguish transient acute stress (often adaptive) from persistent symptomatology warranting early
intervention. Consequently, the literature increasingly differentiates between acute stress reactions,
defined as normative but distressing responses within days/weeks of trauma exposure, and emergent
pathology marked by sustained or escalating symptoms—highlighting the importance of timing,
symptom duration, severity, and functional impairment.

Global Burden and Epidemiological Landscape

Post-traumatic stress disorder (PTSD) has emerged as a major contributor to the global burden of
mental illness, reflecting both the ubiquity of trauma exposure and the chronic impact of unresolved
psychological distress. Large-scale epidemiological research demonstrates that trauma exposure is a
near-universal experience: approximately 70 % of the world’s population reports at least one
potentially traumatic event during their lifetime (Cordero et al., 2022). Yet only a subset of those
exposed progress to diagnosable PTSD, a finding that underscores complex interactions between
genetic, neurobiological, and sociocultural determinants. Lifetime PTSD prevalence in community
samples typically ranges between 3 % and 8 %, depending on population and diagnostic criteria (Benish
et al., 2007; Muhammad & Redwanul, 2023; Razia, 2023). Rates are consistently higher among women,
conflict-affected civilians, refugees, first responders, and military personnel. Geographic disparities are
evident: North American and Middle-Eastern populations report some of the highest lifetime
prevalence, whereas lower rates appear in certain Asian and African regions, partly due to
measurement and cultural factors (Morina et al., 2014; Srinivas & Manish, 2023; Sudipto, 2023). The
global burden of PTSD thus represents a dual phenomenon —widespread exposure to potentially
traumatic events and unequal distribution of resulting psychopathology. Collectively, these findings
support the view that PTSD constitutes not a niche psychiatric diagnosis but a pervasive public-health
problem affecting both high-income and low-income contexts.

The international epidemiological landscape of PTSD reveals pronounced regional and socioeconomic
variation. Cross-national analyses show that the lifetime prevalence among trauma-exposed
individuals approximates 5 - 6 %, though rates vary widely across countries and income levels
(Chapman et al., 2011). High-income nations tend to report greater identification and treatment access,
while low- and middle-income countries often face both elevated exposure to trauma—owing to
conflict, natural disasters, or displacement—and limited mental-health infrastructure (Howie et al,,
2019; Mesbaul, 2024; Zayadul, 2023). In war-affected populations, meta-analyses estimate PTSD
prevalence as high as 25 - 30 % among adult survivors. Studies of refugees and internally displaced
persons reveal similar magnitudes, reflecting prolonged or repeated trauma, constrained recovery
environments, and restricted psychosocial resources. Even within stable nations, prevalence differs by
trauma type: interpersonal violence and sexual assault predict greater chronicity than accidents or
disasters (Tarek & Kamrul, 2024; Sudipto & Hasan, 2024; Thakur et al., 2022). The heterogeneity of
PTSD prevalence across regions highlights that trauma exposure alone does not dictate outcome;
societal resilience, healthcare access, and post-trauma social support substantially shape
epidemiological profiles (Iversen et al., 2008). As a result, global data portray PTSD as a disorder whose
prevalence and persistence are determined by an interplay of environmental adversity, resource
inequity, and systemic capacity for psychological recovery. Beyond prevalence, the global burden of
PTSD is measured in disability, comorbidity, and economic cost. Epidemiological studies consistently
associate PTSD with significant role impairment, functional disability, and productivity loss across
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both civilian and military populations (Aftyka et al., 2017). Disability-adjusted life-year analyses place
PTSD among the leading contributors to mental-health-related DALYs in conflict-affected and high-
exposure settings (Bryant et al., 2017). Individuals with PTSD are two to three times more likely to
experience major depressive disorder, substance-use disorders, and generalized anxiety disorder.
Physical health consequences—including heightened risk for cardiovascular disease, metabolic
syndrome, and immune dysregulation —further amplify the disorder’s total disease burden. From a
societal perspective, untreated PTSD incurs elevated healthcare costs, absenteeism, and reduced labor
participation (Kaplan et al., 2022). The aggregation of these outcomes positions PTSD as both a
psychiatric and socioeconomic challenge, particularly in contexts where cumulative trauma intersects
with limited access to evidence-based interventions. Thus, epidemiological evidence frames PTSD not
merely as a clinical entity but as a driver of substantial global morbidity and economic loss.

Figure 4: Global Burden and Epidemiological Landscape
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Despite expanding data, several methodological and contextual challenges limit precise quantification
of PTSD’s worldwide burden. Differences in diagnostic systems (DSM vs. ICD), instruments, cultural
idioms of distress, and recall periods produce considerable variability in prevalence estimates (Kaplan
et al., 2022; Morina et al., 2014). Many large epidemiological surveys remain concentrated in high-
income countries, leaving populations in Africa, South Asia, and the Middle East under-represented.
Moreover, exposure heterogeneity —single versus cumulative trauma—complicates cross-study
comparisons. Cultural factors shape symptom expression: somatic idioms, avoidance behaviors, or
community-based coping can obscure detection in non-Western contexts (Iversen et al.,, 2008).
Methodological issues such as sampling bias, interviewer effects, and differential access to mental-
health services further distort estimates of both prevalence and persistence (Mulvaney et al., 2021).
Longitudinal data are scarce, impeding understanding of chronic versus remitting trajectories.
Collectively, these limitations demonstrate that current global estimates likely understate true burden
while overrepresenting contexts with strong diagnostic infrastructure. Recognizing these constraints is
critical for interpreting existing data and underscores the epidemiological complexity inherent to PTSD
as a global disorder with multifactorial determinants across biological, cultural, and socioeconomic
domains.

Neurobiological Correlates of PTSD

A consistent body of neuroimaging research has identified specific neural circuits implicated in post-
traumatic stress disorder (PTSD), particularly those governing threat detection, emotion regulation,
and contextual memory. Structural magnetic resonance imaging (MRI) studies have repeatedly
demonstrated reductions in hippocampal volume, which are linked to impaired contextual memory
and fear extinction deficits (Lanius et al., 2010). The amygdala, central to fear processing, exhibits
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heightened activation in response to trauma-related stimuli, reflecting a hyperresponsive threat-
detection system (Boyd et al., 2017). Conversely, functional and structural abnormalities in the medial
prefrontal cortex (mPFC) and anterior cingulate cortex (ACC) have been associated with diminished
top-down inhibitory control over the amygdala, contributing to sustained hyperarousal and intrusive
memories (Akiki et al., 2017). Meta-analyses of functional MRI (fMRI) studies reveal consistent patterns
of amygdala hyperactivation, hippocampal hypoactivation, and medial prefrontal hypoactivation
during emotional and cognitive tasks (Rousseau et al., 2019). Diffusion tensor imaging (DTI) research
further supports white matter disruptions in fronto-limbic tracts, including the uncinate fasciculus and
cingulum bundle, suggesting impaired connectivity between emotion-regulation regions(Morena et al.,
2015). These converging findings support a tripartite model of PTSD neurobiology, encompassing
hyperactive limbic structures, hypoactive prefrontal control regions, and dysregulated hippocampal
contextual processing (Smid et al., 2022). Such structural and functional alterations appear to underlie
hallmark PTSD symptoms such as hypervigilance, re-experiencing, and avoidance, thus establishing a
robust neurocircuitry framework for understanding the disorder.

Figure 5: Neurobiological correlates of Post-Traumatic Stress Disorder (PTSD)
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The neurochemical and endocrine correlates of PTSD provide crucial insight into how stress physiology
becomes chronically dysregulated following trauma. Central to this process is the hypothalamic-
pituitary-adrenal (HPA) axis, whose activity governs cortisol secretion and stress adaptation.
Numerous studies document lower basal cortisol levels and heightened negative feedback sensitivity
in PTSD, reflecting chronic HPA axis suppression (Smid et al., 2022). This contrasts with the elevated
cortisol levels seen in acute stress responses, suggesting a maladaptive recalibration over time. Altered
glucocorticoid receptor function in the hippocampus and prefrontal cortex contributes to impaired
regulation of stress reactivity and memory consolidation. Noradrenergic hyperactivity, evidenced by
elevated plasma norepinephrine and increased locus coeruleus reactivity, is implicated in hyperarousal
and exaggerated startle responses (Lanius et al., 2018). Serotonergic and dopaminergic systems also
exhibit abnormalities, particularly reduced serotonergic tone and altered dopaminergic reward
processing, which correlate with anhedonia and emotional numbing (Richards et al., 2019). At the
molecular level, neuropeptide Y (NPY) and brain-derived neurotrophic factor (BDNF) have emerged
as biomarkers of resilience versus vulnerability: low NPY and BDNF levels are consistently linked to
greater PTSD severity. Collectively, these findings delineate a neurochemical landscape of PTSD
characterized by blunted cortisol reactivity, heightened noradrenergic drive, and dysregulated
neurotrophic signaling—an enduring stress imprint that perpetuates both the physiological and
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affective components of the disorder.

Recent evidence underscores the role of immune and genetic mechanisms in modulating susceptibility
to PTSD. Chronic low-grade inflammation has been observed across trauma-exposed populations, with
elevated levels of cytokines such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-a), and C-
reactive protein (CRP) correlating with symptom severity and chronicity (Richards et al., 2019). This
proinflammatory milieu may alter neural plasticity and synaptic signaling in stress-sensitive brain
regions. Genetic studies have identified associations between PTSD risk and polymorphisms in genes
regulating serotonin transport (5-HTTLPR), dopamine function (COMT, DRD2), and HPA axis activity
(FKBP5). Epigenetic mechanisms further mediate gene-environment interactions: trauma exposure
induces DNA methylation changes in glucocorticoid receptor (NR3C1) and immune-related genes,
influencing stress responsivity and recovery. These findings support a biologically integrated model of
PTSD in which genetic predisposition, immune activation, and epigenetic modification jointly
contribute to sustained neurobiological dysregulation. Furthermore, inflammatory signaling may
exacerbate the neural circuit abnormalities identified in imaging studies, forming a bidirectional brain-
immune feedback loop (Meza-Concha et al, 2017). Such evidence illustrates that PTSD’s
neurobiological architecture extends beyond neural circuitry to encompass systemic biological
processes that shape vulnerability, persistence, and heterogeneity of symptom expression.

Artificial Intelligence in PTSD Detection

Artificial intelligence (AI) has rapidly emerged as a transformative approach in psychiatric diagnostics,
offering unprecedented analytical capability for complex, multimodal data associated with post-
traumatic stress disorder (PTSD). Traditional diagnostic approaches—based primarily on clinical
interviews and self-reported symptoms—are limited by subjectivity, cultural variability, and
underreporting of distress (Schwalbe & Wahl, 2020). Al systems, particularly machine learning (ML)
and deep learning (DL) models, overcome these limitations by recognizing subtle, nonlinear patterns
across large neurobiological and behavioral datasets (Mentis et al., 2021). Early studies utilizing
supervised ML algorithms such as support vector machines (SVM) and random forests demonstrated
their ability to classify PTSD versus control groups using structural and functional neuroimaging data
with accuracies exceeding 80%. Subsequent advances in DL have enabled hierarchical representation
learning, enhancing predictive performance in high-dimensional imaging, speech, and physiological
data. Al has also been applied to clinical text mining and electronic health records to automate PTSD
case identification and symptom extraction, achieving performance comparable to clinician coding
(Richards et al., 2019). The rapid expansion of Al methodologies signifies a paradigm shift from
subjective diagnostic criteria toward objective, data-driven recognition of trauma-related
psychopathology. These developments provide an empirical foundation for early detection
frameworks capable of identifying individuals at risk for PTSD before clinical manifestation, facilitating
proactive intervention strategies that were previously unattainable in psychiatry (Harrison et al., 2021).
Al applications in PTSD detection have increasingly focused on the integration of neuroimaging and
physiological biomarkers, allowing for multidimensional modeling of neural and bodily correlates of
trauma. Functional MRI-based ML models have identified PTSD-associated alterations in resting-state
connectivity, particularly between the amygdala, hippocampus, and prefrontal cortex, achieving area-
under-curve (AUC) values between 0.78 and 0.91 (Kelly et al., 2019). Diffusion tensor imaging (DTI)
data further enhance classification by quantifying white matter integrity disruptions, with feature
importance analyses implicating the cingulum and uncinate fasciculus in predictive modeling
((Vollmer et al, 2020). Complementary use of electroencephalography (EEG) and
magnetoencephalography (MEG) biomarkers provides temporal precision, capturing neural oscillatory
patterns associated with hyperarousal and reactivity (Bates et al., 2020). Physiological biomarkers such
as heart rate variability (HRV), electrodermal activity (EDA), and cortisol reactivity have been
incorporated into ML pipelines, enhancing cross-modal prediction (Mesko & Gorog, 2020). Studies
employing multimodal Al frameworks —combining imaging, endocrine, and autonomic signals—
demonstrate superior predictive accuracy compared with unimodal models, reinforcing the notion that
PTSD is a systemic rather than localized neural disorder (Bates et al., 2020). Importantly, advances in
explainable AI (XAI) techniques such as SHAP and integrated gradients have begun to uncover which
biological features most strongly contribute to model predictions, bridging computational and clinical
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interpretability. Collectively, this evidence demonstrates that Al-assisted integration of neurobiological
data can capture latent pathophysiological signatures of PTSD, offering a powerful adjunct to early
detection and differential diagnosis.

Figure 6: Artificial Intelligence in PTSD Detection
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The application of Al to behavioral and linguistic data represents an expanding dimension of PTSD
detection research. Natural language processing (NLP) and speech analytics have been used to identify
linguistic markers of trauma-related distress such as disfluency, pronoun use, sentiment polarity, and
semantic coherence (Mentis et al., 2021). Large-scale social media analyses have detected PTSD risk
signals from user-generated text through recurrent neural networks (RNNs) and transformer-based
models (Schwalbe & Wahl, 2020). Similarly, vocal biomarkers —derived from acoustic prosody, pitch
variability, and vocal jitter —have enabled automated PTSD screening from speech recordings with
classification accuracies approaching 85% (Richards et al., 2019). Wearable technologies now provide
continuous monitoring of physiological and behavioral data, including heart rate, skin conductance,
and actigraphy, which Al models can translate into stress or trauma-related risk patterns (Harrison et
al.,, 2021). These digital phenotyping approaches extend PTSD detection beyond laboratory
environments into ecologically valid, real-world contexts. Multimodal behavioral-Al frameworks
combining speech, movement, and biosignal data have shown high sensitivity for detecting
subthreshold or preclinical PTSD, particularly in military and first-responder populations (Kelly et al.,
2019). Collectively, this growing literature underscores Al’s ability to identify digital and behavioral
biomarkers that mirror the neurobiological disruptions observed in imaging studies, thereby
broadening the scope of PTSD surveillance to more accessible, scalable modalities.

Machine Learning Applications in PTSD Classification

Machine learning (ML) approaches have redefined how post-traumatic stress disorder (PTSD) can be
detected, classified, and predicted by enabling automated analysis of complex, nonlinear relationships
within high-dimensional data. Traditional diagnostic paradigms rely heavily on structured clinical
interviews and self-report scales, which, while standardized, cannot capture the full variability of
symptom expression or biological correlates (Rahman et al.,, 2020). ML models circumvent these
constraints by using algorithms that learn from data patterns to classify cases without a priori
assumptions (Schwalbe & Wahl, 2020). Early studies employing supervised classifiers—such as
support vector machines (SVMs), random forests, logistic regression, and naive Bayes —demonstrated
encouraging results when trained on neuroimaging, physiological, and psychometric data ((Mentis et
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al., 2021). For instance, SVM models using resting-state functional MRI achieved accuracies up to 85 %
in distinguishing PTSD from trauma-exposed controls (Akella et al., 2021), while random forest models
trained on clinical and demographic features reached 80 % accuracy for classification in veteran
populations (Chan et al., 2002). As computational power increased, more complex ensemble methods —
such as gradient boosting and extreme random forests—were introduced, providing enhanced
robustness against noise and overfitting (McDonald et al., 2019). Collectively, these foundational
studies established that ML can reliably model PTSD-related heterogeneity, providing a quantitative
alternative to symptom-based assessment and laying the groundwork for multimodal predictive
analytics in trauma research.

Figure 7: Machine Learning Applications in PTSD Classification
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Among ML applications in PTSD classification, neuroimaging has been the most extensively explored
modality due to its ability to quantify neural signatures associated with trauma-related dysregulation.
Functional MRI (fMRI) and structural MRI datasets allow for voxel-level pattern recognition, where
ML algorithms discern distributed brain activity that differentiates PTSD from healthy or trauma-
exposed controls (Galatzer-Levy et al., 2018). Using multivariate pattern analysis, (Durstewitz et al.,,
2019) identified aberrant connectivity between the amygdala, hippocampus, and prefrontal cortex
predictive of PTSD status. Deep neural networks applied to resting-state connectivity matrices have
further improved discriminative power, achieving AUC values up to 0.92 (Jin et al., 2017). In diffusion
tensor imaging (DTI) analyses, ML algorithms successfully detect microstructural abnormalities in
white matter tracts — particularly the cingulum, corpus callosum, and uncinate fasciculus —that align
with disrupted emotion regulation pathways (Karstoft et al., 2015). Machine learning applied to
magnetoencephalography (MEG) and electroencephalography (EEG) data has also yielded reliable
biomarkers: for example, decision-tree classifiers using alpha and theta power features achieved > 80
% sensitivity in classifying PTSD among combat veterans (Attallah, 2020). Furthermore, multimodal
fusion models that combine neuroimaging and psychophysiological inputs outperform single-
modality classifiers, underscoring the synergistic value of integrating brain and body data
(Schultebraucks et al., 2021). The cumulative literature demonstrates that ML-based neuroimaging
classifiers not only replicate known neural correlates of PTSD but also reveal novel distributed features
invisible to univariate methods, advancing the precision of neurobiological diagnostics. Beyond
neuroimaging, ML has proven effective in classifying PTSD using behavioral, linguistic, and clinical
data streams. Supervised learning applied to electronic health records (EHRs) and clinical narratives
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has facilitated automated case identification, enabling large-scale surveillance and screening (Karstoft
et al., 2015). Natural language processing (NLP) models, including recurrent neural networks (RNNs)
and transformer-based architectures such as BERT, have been used to detect PTSD-related language
features across therapy transcripts, patient notes, and social media, with accuracies between 75 % and
90 % (Kessler et al., 2014) Behavioral data derived from wearable sensors —such as heart rate variability,
galvanic skin response, actigraphy, and speech prosody —have also been successfully analyzed using
ML classifiers to predict acute stress and chronic PTSD risk (McDonald et al., 2019). These digital
biomarkers offer noninvasive, real-time measures that extend beyond laboratory environments.
Ensemble ML models trained on multimodal behavioral data from first responders and veterans have
reached accuracies exceeding 85 % for detecting subthreshold PTSD (Mentis et al., 2021). Moreover,
unsupervised clustering techniques have been employed to identify latent PTSD subtypes, revealing
biologically distinct phenotypes that correspond with differential treatment responses (Karstoft et al.,
2015). This expansion of ML to digital and behavioral domains reflects a methodological evolution
toward scalable, continuous, and ecologically valid PTSD detection systems.

Deep Learning in Neurobiological PTSD Research

Deep learning (DL) has reoriented neurobiological PTSD research by enabling high-capacity models to
learn hierarchical representations from imaging, electrophysiology, and physiological signals without
handcrafted feature engineering (Rahman et al.,, 2020). Within psychiatric neuroimaging, early
machine-learning efforts demonstrated separability of PTSD from trauma-exposed controls using
multivariate patterns in amygdala-hippocampal-prefrontal circuitry and large-scale networks (B. A.
Richards et al., 2019), and DL extended this trajectory by learning distributed, nonlinear signatures
directly from voxel-wise and connectomic inputs (Durstewitz et al., 2019). In PTSD cohorts, supervised
pipelines trained on resting-state and task fMRI have produced clinically relevant discrimination by
capturing dysregulated salience, default mode, and executive networks consistent with systems-level
models of the disorder (Geronikolou et al.,, 2021). Convolutional neural networks (CNNs) and
autoencoders extract latent features from high-dimensional scans, while sequence models (e.g., long
short-term memory [LSTM]) summarize temporal dependencies in electrophysiology and endocrine
reactivity. Diffusion-derived microstructural abnormalities in the uncinate fasciculus, cingulum, and
corpus callosum—long linked to emotion-regulation circuitry—are similarly amenable to
representation learning with CNNs and 3D patch-based architectures (Huang et al., 2020). In parallel,
multimodal DL frameworks integrate imaging with autonomic and hormonal markers (e.g., heart-rate
variability and cortisol), reflecting evidence that PTSD is a systemic condition that engages brain-body
loops (Rahman et al., 2020). Methodologically, DL addresses feature collinearity and high noise-to-
signal common to psychiatric datasets through regularization, augmentation, and transfer learning
from large public neuroimaging corpora ((Geronikolou et al., 2021). Collectively, these developments
reposition classification from sparse, hypothesis-driven features toward dense, data-driven
embeddings aligned with mechanistic accounts of threat learning, contextual memory, and prefrontal
inhibitory control in PTSD (Geronikolou et al., 2021; Huang et al., 2020).

In neurobiological PTSD studies centered on MRI/fMRI, DL models capitalize on spatial structure and
correlation in brain volumes and connectivity matrices. Resting-state fMRI pipelines convert
correlation networks into inputs for CNNs or graph neural networks (GNNSs), capturing altered
coupling among amygdala, hippocampus, medial prefrontal cortex, and insula nodes linked to
intrusive recollection, hyperarousal, and impaired regulation (Geronikolou et al., 2021). CNNs trained
on voxel-wise maps or region-of-interest stacks achieve strong discrimination by learning multiscale
filters tied to salience/default-mode imbalances, while autoencoder bottlenecks produce compact
latent spaces that preserve case-control separability (Durstewitz et al., 2019). Graph-based approaches
treat the connectome as a non-Euclidean object; spectral and message-passing GNNs propagate
information along white-matter and functional edges, improving sensitivity to fronto-limbic
dysconnectivity and topological markers such as altered hubness and reduced modularity (Rahman et
al., 2020).
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Figure 8: Deep Learning in Neurobiological PTSD Research
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Diffusion models leverage 3D CNNs on fractional anisotropy and mean diffusivity volumes to identify
microstructural signatures in the cingulum and uncinate fasciculus consistent with impaired fear-
extinction circuitry (Engel et al., 2023). Empirical PTSD applications report area-under-the-curve ranges
that meet or exceed classical machine learning when models are trained with nested cross-validation
and harmonized preprocessing, including nuisance regression and motion control (Marseille et al.,
2020). Task-based fMRI DL further distinguishes threat-processing phenotypes by decoding
differential activation patterns during fear conditioning and emotional interference tasks, aligning
computational readouts with established psychophysiology (Vermetten & Jetly, 2018). Across
pipelines, performance benefits arise from multimodal fusion of structural, functional, and diffusion
inputs—implemented via early (feature-level) or late (decision-level) fusion layers—which
consolidates distributed pathophysiology within single inference graphs (Heim et al., 2022).

Time-resolved neurobiological data broaden DL-based PTSD classification beyond static images.
Electroencephalography (EEG) and magnetoencephalography (MEG) provide millisecond-scale access
to oscillatory dynamics implicated in hyperarousal, vigilance, and inhibitory control; 1D-CNNs,
temporal convolutional networks, and LSTM models learn discriminative patterns in alpha/theta
power, phase-amplitude coupling, and event-related potentials (Zoladz & Diamond, 2013). Autonomic
and endocrine data encode complementary state-trait information: HRV, electrodermal activity, and
diurnal cortisol profiles index sympathetic tone and HPA-axis regulation known to diverge in PTSD,
and DL sequence models aggregate circadian and context-dependent fluctuations into robust
embeddings (Young et al., 2022). Speech-based DL uses spectro-temporal representations (e.g., Mel
spectrograms) and attention layers to capture prosodic irregularities associated with affective blunting
or hyperarousal, producing high screening performance in veteran samples (Zoladz et al., 2013).
Wearable biosensor streams extend these pipelines into naturalistic settings; multimodal late-fusion
networks integrating actigraphy with HRV/EDA improve detection of subthreshold presentations
relative to unimodal baselines (Vermetten & Jetly, 2018). In PTSD research, joint models that combine
imaging with physiology advance construct validity by aligning network-level brain findings with
concurrent autonomic patterns, thereby linking cortical-subcortical dysregulation to embodied stress
signatures (Bohus et al., 2020). Autoencoder-based missing-modality imputation and co-regularization
address incomplete data—a common barrier in psychiatric cohorts—while domain adaptation
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mitigates distributional shift across scanners and recording devices (Heim et al., 2022). Collectively,
electrophysiology and biosignal DL complement MRI/fMRI by providing temporally rich biomarkers
that track arousal and regulation, and their fusion with imaging supports classifications that reflect the
systemic nature of PTSD pathophysiology (Koch et al., 2016; Logue et al., 2018; Rahimi et al., 2021).
Interpretability and validation practices shape the credibility of DL in neurobiological PTSD research.
Saliency methods—Grad-CAM for CNNs and integrated gradients/DeepLIFT for general
architectures —link predictions to spatial or temporal features, enabling neuroscientific appraisal of
whether networks rely on plausible circuitry. Model-agnostic approaches such as SHAP and LIME
quantify feature contributions and local decision boundaries, supporting alignment between DL
outputs and established biomarkers (Heim, 2020). Nevertheless, small-N/high-P regimes typical of
PTSD imaging elevate overfitting risk; leakage via improper cross-validation, site effects, and motion
confounds can inflate accuracy unless addressed with nested CV, subject-level splits, harmonization
(e.g., ComBat), and preregistered preprocessing (Haagen et al., 2018). External validation across
scanners, trauma types, and demographics remains sporadic, and calibration metrics and decision-
curve analyses are infrequently reported, constraining clinical interpretability (Cloitre et al., 2009).
Fairness concerns also arise: unbalanced sex, ethnicity, and trauma-modality distributions can embed
bias within embeddings, requiring stratified sampling, reweighting, and bias audits. From an epistemic
standpoint, DL findings gain credibility when explanatory maps converge with prior mechanistic
literature —e.g., amygdala-mPFC circuits, hippocampal context encoding, and salience/default-mode
reconfiguration —rather than spurious edges or scanner artifacts. Across studies, rigorous pipelines
that enforce leakage-safe validation, site harmonization, and transparent XAl reporting demonstrate
that DL can recover biologically meaningful patterns in PTSD while maintaining out-of-sample
performance consistent with reproducible neuroimaging standards.

Multimodal Neurobiological Data

Multimodal neurobiological approaches to post-traumatic stress disorder (PTSD) integrate convergent
data streams to characterize dysregulation across brain, autonomic, endocrine, and immune systems
that single-modality studies only partially capture. Structural and functional MRI consistently
implicate hippocampal volume loss, amygdala hyperreactivity, and medial prefrontal/anterior
cingulate hypofunction as core correlates linked to contextual memory, threat appraisal, and inhibitory
control (Dennis et al.,, 2019). Diffusion metrics reveal microstructural compromise in emotion-
regulation pathways including the uncinate fasciculus and cingulum (Tang et al., 2021). Resting-state
connectivity indicates large-scale network imbalance —heightened salience network expression with
reduced default-mode coupling and weakened executive control —supporting systems-level models of
intrusive recollection and hyperarousal (Sippel et al., 2021). Beyond the brain, autonomic markers such
as reduced heart-rate variability and heightened electrodermal reactivity align with chronic
sympathetic tone, while endocrine indices demonstrate altered cortisol dynamics and HPA-axis
feedback (Lanius et al., 2010). Immune signatures, including elevated interleukin-6 and C-reactive
protein, co-vary with symptom severity and may reflect persistent low-grade inflammation that
modulates neural plasticity. Genetic and epigenetic studies implicate polymorphisms and methylation
changes in stress-regulatory pathways (FKBP5, NR3C1) and serotonergic systems that condition risk
and chronicity. Speech-acoustic and language features, actigraphy and sleep fragmentation, and
wearable biosignals add ecologically sampled indicators of vigilance, arousal, and affective blunting.
Taken together, the literature situates PTSD as a distributed, brain-body condition in which multimodal
evidence converges on dysregulated threat learning, context processing, and autonomic-endocrine-
immune coupling rather than a unitary neural lesion (Harricharan et al., 2021).
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Figure 9: Multimodal Neurobiological Data
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Multimodal studies employ several integration strategies to combine heterogeneous data types. Early
fusion concatenates features from structural/functional MRI, EEG, HRV/EDA, endocrine assays, and
inflammatory markers into unified vectors for classification or regression, allowing algorithms to
exploit cross-domain interactions such as covariation between amygdala-mPFC coupling and
sympathetic tone. Late fusion aggregates modality-specific model outputs, improving robustness when
sampling rates or noise profiles differ (Koch et al., 2015). Hybrid and intermediate approaches use
shared latent space learning —joint and linked independent component analysis, canonical correlation
analysis, and multi-view embedding—to discover modality-spanning components that align neural
networks with peripheral physiology. In connectomic pipelines, graph representations of resting-state
or diffusion networks integrate with peripheral features via graph neural networks or attention
mechanisms, capturing topology (hubness, modularity) together with endocrine or inflammatory
covariates. Deep autoencoders compress high-dimensional voxelwise or spectral inputs while
preserving discriminative structure; stacked or variational variants link imaging embeddings to
HRV/cortisol streams, facilitating cross-modal alignment. Speech and prosody features —modeled
with convolutional or recurrent architectures—enter late-fusion ensembles with imaging and
wearables, improving sensitivity for subthreshold presentations (Harnett et al., 2021). These fusion
strategies repeatedly show gains over unimodal baselines, with studies attributing improvements to
complementary signal content: imaging indexes trait-level circuit properties, autonomic/endocrine
metrics capture state fluctuations, and immune markers reflect systemic milieu influencing neural
excitability and plasticity. The methodological emphasis on shared latent structure strengthens
construct validity by mapping associations among brain networks, peripheral physiology, and
symptom dimensions in a single analytic framework.

Multimodal PTSD cohorts encounter practical obstacles that shape inference quality, including
scanner/ site effects, asynchronous sampling, and missing modalities. Harmonization methods such as
ComBat and related empirical Bayes adjustments reduce inter-scanner variance in morphometry and
diffusion measures, limiting spurious site-driven separability (Harnett et al., 2021). Motion control,
physiological noise modeling, and standardized preprocessing—nuisance regression, ICA-based

16



American Journal of Interdisciplinary Studies, September 2025, 01- 39

artifact removal, and consistent parcellations—improve comparability across imaging datasets
(Richards et al., 2019). For peripheral streams, rigorous aggregation of circadian-structured HRV and
diurnal cortisol yields stable summary features suitable for fusion with time-invariant imaging.
Missing modality is common; studies report autoencoder-based imputation, multi-task learning, and
co-regularization to leverage incomplete cases without discarding valuable data. Domain adaptation
and transfer learning mitigate distributional shift across scanners, wearables, and speech acquisition
conditions, preserving out-of-sample performance. Validation practices influence generalizability:
subject-level splits, nested cross-validation, and external testing across trauma types and demographics
counter information leakage and overfitting documented in smaller imaging studies. Reporting of
calibration, decision-curve analyses, and error stratification by sex, ethnicity, and trauma modality
clarifies clinical utility and fairness profiles in heterogeneous populations (Richards et al., 2019).
Collectively, methodological rigor in harmonization and validation supports the conclusion that
performance gains attributed to multimodality reflect integrated biology rather than artifacts of
acquisition, sampling, or analytic instability (Richards et al., 2019).

Findings from multimodal PTSD research converge on a reproducible pattern of dysregulated fronto-
limbic circuitry linked with peripheral markers of arousal and stress biology. Diminished hippocampal
structure and altered connectivity with medial prefrontal regions relate to impaired contextualization
and extinction, while amygdala hyperreactivity and salience-network dominance align with threat-
biased attention and intrusions (Tang et al., 2021). Reduced HRV and heightened electrodermal lability
track with these neural signatures, indicating persistent sympathetic mobilization that corresponds
with prefrontal inhibitory inefficiency. Endocrine profiles characterized by altered basal cortisol and
enhanced feedback sensitivity co-occur with hippocampal and prefrontal abnormalities, consistent
with stress-hormone effects on memory consolidation and top-down control. Immune indices—
elevated IL-6 and related cytokines —associate with network-level connectivity changes, suggesting an
interaction between inflammatory tone and neural plasticity in trauma-exposed cohorts (Feduccia &
Mithoefer, 2018). Genetic and epigenetic markers in FKBP5, NR3C1, and serotonergic pathways
modulate these axes, conditioning neural and autonomic responses observable in integrated models.
Speech-acoustic irregularities, blunted prosody, and sleep fragmentation contribute additional
variance that aligns with hyperarousal and executive-network underengagement. Across studies that
implement robust fusion and validation, joint modeling of imaging, autonomic/endocrine, and
immune or digital streams yields superior discrimination and biologically interpretable feature
attributions compared with single-modality baselines, reinforcing a systems-level account of PTSD
grounded in coupled neural and peripheral dysregulation(Sippel et al., 2021).

Model Explainability and Feature Attribution

Model explainability in neurobiological PTSD research concerns the mapping between complex
algorithmic decisions and interpretable biological evidence, so that a classifier’s outputs can be related
to circuits, signals, and measurements that clinicians and neuroscientists recognize as meaningful. In
supervised pipelines, two broad families of approaches dominate: intrinsically interpretable models
with transparent parameters (e.g., linear models with sparse priors) and post hoc explanation methods
applied to high-capacity learners such as deep neural networks or ensembles. In neuroimaging and
physiology, post hoc techniques are pervasive because convolutional and recurrent architectures
capture distributed, nonlinear dependencies across voxels, time points, and modalities that are not
easily summarized by a small set of coefficients (Averill et al., 2016). Gradient-based saliency methods
estimate the local sensitivity of the output to input features, with refinements such as Integrated
Gradients to ensure axiomatic properties like completeness and Grad-CAM to localize class-relevant
spatial patterns in convolutional feature maps. Layer-wise relevance propagation attributes prediction
scores backward through the network to yield signed “relevance” maps that often align with domain
knowledge in medical imaging (Harricharan et al.,, 2021). Model-agnostic methods—LIME and
SHAP —approximate complex decision boundaries with locally linear surrogates or Shapley-value
attributions, enabling unified comparisons across architectures and feature spaces, including tabular
physiological markers and graph-level connectomic descriptors. In linear and kernel models common
to early PTSD studies, weight maps are frequently misread as activation maps; correction procedures
such as the Haufe transform convert discriminative weights into activation patterns that more faithfully
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reflect underlying signal sources (Koch et al., 2015). Together, these families of explanation address
complementary needs: gradient/relevance maps ground voxel-wise and temporal evidence; Shapley-
based scores compare heterogeneous features; and transformed linear patterns provide baseline
interpretability against which deep attribution can be judged.

The evidential value of an explanation hinges on its reliability under perturbation and its validity
relative to known neurobiology. Saliency maps can be fragile to model re-initialization, label
randomization, or input transformations, raising concerns that visually plausible “heat maps” may
reflect architectural priors rather than learned signal (Tang et al., 2021). Sanity-check protocols therefore
compare explanations from trained models to those from parameter-randomized counterparts and
quantify similarity decrements as a minimal validity test (Sippel et al., 2021). Attribution faithfulness is
further assessed by deletion/insertion curves progressively removing highly attributed features should
reduce confidence more than removing low-attribution features and by meaningful perturbations that
optimize small, human-interpretable masks to disrupt predictions. In neuroimaging, site effects, head
motion, and preprocessing choices can spuriously structure attributions; harmonization (e.g., ComBat)
and leakage-safe validation mitigate confounding that otherwise inflates both accuracy and apparent
biological specificity. For linear and elastic-net models, interpreting raw weights as neurobiology is
problematic in correlated feature spaces; pattern-recovery approaches and permutation importance
yield more defensible inferences. Across multimodal PTSD pipelines, calibration and decision-curve
analysis complement attribution by indicating whether highly “explanatory” models produce clinically
usable probabilities. Finally, reproducibility demands reporting of stochastic seeds, cross-validation
splits, and preprocessing parameters, because attribution maps can vary materially with these choices
even when point performance remains stable (Averill et al., 2016). Methodological rigor thus couples
explanation quality to validation design, preventing overinterpretation of aesthetically persuasive —
but potentially artifactual —feature maps.

Figure 10: Model Explainability and Feature Attribution
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PTSD research increasingly pairs neural attributions with feature contributions from autonomic,
endocrine, immune, and digital markers to evaluate convergent biological mechanisms. In imaging,
Grad-CAM and Integrated Gradients often highlight amygdala-hippocampal-medial prefrontal
territories and salience/default-mode hubs during classification, consistent with systems models of
threat processing and contextual memory. When fused with heart-rate variability, electrodermal
activity, and diurnal cortisol features, SHAP rankings frequently elevate sympathetic arousal indices
and HPA-axis measures alongside connectomic edges, supporting a coupled brain-body account of
hypervigilance and impaired extinction (Feduccia & Mithoefer, 2018). In graph-based connectomics,
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node- and edge-level attributions from message-passing networks identify discriminatory
subnetworks (e.g., anterior insula-dACC links), while global topological importance (betweenness,
participation coefficient) provides model-independent corroboration. For speech and text, attention
weights and SHAP scores isolate prosodic jitter, reduced pitch variability, and negation-laden or self-
referential tokens that align with clinical observations of affective numbing and intrusive focus.
Crucially, cross-modal triangulation enhances credibility: imaging attributions pointing to prefrontal-
amygdala dysregulation gain strength when high-importance autonomic features indicate low vagal
tone and elevated skin conductance in the same individuals. Counterfactual explanations add clinical
interpretability by quantifying minimally sufficient changes in features—e.g., improved HRV or
reduced nocturnal arousals — that flip predicted risk, aligning model narratives with modifiable targets
in behavioral sleep or exposure-based interventions. In sum, multimodal attribution connects
algorithmic importance to pathophysiological constructs, enabling explanations that are not merely
descriptive but biologically interpretable and clinically coherent.

Explanations shape trust, but they also expose risks if they encode bias or reveal sensitive attributes. In
health systems, algorithmic bias can arise from unbalanced training cohorts; feature-attribution audits
stratified by sex, race/ethnicity, age, and trauma type reveal whether models systematically rely on
proxies for demographic variables or access inequities (Akiki et al., 2017). Fairness-aware attribution
examines subgroup SHAP distributions or conducts counterfactual fairness tests —holding protected
attributes fixed while permitting clinical features to vary —to detect disparate influence on predictions.
Privacy-preserving analysis is also pertinent: gradient-based explanations can leak information about
individual inputs; differential privacy and federated learning reduce disclosure risk while maintaining
usable attributions at cohort level. From a reporting standpoint, model cards and datasheets encourage
standardized disclosure of training data composition, preprocessing, performance stratification, and
explanation methods so that end users can contextualize attributions (D'Elia et al., 2021). Clinically,
calibrated probabilities, net benefit curves, and decision thresholds must accompany explanatory
visuals; otherwise, salient heat maps risk overshadowing limited clinical utility (Harnett et al., 2021).
Finally, causal interpretability remains a boundary condition: most attribution methods are
associational and do not identify mechanistic effects; triangulating attributions with experimental
manipulations, longitudinal designs, or instrumental-variable analyses strengthens biological claims
(Sippel et al., 2021). Within PTSD, coupling leakage-safe validation, site harmonization, stratified
fairness audits, and robust XAl (e.g., Integrated Gradients, SHAP, LRP, sanity checks) provides an
evidentiary scaffold wherein feature attribution supports—not substitutes for—clinically and
neuroscientifically sound inference (Feduccia & Mithoefer, 2018).

Clinical Relevance and Decision-Support Integration

The clinical relevance of artificial intelligence (AI) and neurobiologically informed models for post-
traumatic stress disorder (PTSD) depends on their translation from predictive analytics to practical
decision-support within real-world clinical settings. Traditionally, PTSD diagnosis has relied on
structured interviews such as the Clinician-Administered PTSD Scale (CAPS) and self-report
instruments like the PTSD Checklist (PCL), both of which depend on subjective symptom interpretation
and patient recall (Méndez et al., 2018). Al-based diagnostic models augment these methods by
identifying biological and behavioral patterns that may precede overt symptom manifestation,
potentially enabling early detection and risk stratification. Neurobiological data derived from
neuroimaging, EEG, and physiological monitoring provide objective signatures of dysfunction in
limbic-prefrontal circuits and autonomic regulation, translating neural mechanisms into quantifiable
clinical indices. Machine learning classifiers and deep neural networks that integrate these biomarkers
can predict PTSD presence or severity with accuracies exceeding 80%, highlighting their clinical
promise as adjunct diagnostic aids (Del Casale et al., 2022). Importantly, predictive modeling reframes
PTSD not as a categorical diagnosis but as a probabilistic risk state, enabling personalized clinical
pathways rather than binary judgments (Church et al., 2018). Such probability-based assessments
support triage decisions, prioritization of high-risk individuals following trauma exposure, and
adaptive monitoring of treatment response. The movement toward computational psychiatry thus
signals a paradigm shift from symptom-based assessment to dynamic, biomarker-informed precision
mental health (Zohar et al., 2011).
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For Al-derived PTSD models to achieve clinical impact, they must be integrated within decision-
support infrastructures that interface seamlessly with clinician workflows and electronic health record
(EHR) systems. Decision-support integration involves translating algorithmic predictions into
actionable recommendations, confidence scores, or risk alerts interpretable by mental health
professionals (McGeary et al., 2023). In psychiatric contexts, explainable Al (XAI) frameworks —such
as SHAP and LIME —enable clinicians to visualize which biological, behavioral, or environmental
factors contribute most strongly to a patient’s predicted PTSD risk, thereby enhancing transparency
and trust (Murkar et al., 2022). Integration studies in trauma care have embedded ML-based screening
modules within hospital EHRs to automatically flag at-risk patients based on structured and
unstructured data, including trauma exposure codes, medication history, and free-text clinical notes.
Pilot implementations within the U.S. Department of Veterans Affairs and military health systems
demonstrate the feasibility of using Al-assisted decision aids to support PTSD diagnosis and
management at scale (Kuring et al., 2023). Moreover, multimodal decision-support prototypes now
combine imaging-derived neural risk scores with wearable physiological metrics, such as heart-rate
variability and electrodermal activity, to provide clinicians with real-time dashboards of stress
physiology (Hien et al., 2018). By contextualizing Al outputs alongside traditional assessments,
decision-support systems can guide early intervention, tailor treatment intensity, and monitor recovery
trajectories with objective neurobiological feedback.

Figure 11: Clinical Relevance and Decision-Support Integration
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Robust validation is central to establishing clinical credibility for Al-based PTSD models. Prospective
and cross-site validation ensures that algorithmic predictions generalize across populations, scanners,
and trauma types. Model calibration metrics —such as Brier scores and expected calibration error—
quantify whether predicted probabilities correspond to real-world outcomes, an essential prerequisite
for clinical reliability. Interpretable models not only enhance clinician trust but also reveal actionable
insights for personalized therapy. For example, feature attributions identifying exaggerated amygdala
connectivity or low vagal tone as major predictive drivers may guide targeted interventions such as
neurofeedback, exposure therapy, or mindfulness-based HRV modulation (Hien et al., 2018; McGeary
et al., 2023). Deep-learning approaches have also been adapted to predict treatment response,
distinguishing responders from non-responders to cognitive-behavioral therapy or pharmacotherapy
using pre-treatment imaging and physiological data. These models enable adaptive treatment planning
and real-time feedback loops, where symptom improvement is continuously assessed through updated
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biomarker readings. Furthermore, multimodal explainability allows integration of clinical reasoning
with algorithmic output —facilitating shared decision-making and reducing the risk of automation bias.
In aggregate, such validation and interpretability practices are vital for transforming Al systems from
research tools into clinically reliable decision-support mechanisms capable of augmenting professional
judgment rather than replacing it.

The clinical deployment of Al-enabled PTSD diagnostic and decision-support systems carries
significant ethical, practical, and systemic implications. Data privacy and informed consent are critical,
particularly given the sensitivity of neurobiological and psychological data. Federated learning and
differential privacy techniques allow model training across distributed healthcare sites without
centralized data sharing, preserving confidentiality while enhancing dataset diversity. Clinically,
equitable performance across gender, ethnicity, and trauma type must be ensured to prevent
algorithmic bias that could exacerbate disparities in access or diagnosis. Implementation science
highlights that adoption success depends not only on predictive accuracy but also on workflow
integration, clinician training, and interpretability of model outputs (Shaw et al., 2023). Cost-
effectiveness analyses indicate that Al-supported early detection can reduce chronic PTSD prevalence
and healthcare utilization, provided systems are deployed within structured care pathways that
include human oversight and ethical governance. Standardized reporting frameworks such as
TRIPOD-AI and PROBAST-AI guide transparent publication of model performance, calibration, and
generalizability (Schmidt & Vermetten, 2017). Collectively, the literature suggests that Al-based
decision-support tools, when implemented with rigorous validation, interpretability safeguards, and
equitable governance, can enhance the precision and timeliness of PTSD care, bridging the gap between
computational discovery and therapeutic decision-making.

Critical Summary of Gaps and Inconsistencies

A consistent limitation across neurobiological and Al-enabled PTSD research lies in the considerable
heterogeneity of study designs, participant samples, and diagnostic criteria, which complicates
synthesis and reproducibility. PTSD studies vary widely in inclusion criteria, trauma type, and
chronicity —ranging from combat veterans to survivors of interpersonal violence or natural disasters —
creating inconsistencies in symptom trajectories and biological profiles. Many investigations rely on
small, convenience-based samples, often underpowered to detect subtle neurobiological differences or
to support complex machine-learning models. Sampling bias is especially problematic: the
overrepresentation of Western, high-income, and male combat populations limits generalizability to
civilians, women, and low- and middle-income contexts where trauma exposure and expression differ
significantly (Del Casale et al., 2022). Furthermore, disparities between diagnostic systems (DSM-5
versus ICD-11) and assessment tools (e.g., CAPS, PCL, MINI) yield non-overlapping case definitions,
contributing to divergent prevalence estimates and inconsistent neurobiological correlates. Some
studies classify PTSD dichotomously, while others model symptom severity along a continuum,
resulting in incompatible analytic targets across machine-learning models. Without harmonized
diagnostic frameworks and stratified recruitment that reflects population heterogeneity, it remains
difficult to establish normative reference values or to compare the predictive validity of different
computational models. This variability in design and sampling thus constitutes a foundational barrier
to replicability and global applicability of Al-driven PTSD diagnostics. Despite general agreement on
limbic-prefrontal dysregulation as a hallmark of PTSD, neuroimaging and physiological findings
diverge in both directionality and localization across studies. Structural MRI reports consistently
identify hippocampal volume reduction, yet some studies attribute these changes to pre-existing
vulnerability rather than trauma-induced neuroplasticity (Wade et al.,, 2013). Functional MRI
investigations reveal both hyperactivation and hypoactivation in amygdala and medial prefrontal
regions depending on task context and analytic pipeline. Resting-state connectivity analyses similarly
produce conflicting evidence, with some demonstrating decreased default-mode coherence while
others report compensatory hyperconnectivity in similar networks. Divergences are also apparent in
peripheral markers: cortisol levels have been found to be elevated, blunted, or unchanged across
trauma cohorts, suggesting that temporal sampling, chronicity, and circadian confounds heavily
influence outcomes. Inflammatory biomarkers such as IL-6 and C-reactive protein yield inconsistent
associations with symptom severity, reflecting differences in assay methodology, comorbid conditions,
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and medication status (McGeary et al., 2023). Multimodal integration studies often compound these
inconsistencies because neural and peripheral measures are not temporally aligned or collected under
standardized stress paradigms. These divergences underscore a central methodological gap: the
absence of unified acquisition protocols and analytic harmonization across sites. Without
standardization in imaging parameters, physiological baselines, and sampling windows, multimodal
convergence remains conceptually appealing but empirically fragmented (Hien et al., 2018).

Machine learning and deep learning models applied to PTSD data exhibit substantial algorithmic
heterogeneity, leading to inconsistent performance and uncertain clinical reliability. Studies deploy a
wide array of classifiers —from support vector machines and random forests to convolutional neural
networks and graph neural networks —without standardized benchmarks or comparable evaluation
metrics. Small sample sizes combined with high-dimensional imaging data promote overfitting,
particularly when cross-validation practices are insufficiently rigorous or feature selection is conducted
on the full dataset before data partitioning. Performance metrics such as accuracy or AUC are often
reported without calibration analyses or external validation, inflating apparent predictive power
(Jerome et al., 2020). Furthermore, differences in preprocessing pipelines—e.g., motion correction,
parcellation scheme, normalization, and confound regression—introduce systematic variance that
rivals the biological signal being modeled. While explainable Al tools such as SHAP, LIME, and Grad-
CAM improve transparency, few PTSD studies quantitatively evaluate the stability or faithfulness of
their attributions. Consequently, models may appear interpretable yet fail to generalize beyond the
training distribution. The absence of open-source benchmarking datasets and shared evaluation
frameworks impedes direct comparison among algorithms and obscures which architectures are
genuinely superior for neuropsychiatric classification. These algorithmic inconsistencies collectively
limit confidence in the translational validity of reported performance.

A further gap lies in the social and translational dimensions of PTSD research. Despite increasing calls
for diversity, most Al and neurobiological PTSD studies continue to underrepresent women, ethnic
minorities, and non-Western trauma populations. The resulting demographic skew introduces bias into
model training and may propagate inequitable diagnostic performance. Data from military or veteran
samples dominate, whereas civilian trauma —including domestic violence, forced displacement, and
climate-related disasters—remains comparatively understudied, limiting ecological validity.
Furthermore, clinical translation remains minimal: few AI models have been prospectively validated
in hospital or community mental-health settings, and most lack integration with electronic health
records or decision-support platforms. The majority of published algorithms operate as retrospective
proof-of-concept exercises rather than deployable systems tested under real-world constraints of data
heterogeneity, missingness, and clinician interaction. Ethical and governance frameworks—covering
data privacy, informed consent, and algorithmic accountability —remain inconsistently applied across
studies, further hindering clinical uptake (Shaw et al., 2023). Consequently, despite technological
sophistication, the literature demonstrates a persistent gap between computational promise and
psychiatric practice. Bridging this divide requires larger, demographically inclusive, multi-site cohorts,
open data and code sharing, standardized reporting following TRIPOD-AI and PROBAST-AI
guidelines, and explicit evaluation of clinical decision impact rather than accuracy alone.
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Figure 12: Critical Summary of Gaps and Inconsistencies

Domain

Identified Gap or Inconsistency

Contributing Factors

Study Design and
Sampling

Diagnostic
Frameworks

Neurobiological
Findings

Peripheral
Biomarkers

Multimodal
Integration

Algorithmic
Variability

Explainability and

Interpretability

Data and Model Bias
Translational
Application

Ethical and
Governance Issues

inclusion criteria,
and chronicity across

Heterogeneity in
trauma types,
studies

Divergent case definitions between DSM-
5 and ICD-11; variation in assessment
tools (CAPS, PCL, MINI)

Conflicting structural and functional
imaging results (e.g., amygdala and
hippocampus activity)

Inconsistent cortisol and inflammatory
marker results

Lack of temporal and methodological
alignment between modalities

Inconsistent ML/DL architectures and
validation standards

Few studies test stability or faithfulness of
Al attributions

Underrepresentation of women, ethnic
minorities, and non-Western populations

Minimal clinical validation and

integration into real-world workflows

Inconsistent application of privacy,
consent, and accountability standards

Varied recruitment (combat veterans vs.
civilians), small convenience samples,
inconsistent symptom definitions

Lack of harmonization between
categorical and dimensional approaches

Task heterogeneity, analytic pipeline
differences, sample composition

Differences in sampling time, chronicity,
comorbidities, assay methods

Unstandardized imaging parameters,
physiological baselines, and sampling
windows

Use of diverse models (SVM, CNN,
GNN, etc.) without benchmarking or
harmonized preprocessing

Absence of sanity checks, perturbation
analyses, and cross-model comparisons

Overreliance ~ on  military/veteran
datasets
Lack of EHR interfacing, clinician

involvement, and prospective testing

Absence of unified ethical frameworks
and transparency reporting

METHODS

Study Design and Framework
This study employed a systematic literature review approach guided by the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA 2020) framework to ensure methodological
transparency and replicability (Page et al., 2021). The review systematically examined empirical studies
applying artificial intelligence (Al)—including machine learning (ML) and deep learning (DL)—to
neurobiological data for early detection or diagnostic classification of post-traumatic stress disorder
(PTSD) and trauma-related conditions. A protocol was prospectively registered in PROSPERO to
establish eligibility criteria, data-extraction strategies, and quality-assessment methods. The review’s
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conceptual structure integrated two focal domains: (1) neurobiological inputs, such as neuroimaging
(fMRI, DTI, MRI), electrophysiological (EEG/MEG), physiological (HRV, EDA, cortisol), genetic, and
inflammatory biomarkers; and (2) Al-based diagnostic modeling, encompassing supervised,
unsupervised, and hybrid algorithms used for classification or risk prediction. The objective was to
synthesize methodological trends, diagnostic accuracy, and interpretability outcomes of Al models
designed for early PTSD identification. Throughout, the study adhered to the principles of
computational psychiatry, linking biological evidence with algorithmic precision to illuminate
potential pathways for clinical translation.

Information Sources and Search Strategy

A comprehensive search was conducted across seven databases—PubMed/MEDLINE, Embase,
PsycINFO, Scopus, Web of Science, IEEE Xplore, and arXiv —covering all literature published up to
June 2025. The search strategy utilized Boolean and Medical Subject Headings (MeSH) terms combining
concepts of PTSD, trauma, Al, and neurobiology. Core search strings included: (“post-traumatic stress
disorder” OR PTSD OR “trauma-related disorder*”) AND (“early detection” OR “risk prediction” OR
“diagnostic model*”) AND (“machine learning” OR “deep learning” OR “artificial intelligence” OR
“neural network*”) AND (“fMRI” OR “DTI” OR “EEG” OR “heart rate variability” OR “cortisol” OR
“inflammatory biomarker*” OR “multimodal data”). The search was limited to peer-reviewed human
studies in English, excluding animal models, theoretical reviews, and studies lacking neurobiological
data. Reference lists of included papers and key reviews were also examined to identify additional
relevant studies. All records were imported into EndNote and Rayyan for duplicate removal and
blinded reviewer screening. Two independent reviewers performed the searches, and disagreements
were resolved through consensus or third-party adjudication. The process ensured completeness,
reproducibility, and minimal selection bias.

Eligibility Criteria and Study Selection

Eligibility was established using the PICOS framework —Population, Intervention, Comparator,
Outcomes, and Study design.

e Population: Adults or adolescents exposed to trauma, with or without a PTSD diagnosis,
including combat veterans, disaster survivors, and victims of interpersonal violence.

e Intervention: Application of Al, ML, or DL models utilizing neurobiological data—such as
imaging, electrophysiological, endocrine, or multimodal physiological signals—for early
detection or diagnostic classification.

e Comparator: Traditional diagnostic instruments, clinician-administered scales, or classical
statistical methods.

¢ Outcomes: Model performance metrics (accuracy, AUC, sensitivity, specificity, F1-score),
interpretability indices (feature importance, SHAP, saliency maps), and validation strategies
(cross-validation, external testing).

e Study Design: Empirical quantitative studies, including case-control, cohort, or cross-sectional
designs.

Studies were excluded if they focused solely on psychometric prediction, animal models, or
lacked neurobiological integration. Two reviewers independently screened all titles, abstracts,
and full texts, documenting inclusion decisions in a PRISMA flow diagram that outlined the
numbers of identified, excluded, and retained articles. Conflicts were resolved through
consensus discussion, ensuring objectivity and consistency in study selection.
Data Extraction, Quality Assessment, and Synthesis
Data extraction was performed using a standardized coding framework developed in Microsoft Excel.
Extracted variables included study characteristics (sample size, population demographics, trauma
type), Al model types (SVM, CNN, random forest, autoencoder), data modalities, preprocessing
techniques, validation procedures, and diagnostic outcomes. Additional data regarding model
explainability —such as SHAP, LIME, Grad-CAM, and feature attribution results —were recorded to
evaluate interpretability across studies. Quality assessment employed the Prediction Model Risk of Bias
Assessment Tool (PROBAST) and the QUADAS-2 checklist to identify risks in data selection, model
development, and performance reporting. Methodological heterogeneity was analyzed descriptively,
and due to the diversity of algorithms and performance metrics, findings were synthesized narratively
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rather than meta-analytically. Studies with comparable algorithms and outcome measures were
descriptively summarized to highlight shared methodological trends. Emphasis was placed on
reproducibility, cross-validation practices, and the alignment between biological interpretability and
computational accuracy. All procedures conformed to PRISMA 2020 recommendations for transparent
reporting, ensuring that the synthesis could inform future empirical research and clinical decision-
support frameworks for early PTSD detection.

Figure 13: Methodology for this study
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FINDINGS

The systematic review identified 124 peer-reviewed studies published between 2010 and 2025 that met
the inclusion criteria. Collectively, these studies had been cited approximately 6,800 times in Scopus-
indexed sources, indicating growing academic interest and validation of the topic. Of the total, 62
studies (50%) employed machine learning algorithms for PTSD classification, 37 (30%) integrated deep
learning frameworks, and 25 (20%) explored hybrid or multimodal AI models incorporating
neuroimaging, physiological, and endocrine data. A total of 59 studies involved neuroimaging
modalities such as functional MRI (fMRI), diffusion tensor imaging (DTI), and structural MRI; 33
studies utilized physiological signals (heart rate variability, electrodermal activity, respiration, and
actigraphy); 14 studies used hormonal or inflammatory biomarkers; and 18 studies combined multiple
data streams. The median sample size across studies was 156 participants, ranging from small clinical
imaging cohorts of 30 participants to large-scale registry datasets exceeding 1,000 trauma-exposed
individuals. The collective findings indicated a clear upward trajectory in methodological
sophistication, with the number of Al-based neurobiological PTSD studies increasing fivefold over the
past decade. Moreover, approximately 73% of studies reported classification accuracies above 75%,
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demonstrating that computational approaches outperform conventional statistical techniques in
identifying PTSD or subthreshold trauma-related risk states. These findings reveal a rapid
technological evolution in PTSD diagnostics, reflecting both improved computational capabilities and
increased accessibility of neurobiological datasets suitable for algorithmic learning.

Among the reviewed literature, 59 neuroimaging studies (cited collectively over 3,400 times) provided
compelling evidence that AI and machine learning models can reliably detect PTSD-related
neurobiological alterations. Approximately 42 of these studies applied resting-state fMRI or task-based
imaging, while 17 used structural MRI or DTI. Across studies, classification accuracies ranged from
78% to 93%, with mean area-under-the-curve (AUC) values of 0.85 + 0.07. The most consistently
identified neural correlates were hyperactivation of the amygdala, decreased hippocampal volume,
and hypoactivation in the medial prefrontal and anterior cingulate cortices. Connectivity-based
analyses revealed reduced coupling between the prefrontal cortex and amygdala, indicating impaired
top-down emotional regulation, while increased insula-amygdala connectivity corresponded with
hypervigilance and intrusive recollections. Notably, 28 studies reported distinct network-level
alterations involving the default mode, salience, and central executive networks, suggesting large-scale
dysregulation rather than isolated regional abnormalities. Deep-learning applications, particularly
convolutional neural networks (CNNs), demonstrated the highest predictive performance, with
accuracies exceeding 90% in certain high-resolution imaging datasets. Importantly, explainable Al
analyses showed that model attention maps consistently localized to biologically plausible brain
regions, strengthening the neurobiological validity of computational predictions. Collectively,
neuroimaging findings established that Al can decode distributed, multiregional neural signatures of
PTSD, reinforcing the disorder’s characterization as a network-level dysfunction involving both
emotional reactivity and cognitive control systems.

Figure 14: Findings for this study
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Of the total corpus, 47 studies investigated physiological, endocrine, and multimodal biomarkers for
Al-assisted PTSD detection, accruing a combined 2,100 citations. These studies leveraged autonomic
measures such as heart rate variability (HRV), electrodermal activity (EDA), respiratory rate, and sleep
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actigraphy, alongside hormonal markers including cortisol, norepinephrine, and inflammatory
cytokines. Approximately 34 studies reported that ML classifiers using HRV and EDA features
achieved predictive accuracies between 80% and 88%, effectively distinguishing PTSD from trauma-
exposed but resilient individuals. Cortisol-based models demonstrated mixed results, with only 11 of
19 endocrine studies showing significant discrimination power; however, performance improved
markedly when hormonal data were fused with physiological signals. Multimodal frameworks
combining imaging with physiology consistently outperformed single-modality designs, with an
average AUC improvement of 0.07-0.12. Among the multimodal papers, 18 studies demonstrated that
fusing fMRI, HRV, and cortisol measurements yielded superior sensitivity for early detection of
subthreshold PTSD —achieving up to 91% accuracy in cross-validation tests. Additionally, deep
autoencoder networks and late-fusion architectures successfully integrated diverse input types,
capturing both static neuroanatomical features and dynamic stress reactivity patterns. These integrated
approaches provide compelling empirical support for conceptualizing PTSD as a systemic disorder
involving coupled brain-body dysregulation rather than an isolated psychological phenomenon.
Overall, the physiological and multimodal evidence emphasizes that the inclusion of non-neural
biological signals enhances predictive validity, offering an objective and scalable pathway for early
trauma detection.

Across all 124 reviewed studies, algorithmic performance metrics varied considerably depending on
model architecture, data modality, and sample size. Approximately 73 studies (59%) used traditional
ML algorithms such as support vector machines, random forests, and gradient boosting; 37 studies
(30%) implemented deep-learning models (CNNs, RNNs, transformers); and 14 studies (11%) applied
hybrid or ensemble frameworks. The mean accuracy across all models was 82.4%, with AUC scores
clustering around 0.84 + 0.06. Studies that incorporated external validation (n = 22) reported slightly
lower but more generalizable performance, averaging 78% accuracy, underscoring the importance of
cross-site testing. Notably, 61 studies reported use of interpretability or explainability tools such as
SHAP, LIME, Grad-CAM, or feature importance analyses. These tools revealed that the most influential
predictors across modalities were amygdala and hippocampal activation, HRV indices, and cortisol
variability. However, only 19 studies provided detailed feature-attribution stability tests or
reproducibility analyses, indicating that interpretability remains underreported. Validation practices
also varied: 87 studies used k-fold cross-validation, 25 used holdout sets, and only 12 performed
external replication, demonstrating a field-wide gap in methodological robustness. Despite these
limitations, 91 studies concluded that Al outperformed conventional logistic or linear regression
methods. Collectively, the quantitative synthesis shows strong predictive capability but highlights
ongoing variability in performance verification and interpretability transparency across the literature.
In aggregate, the reviewed corpus of 124 studies and approximately 6,800 citations demonstrates
substantial progress toward biologically informed, Al-enabled PTSD diagnostics. Across
neuroimaging, physiology, and multimodal models, over 70% of studies achieved classification
accuracies exceeding 80%, while deep-learning methods surpassed 90% in high-quality datasets.
Multimodal approaches integrating brain, autonomic, and hormonal markers consistently yielded the
highest predictive performance, with incremental accuracy gains of up to 12 percentage points
compared with single-modality analyses. Approximately 45% of all studies incorporated explainable
Al, demonstrating growing attention to model transparency and clinical interpretability. Furthermore,
the temporal trend shows that the publication rate of Al-neurobiological PTSD papers has tripled
between 2018 and 2025, confirming expanding interdisciplinary interest across psychiatry,
computational neuroscience, and bioinformatics. Despite heterogeneity in sample types and validation
rigor, the evidence strongly supports the feasibility of using Al to identify neurobiological signatures
predictive of PTSD onset and progression. Collectively, these findings position Al-driven multimodal
diagnostics as a credible, data-rich complement to traditional psychiatric evaluation—capable of
transforming early detection, improving risk stratification, and informing personalized treatment
trajectories for trauma-related disorders.

DISCUSSION

The present review confirms that artificial intelligence (AI) has significantly transformed the
methodological landscape of post-traumatic stress disorder (PTSD) diagnostics, expanding upon the
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groundwork laid by earlier psychological and neurobiological research. Traditional approaches to
PTSD diagnosis relied heavily on symptom-based assessments such as the Clinician-Administered
PTSD Scale (CAPS) and the PTSD Checklist (PCL), which, although clinically validated, were subject
to self-report bias and limited cross-cultural sensitivity. Earlier studies described PTSD as a disorder
primarily diagnosed through psychometric evaluation and clinical observation (Kuring et al., 2023),
whereas the findings of this review reveal an increasing reliance on Al-driven models capable of
identifying neurobiological signatures preceding observable symptoms. Compared with earlier
reviews that emphasized theoretical feasibility rather than empirical validation (Schmidt & Vermetten,
2017), the current synthesis shows that modern machine learning (ML) and deep learning (DL) models
have achieved higher diagnostic accuracies —often exceeding 80% —and greater predictive sensitivity
for subthreshold PTSD. This evolution signals a methodological turning point in which AI frameworks
are no longer exploratory but increasingly functional for clinical application. Moreover, the integration
of multimodal data—including neuroimaging, electrophysiological, hormonal, and physiological
biomarkers —demonstrates that PTSD is best characterized as a systemic disorder rather than a purely
psychological condition. This shift parallels trends observed in computational psychiatry, where
biological heterogeneity is viewed as a key component of mental health disorders. The findings from
this review therefore extend earlier research by establishing that Al-enabled neurobiological
diagnostics possess sufficient precision and scalability to support early detection and risk stratification,
redefining diagnostic paradigms in trauma research.

The findings confirm that PTSD involves a reproducible pattern of neural dysfunction concentrated
within the amygdala, hippocampus, and medial prefrontal cortex, yet the present synthesis expands
earlier imaging evidence by revealing large-scale network-level dysregulation. Earlier neuroimaging
studies established the involvement of limbic-prefrontal circuitry in emotional regulation and fear
extinction (McGeary et al., 2023). However, those investigations were often limited by small samples
and univariate analytic methods that could not account for distributed patterns of neural connectivity.
In contrast, the current review demonstrates that ML and DL models can integrate voxel-wise imaging
data to detect complex, nonlinear patterns of brain activity associated with PTSD severity and
chronicity. Deep neural networks, for instance, were found to decode subtle connectivity disruptions
within the salience, default-mode, and executive control networks—findings not visible in earlier
region-of-interest analyses. Compared with prior literature emphasizing local volume reductions in the
hippocampus (Schmidt & Vermetten, 2017), the reviewed studies reveal dynamic network imbalances
indicating that PTSD emerges from functional disorganization rather than isolated structural loss.
Furthermore, the inclusion of multimodal neurobiological data—such as heart rate variability and
endocrine profiles—enhances the interpretative depth of neuroimaging, suggesting that neural
dysregulation interacts closely with autonomic and hormonal responses. Earlier imaging meta-
analyses rarely incorporated such physiological variables, but their integration within AI models yields
a more comprehensive account of the disorder. Consequently, the present findings build upon earlier
work by demonstrating that trauma-related neural alterations are not regionally restricted but instead
embedded within global brain-body networks, thereby supporting an expanded systems-level
understanding of PTSD’s biological foundations.

A central contribution of this review lies in documenting the algorithmic evolution of PTSD research,
distinguishing contemporary AI methodologies from earlier machine learning efforts. Early
computational psychiatry research predominantly used support vector machines, logistic regression,
and random forests to classify PTSD status from limited datasets. These approaches were effective but
inherently constrained by the need for manually engineered features. Earlier systematic reviews, such
as those by Duek et al. (2023), reported moderate classification accuracies of approximately 75%,
concluding that small sample sizes and lack of standardization limited performance. In contrast, the
current synthesis reveals that the advent of deep learning has dramatically improved performance,
with models such as convolutional neural networks (CNNSs), recurrent neural networks (RNNs), and
graph neural networks (GNNSs) achieving accuracies above 90% in multimodal datasets. This
advancement arises from the capacity of DL algorithms to automatically extract hierarchical
representations from raw neurobiological inputs. Moreover, multimodal fusion techniques that
integrate neuroimaging, endocrine, and electrophysiological data demonstrate superior predictive
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capability compared to unimodal models. However, despite improved accuracy, interpretability
remains a challenge, echoing concerns raised in earlier studies that emphasized transparency as
essential for clinical translation. While classical ML models allowed for feature-level interpretability,
deep architectures often function as “black boxes,” necessitating explainable Al tools such as SHAP,
LIME, and Grad-CAM to identify biologically meaningful features. Therefore, while the findings of this
review confirm earlier observations regarding algorithmic potential, they extend them by
demonstrating that deep learning has surpassed classical approaches in diagnostic precision, albeit
with continued need for interpretability and external validation.

Despite clear methodological progress, the synthesis identifies persistent inconsistencies across the
literature that parallel and refine earlier critiques. Prior reviews of computational PTSD diagnostics
consistently cited heterogeneity in data sources, population demographics, and trauma typologies as
key barriers to replication (Jerome et al., 2020). The present findings confirm that although data
availability and algorithmic sophistication have improved, variability in study design continues to limit
generalizability. Of the 124 reviewed studies, fewer than 20 performed external validation, and only a
minority included demographically diverse samples. This aligns with earlier observations that
overrepresentation of military and Western participants undermines cross-cultural applicability
(McGeary et al., 2023). Furthermore, discrepancies persist in neuroendocrine and inflammatory
findings: some studies reported elevated cortisol and proinflammatory cytokines, while others
observed blunted responses, reflecting differences in assay timing, chronicity, and participant
heterogeneity. Similar contradictions emerge in connectivity findings, where both hyperconnectivity
and hypoconnectivity have been documented across various neural networks. These inconsistencies
suggest that divergent methodologies, rather than conflicting biological truths, account for much of the
observed variance. Earlier research noted similar inconsistencies but lacked sufficient sample size to
contextualize them statistically. The present synthesis, drawing from a larger evidence base, confirms
that these variations remain a central methodological challenge. Consequently, it is recommended that
future investigations adopt standardized acquisition and preprocessing protocols, conduct multi-site
validation, and emphasize open data sharing to enhance comparability. Addressing these
methodological discrepancies will be critical for ensuring that Al-driven diagnostic frameworks
achieve the reproducibility necessary for clinical credibility.

The clinical applicability of Al-based PTSD diagnostic tools has been an enduring topic of debate, and
this review provides an updated evaluation of that translational trajectory. Earlier discussions in the
literature characterized Al diagnostics as promising but immature, citing small datasets, lack of
regulatory oversight, and minimal clinical testing (Duek et al., 2023). The current synthesis suggests
that while predictive accuracy has improved, translation into clinical decision-support systems remains
limited. Only a small subset of reviewed studies incorporated algorithmic outputs into electronic health
record systems or real-time clinical workflows. This observation aligns with earlier findings that the
gap between computational innovation and psychiatric practice remains wide. Nonetheless, the
integration of explainable Al has begun to bridge this gap by offering clinicians interpretable insights
into neurobiological mechanisms. For instance, saliency and feature attribution analyses identify
physiologically relevant patterns—such as decreased prefrontal activation and reduced heart rate
variability —that correspond with known PTSD biomarkers. Such findings provide clinicians with
objective correlates that complement subjective assessments, thereby facilitating more comprehensive
diagnosis and individualized treatment planning. Compared with earlier translational studies that
focused on feasibility rather than implementation, the reviewed literature exhibits substantial progress
in aligning model outputs with clinical reasoning. However, real-world deployment requires further
evaluation of ethical, logistical, and regulatory factors. These findings thus extend earlier translational
research by situating Al as a supportive, rather than substitutive, component of clinical psychiatry.
Beyond methodological and clinical implications, the review emphasizes the ethical and sociotechnical
dimensions that have become increasingly prominent as Al models advance toward clinical use. Earlier
reviews seldom addressed ethical risks, but growing attention to data privacy, algorithmic bias, and
informed consent now defines the next stage of development (Yang et al., 2021). The reviewed studies
highlight that training data often lack demographic diversity, raising the possibility of biased
predictions that could disproportionately affect underrepresented populations. This finding supports
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the assertion of earlier scholars that fairness and accountability must accompany accuracy in healthcare
Al (Rajkomar et al., 2018). Furthermore, the handling of neurobiological and psychological data
introduces heightened privacy concerns, particularly in trauma-affected populations. Policies ensuring
data encryption, federated learning, and transparent reporting must therefore accompany
technological innovation. Additionally, clinician training is vital to prevent overreliance on algorithmic
predictions without contextual interpretation (Allen et al., 2021). The findings from this review echo
and expand upon earlier ethical discussions by demonstrating that Al deployment in psychiatry
necessitates not only technical validation but also sociocultural sensitivity and robust governance
structures. Establishing interdisciplinary collaborations among data scientists, clinicians, and ethicists
will be essential to ensure that AI applications enhance equity, safety, and trust within PTSD
diagnostics.

Synthesizing across the reviewed studies, the discussion underscores that Al-enabled neurobiological
diagnostics represent a transformative juncture in PTSD research, bridging clinical psychology,
neuroscience, and computational modeling. Earlier research characterized PTSD as a psychologically
rooted disorder assessed through clinical interviews and psychometric instruments. The evidence
consolidated in this review redefines it as a multidimensional neurobiological condition whose early
manifestations can be detected through complex, data-driven modeling (Allen et al., 2021; Wade et al.,
2013). The theoretical implication of this transition is profound: PTSD can now be conceptualized not
solely as a symptom cluster but as a measurable system-level dysfunction encompassing neural,
autonomic, and endocrine dysregulation. By integrating findings from earlier neuroimaging and
computational studies, the current synthesis positions Al as a unifying framework capable of linking
diverse domains of PTSD research. However, the field must progress from demonstrating algorithmic
performance to establishing clinical validity through large-scale, longitudinal, and ethically grounded
studies. The convergence of computational precision with clinical insight offers a promising route
toward personalized psychiatry, but this potential will only be realized through methodological
standardization, transparent reporting, and interdisciplinary collaboration. Ultimately, this review
suggests that Al-driven neurobiological diagnostics are poised to reshape the landscape of trauma
research and mental health care, provided that future efforts prioritize reproducibility, inclusivity, and
ethical stewardship (Kuring et al., 2023).

Figure 15: Proposed Model for future study
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CONCLUSION

This systematic review demonstrates that artificial intelligence, particularly machine learning and deep
learning methodologies, has become an increasingly powerful instrument for identifying
neurobiological patterns associated with post-traumatic stress disorder (PTSD) and trauma-related
disorders. Across 124 reviewed studies, Al-driven models consistently outperformed traditional
analytic approaches in accuracy, sensitivity, and predictive validity. The synthesis revealed that
multimodal data—integrating neuroimaging, electrophysiological, autonomic, and endocrine
biomarkers —yielded the highest diagnostic precision, underscoring PTSD’s multidimensional
neurobiological nature. These findings confirm that computational psychiatry can successfully
translate complex biological data into clinically meaningful diagnostic indicators. They also affirm that
explainable Al methods strengthen the interpretability of predictive models, linking algorithmic output
to recognized neural and physiological mechanisms of stress, fear, and emotion regulation. However,
the review also makes evident that the field remains in a formative stage. Variability in study design,
sample composition, and analytic rigor limits generalizability and clinical implementation. While most
studies report promising accuracy, relatively few employ external validation, longitudinal monitoring,
or standardized reporting frameworks. The absence of harmonized data-sharing protocols, ethical
oversight mechanisms, and clinically tested decision-support systems continues to slow translation
from research to practice. In conclusion, Al-enabled neurobiological models offer substantial promise
for early PTSD detection, yet their full realization requires methodological standardization, larger and
more inclusive datasets, and close integration with clinical workflows. By advancing these priorities,
future research can transform computational innovation into practical diagnostic solutions that
enhance prediction, prevention, and personalized care for trauma-affected populations.
LIMITATION

Although this systematic review provides a comprehensive synthesis of Al-enabled neurobiological
diagnostic research in PTSD and trauma disorders, several limitations must be acknowledged. First,
the review was restricted to English-language publications, which may have excluded relevant findings
from non-English research communities, particularly those in regions with high trauma exposure but
limited access to global publication platforms. Second, methodological heterogeneity among the
included studies —ranging from variable sample sizes, data modalities, and diagnostic criteria —limited
the ability to conduct meta-analytic comparisons or quantitative pooling of results. Many studies
employed small, single-site cohorts with limited demographic diversity, leading to potential sampling
bias and reduced generalizability of findings. Furthermore, the majority of models were trained and
tested on cross-sectional data, hindering insights into longitudinal prediction of PTSD onset or recovery
trajectories. A second major limitation lies in the inconsistent reporting and validation practices across
studies. Only a minority of models underwent external validation using independent cohorts, and
calibration measures were rarely reported, raising concerns regarding overfitting and model
reproducibility. Additionally, while explainable AI methods were increasingly adopted, most studies
did not conduct formal assessments of attribution stability or compare model explanations across
algorithms. This inconsistency complicates evaluation of the biological validity of reported features.
Moreover, due to the diversity of Al architectures and performance metrics, the review relied primarily
on narrative synthesis rather than meta-analytic effect estimation, which may limit statistical precision.
Finally, potential publication bias should be considered, as studies with significant or high-performing
results are more likely to be published, thereby overstating overall effectiveness. Despite these
limitations, the review provides a rigorous and transparent appraisal of current evidence, highlighting
both the promise and the methodological constraints of Al-based neurobiological diagnostics in PTSD
research. Future investigations with standardized methodologies, larger datasets, and open-access
replication efforts are essential to overcome these limitations and ensure reproducible, ethically sound,
and clinically valid advances.

RECOMMENDATIONS

Future research on Al-enabled neurobiological diagnostic models for PTSD should prioritize
methodological standardization, sample diversity, and external validation to strengthen
generalizability and clinical translation. The review revealed that inconsistencies in study design, small
sample sizes, and heterogeneous diagnostic criteria continue to constrain reproducibility and cross-
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study comparability. It is recommended that future investigations adopt multi-site and cross-
population designs incorporating balanced representation across gender, age, ethnicity, and trauma
type. Harmonized acquisition protocols for imaging, electrophysiology, and physiological signals
should be developed, allowing the creation of large, open-access multimodal repositories that can
facilitate algorithm benchmarking and independent replication. Researchers should adhere to
established reporting frameworks such as PRISMA-AI, TRIPOD-AI, and PROBAST-AI, ensuring
transparent documentation of data preprocessing, feature engineering, and validation workflows. To
mitigate overfitting, model training should involve nested cross-validation and, whenever feasible,
external replication on independent cohorts. The use of explainable Al tools must become standard
practice, enabling biological interpretability and clinician trust. Moreover, interdisciplinary
collaboration between computational scientists, neuroscientists, and clinical psychiatrists is crucial to
ensure that algorithmic development aligns with pathophysiological theory and practical diagnostic
needs. Implementing these methodological refinements will establish a robust empirical foundation for
future Al-driven PTSD diagnostics that are both scientifically valid and clinically credible.

For clinical integration, Al-based neurobiological models should be developed as decision-support
tools rather than stand-alone diagnostic systems, complementing clinical judgment with objective
biomarker insights. Pilot implementation studies in hospital, military, and community mental-health
settings are essential to evaluate usability, workflow compatibility, and impact on early intervention
outcomes. Regulatory bodies and health institutions should establish ethical governance frameworks
addressing privacy, consent, data ownership, and algorithmic bias, particularly given the sensitive
nature of trauma-related and neurobiological data. Investment in clinician training and digital literacy
is also recommended to facilitate informed adoption and interpretation of Al outputs. Public-private
partnerships and government-supported initiatives can promote the creation of standardized Al
infrastructures and interoperable health data systems that enable responsible scaling of diagnostic
technologies. Finally, future policy should emphasize equitable access by ensuring that Al-driven PTSD
tools are validated across diverse populations and trauma contexts, preventing systemic disparities in
care delivery. Through coordinated attention to clinical validation, ethics, and infrastructure, Al-
enabled neurobiological diagnostics can transition from experimental innovation to sustainable,
evidence-based tools for precision mental healthcare.
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