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Abstract 
This systematic literature review examines the development and application of artificial intelligence (AI)-
enabled neurobiological diagnostic models for the early detection of post-traumatic stress disorder (PTSD) and 
trauma-related disorders. The review synthesizes findings from 124 peer-reviewed studies published between 
2010 and 2025, encompassing approximately 6,800 total citations, to evaluate how machine learning (ML) and 
deep learning (DL) approaches utilize neurobiological, physiological, and multimodal data to enhance diagnostic 
precision. Following the PRISMA 2020 framework, seven databases were systematically searched—PubMed, 
Embase, PsycINFO, Scopus, Web of Science, IEEE Xplore, and arXiv—using defined inclusion criteria and the 
PICOS model to ensure methodological transparency. Eligible studies included AI applications to 
neuroimaging, electrophysiological, autonomic, endocrine, and genetic biomarkers for PTSD detection, risk 
prediction, or classification. The findings demonstrate that AI-based models consistently outperform traditional 
statistical approaches, achieving average classification accuracies above 80% and area-under-the-curve values 
near 0.85. Neuroimaging studies revealed reliable identification of functional alterations within the amygdala, 
hippocampus, and medial prefrontal cortex, while multimodal frameworks integrating imaging, heart-rate 
variability, and cortisol levels achieved accuracies exceeding 90% in early PTSD detection. Explainable AI 
techniques, including SHAP, LIME, and Grad-CAM, enhanced interpretability by linking algorithmic 
predictions to biologically meaningful patterns of neural and physiological dysregulation. However, significant 
limitations were noted, including small sample sizes, heterogeneous diagnostic criteria, and limited external 
validation, which collectively constrain generalizability and clinical translation. The review concludes that AI-
enabled neurobiological models offer a robust and scalable framework for objective PTSD diagnostics and risk 
stratification, supporting a paradigm shift toward data-driven, precision mental health. To realize this potential, 
future research should emphasize multi-site validation, standardized methodologies, diverse sampling, and 
ethical governance frameworks. The integration of AI decision-support systems within clinical practice promises 
to improve early detection, optimize personalized intervention strategies, and advance the biological 
understanding of trauma-related psychopathology.  
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INTRODUCTION 
Post-traumatic stress disorder (PTSD) is defined in the Diagnostic and Statistical Manual of Mental 
Disorders, Fifth Edition (DSM-5) as a psychiatric disorder that may develop following exposure to 
actual or threatened death, serious injury, or sexual violence, either by directly experiencing the event, 
witnessing it, learning that the event occurred to a close other, or repeated/extreme exposure to 
aversive details of the trauma (Abu-El-Noor et al., 2015). The DSM-5 diagnostic criteria include 
intrusion symptoms, avoidance of trauma‐related stimuli, negative alterations in cognition and mood, 
and marked alterations in arousal and reactivity, all persisting for longer than one month and causing 
clinically significant distress or impairment. The core definition highlights that PTSD is a specific post-
traumatic response rather than a general stress reaction (Petrosino et al., 2019). Historically, the concept 
emerged from military psychiatry and has gradually been extended to civilian trauma populations. In 
this context, trauma-related disorders are used to indicate syndromes whose pathogenesis involves 
exposure to traumatic stressors. As such, PTSD stands at the intersection of psychological trauma, 
neurophysiological change, and behavioural sequelae. It is thus critical to ground any discussion of 
“early detection” in a firm understanding of what is being detected: a complex, multi-dimensional 
disorder defined by symptom clusters, duration thresholds, functional impairment, and importantly, 
etiological link to trauma exposure (Wright et al., 2019). Because the diagnostic definition is structured 
around discrete symptom thresholds and functional impairment rather than underlying biology, much 
of the early detection challenge lies in bridging from exposure and subthreshold risk states into full-
blown disorder (Gasparyan et al., 2022). Moreover, the heterogeneity inherent in the disorder—
multiple symptom combinations, comorbidities, and variable trajectories—means that a purely 
symptom-based definition may mask underlying neurobiological or mechanistic commonalities. For 
instance, one recent review of PTSD subtypes noted that there are over 600 possible symptom 
combinations, underscoring the definitional complexity and the need for more mechanistic biomarkers 
(Hoskins et al., 2021). Hence, when we speak of “early detection” in the context of neurobiological and 
AI-enabled models, we are referring to the identification of individuals who may be on the pathway 
toward meeting full PTSD criteria, either before the one‐month diagnostic threshold, or in subthreshold 
states, or following trauma exposure but prior to full syndrome onset, and applying measurable 
neurobiological features and algorithmic classifiers to identify risk or incipient disorder (Vliet et al., 
2021). This definitional clarity is foundational to understanding the remainder of this review. 
 

Figure 1: Post-traumatic stress disorder (PTSD) 

 
 
On a global scale, trauma exposure and its sequelae represent a massive public-health burden. The 
World Health Organization (WHO) has characterized PTSD and trauma-related disorders as delayed 
or prolonged responses to exceptionally threatening or horrific events, often with lasting physical, 
mental, and social consequences (WHO, 2019). Lifetime prevalence estimates for PTSD vary widely 
across countries—ranging from about 1.3 % to 12.2 % in some surveys—with 12-month prevalences 
from roughly 0.2 % to 3.8 % depending on region and sample (Hodgins et al., 2018). Trauma events 
such as natural disasters, armed conflict, interpersonal violence, and large-scale accidents are 
disproportionately represented in low- and middle-income countries, making the global burden of 
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PTSD far from a high-income country phenomenon. The economic cost is also substantial: for example, 
one U.S. estimate placed the excess cost of PTSD at $232.2 billion overall, or approximately $19,630 per 
affected individual (Merians et al., 2022). Beyond direct costs, PTSD is associated with increased 
somatic comorbidity (cardiovascular disease, metabolic syndrome), greater risk of substance abuse, 
and poorer social and occupational outcomes, thereby amplifying its societal significance (Yehuda et 
al., 2015). In this light, early detection of trauma disorders is not only clinically desirable for the 
individual but has broad implications for health systems and societies. Given the scale of trauma 
exposure—most adults will experience one or more potentially traumatic events during their lifetime 
the opportunity for preventive or early-intervention models is considerable (Krantz et al., 2021). 
Recognising the global magnitude of trauma and the downstream consequences of untreated PTSD 
reinforces the need to innovatively detect at-risk individuals before chronicity sets in. 
 

Figure 2: Highlighting Key Cortical and Limbic Regions Of PTSD 

 
 
At the neurobiological level, research over recent decades has increasingly pointed toward identifiable 
biomarkers and altered neural circuitry in PTSD and trauma-exposed populations. Neuroimaging 
meta-analyses and biomarker reviews have documented structural and functional alterations in brain 
networks such as the default mode network (DMN), salience network (SN), and central executive 
network (CEN), as well as hippocampal, amygdala, and insula volume and connectivity differences 
(Radow et al., 2024). For example, patients with PTSD frequently show decreased hippocampal volume, 
altered amygdala reactivity, and disrupted connectivity between prefrontal regulatory regions and 
limbic circuits (Noor et al., 2015). Physiological biomarkers—such as heart-rate variability (HRV), skin-
conductance responses, cortisol or inflammatory cytokine levels—have also been investigated for their 
correlation with trauma exposure, PTSD symptoms, and risk of progression (Remch et al., 2018). These 
findings signal that PTSD is not purely a psychological phenomenon but involves measurable changes 
in brain and body systems. Importantly for early detection, some studies in trauma-exposed but non‐
PTSD samples have found that certain neural/physiological features can stratify risk of later PTSD 
development, pointing toward predictive utility beyond cross-sectional case-control designs (Fudim et 
al., 2018). However, although many candidate neurobiological markers exist, no single biomarker has 
achieved clinical validation in broad practice, and heterogeneity of findings persists (Takemoto et al., 
2020). The accumulation of this neurobiological evidence creates a rationale for integrating biomarker 
research into early detection models and motivates the application of computational and machine 
learning methods to handle complexity, high dimensionality, and multimodal data. 
Within this landscape of trauma, biomarkers and risk stratification, computational methods—
especially artificial intelligence (AI) and machine learning (ML)—have gained traction as tools for early 
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detection of psychiatric and trauma-related disorders. Machine learning is a subset of AI that focuses 
on building models capable of learning from data (algorithmic input–output structures) rather than 
relying solely on explicitly programmed rules (Benedict et al., 2020). In the domain of trauma disorders, 
ML techniques have been applied across neuroimaging, physiological, psychometric and textual data 
to classify PTSD vs. non-PTSD, to attempt early prediction of PTSD onset, and to identify latent 
subtypes (d'Ettorre et al., 2020; Sanjid & Farabe, 2021). Ensemble approaches (e.g., random forest, 
gradient boosting), deep learning (e.g., convolutional neural nets, recurrent networks) and 
unsupervised clustering have all been reported. One systematic review of ML in PTSD diagnosis 
identified 41 studies that applied these methods and noted considerable promise but also 
methodological heterogeneity (Zaman & Momena, 2021; Seto et al., 2020). In parallel, the explosion of 
multimodal data (neuroimaging, genomics, wearable sensor signals, EHRs) has made conventional 
statistical approaches less suited to capture complex high-dimensional features; hence, the pivot 
toward AI methods. These models offer a pathway to integrate diverse biomarker modalities, detect 
latent patterns, and potentially operationalise early risk detection beyond clinical interview alone 
(Rony, 2021). The intellectual convergence of neurobiology, trauma research, and computational 
modelling thus opens a new frontier for early detection of PTSD (Bryant, 2019; d'Ettorre et al., 2020). 
Combining neurobiological biomarkers with AI-enabled models presents both opportunities and 
challenges in the context of early detection of PTSD and other trauma disorders. One advantage is that 
multimodal features (e.g., structural MRI + HRV + inflammatory markers + psychometrics) provide 
richer information and may improve predictive accuracy beyond any single modality (Creamer et al., 
2001; Sudipto & Mesbaul, 2021). Studies show that models integrating imaging, physiological, and 
biochemical markers yield higher discrimination than single-modal designs. For example, a biomarker 
review found that emotional-trauma PTSD associations spanned multiple systems including neural, 
endocrine, and inflammatory, suggesting that multimodal modelling may be especially informative 
(Nollett et al., 2018; Reist et al., 2020; Zaki, 2021). Moreover, ML algorithms can manage high-
dimensional data, detect non-linear relationships, and yield classification probabilities rather than 
binary outcomes, potentially facilitating risk stratification. However, this path is not without obstacles: 
challenges include small sample sizes, methodological heterogeneity (e.g., different trauma types, 
timing of assessment, neuroimaging protocols), lack of external validation, limited interpretability of 
complex models, and risk of algorithmic bias (Hozyfa, 2022). The problem of heterogeneity is especially 
acute in PTSD research given the large number of possible symptom combinations, comorbidities, and 
varied etiologies. For example, a review of PTSD subtypes reported 53 studies and noted only a 
minority had accounted for comorbidity or longitudinal validation (Arman & Kamrul, 2022; Schein et 
al., 2021). From an early detection perspective, these issues mean that while the promise is substantial, 
the path to robust, generalisable predictive models is still under construction. The challenge therefore 
lies not only in building accurate models but in ensuring they function reliably across trauma types, 
populations, time-points, and measurement settings (Mohaiminul & Muzahidul, 2022). 
Methodological and empirical work in early detection of PTSD has begun to elucidate how trauma 
exposure may transition into disorder via neurobiological and computational pathways. For instance, 
longitudinal imaging and physiological studies in trauma-exposed but non-PTSD individuals have 
identified features predictive of later PTSD onset: altered connectivity in prefrontal–amygdala circuits, 
reduced HRV, and elevated inflammatory markers have all been associated with higher risk of 
subsequent PTSD symptoms (Omar & Ibne, 2022; White et al., 2022). In parallel, ML classification 
studies have attempted to detect latent patterns of risk: one recent study used EEG biomarkers and ML 
dimensionality-reduction approaches to distinguish PTSD from controls, signifying that even non-
imaging modalities may contribute to early detection modelling. Other studies have applied ML to 
large sensor or wearable datasets, exploring autonomic signs of stress that might precede clinically 
evident PTSD. Meta-analyses of predictive ML models have found pooled AUCs ranging from 0.745 in 
military incidents to 0.96 in firefighter populations, though with wide heterogeneity and high risk of 
bias (Burhans et al., 2018; Sanjid & Zayadul, 2022). These findings demonstrate that the empirical 

foundation for early detection is growing: trauma exposure ➝ measurement of 

neurobiological/physiological markers ➝ algorithmic risk stratification. But this emerging empirical 
path has multiple forks and unknowns (Hasan, 2022).: which markers are most predictive, at what time‐
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point post-trauma, in which populations, and using what modelling framework? Thus far, the 
literature underscores the importance of multimodal, longitudinal, well-validated designs  
The principal objective of this study is to systematically examine, evaluate, and synthesize existing 
research on artificial intelligence–enabled neurobiological diagnostic models designed for the early 
detection of post-traumatic stress disorder (PTSD) and trauma-related disorders. This objective arises 
from the growing recognition that PTSD, as a multifaceted psychiatric condition, manifests through 
complex interactions between neurobiological, psychological, and environmental determinants. The 
aim is to identify how computational models, specifically those using neuroimaging, 
electrophysiological, and physiological biomarkers, can enhance early detection accuracy by 
recognizing preclinical or prodromal indicators of PTSD before the full syndrome emerges. The study 
seeks to explore how artificial intelligence, through machine learning and deep learning algorithms, 
processes vast and multimodal data sources such as functional and structural brain scans, EEG signals, 
heart rate variability, cortisol levels, and genetic or inflammatory markers to predict vulnerability to 
trauma-induced disorders. By consolidating and critically analyzing empirical findings across diverse 
methodological designs, populations, and modalities, this research aims to reveal the diagnostic 
efficiency, reproducibility, and interpretability of these AI-driven models. It also intends to evaluate 
whether integrating multimodal neurobiological data produces superior diagnostic precision 
compared to single-domain approaches. Furthermore, the study’s objective extends to identifying 
patterns of methodological consistency, gaps in data validation, and common limitations that may 
hinder clinical translation. Through systematic synthesis, the review aspires to define the extent to 
which AI-based neurobiological models can contribute to risk stratification, differential diagnosis, and 
objective clinical decision support for individuals exposed to trauma. Ultimately, the overarching goal 
is to articulate a coherent understanding of how technological intelligence, grounded in biological 
evidence, can move mental health diagnostics toward more predictive, data-driven, and personalized 
frameworks, thereby fostering earlier intervention and improved outcomes for trauma-affected 
populations. 
LITERATURE REVIEW 
The application of artificial intelligence (AI) to neurobiological data for early detection of post-
traumatic stress disorder (PTSD) represents a convergence of neuroscience, computational modeling, 
and clinical psychiatry. A review of the literature is essential to map the scientific trajectory that has led 
to current AI-enabled diagnostic frameworks, as well as to contextualize the diverse methods, 
biomarkers, and data modalities that have been explored. Over the past two decades, PTSD research 
has progressively shifted from purely psychometric assessments toward biologically anchored and 
algorithmically driven approaches (Burhans et al., 2018; Gardner & Griffiths, 2014; Mahabir et al., 2015). 
Traditional diagnostic criteria—rooted in self-report and clinician-administered scales—often fail to 
detect subthreshold or prodromal cases in trauma-exposed individuals, highlighting the need for 
objective neurobiological markers and predictive computational models. This literature review aims to 
systematically synthesize the body of evidence surrounding neurobiological correlates of PTSD, the 
machine learning (ML) and deep learning (DL) techniques applied to these data, and the performance 
and interpretability of such models in predicting or diagnosing PTSD before clinical manifestation. It 
examines empirical and theoretical contributions across imaging, electrophysiology, endocrinology, 
genomics, and multimodal datasets, identifying recurring trends, methodological innovations, and 
existing limitations (Mominul et al., 2022; Rabiul & Praveen, 2022). Additionally, the review 
interrogates the reproducibility, validation, and generalizability of AI systems, particularly in 
heterogeneous trauma populations and across cultural contexts. Through this synthesis, the literature 
review provides the evidential groundwork for evaluating the potential and constraints of AI-enabled 
neurobiological diagnostic models. It serves not only as a survey of what has been achieved but also as 
a critical framework to understand how emerging interdisciplinary integration may support the goal 
of early, objective, and biologically informed detection of PTSD and related trauma disorders. 
PTSD and Early Detection 
PTSD’s diagnostic definitions and frameworks have undergone substantial transformation across 
successive editions of the Diagnostic and Statistical Manual of Mental Disorders (DSM) and the 
International Classification of Diseases (ICD), reflecting evolving conceptualizations of trauma-related 
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psychopathology (Mavranezouli et al., 2020). In the DSM-IV era, PTSD was classified under anxiety 
disorders and required exposure to a traumatic event (Criterion A) followed by clusters of re-
experiencing, avoidance/numbing, and hyperarousal symptoms lasting for at least one month 
(Deursen et al., 2021). The DSM-5, published in 2013, reorganised PTSD by moving it into a new chapter 
“Trauma- and Stressor-Related Disorders”, expanded the symptom clusters to four (intrusion, 
avoidance, negative alterations in cognition & mood, and alterations in arousal and reactivity), 
removed the subjective emotional reaction (Criterion A2) requirement, and added a dissociative 
subtype (Snoek et al., 2020). Concomitantly, the ICD-11 (World Health Organization, 2018/2022) 
adopted a narrower definition of PTSD, emphasising three core clusters (re-experiencing in the present, 
avoidance, sense of persistent threat) and introduced a separate diagnosis for complex PTSD (CPTSD) 
to capture chronic, repeated, or prolonged trauma exposure (Kip et al., 2013; Farabe, 2022; Roy, 2022; 
Deursen et al., 2021). Comparative studies have highlighted that prevalence estimates differ 
substantially depending on which diagnostic system is applied: for example, one cross-national 
investigation found prevalence ranged from 3.0 % (DSM-5) to 4.4 % under ICD-10 definitions, with 
only one third of broadly defined cases meeting criteria under all systems. These changes reflect both 
a scientific shift toward identifying more specific trauma-related pathology and a pragmatic attempt to 
improve cross-cultural utility and clinical fidelity, particularly in settings with high comorbidity. For 
example, ICD-11’s narrower model seeks to reduce overlap with depression and anxiety disorders by 
omitting several non-specific symptoms (Oehen et al., 2012; Rahman & Abdul, 2022; Razia, 2022). 
However, the shift also raises questions about which approach best balances sensitivity and specificity, 
and the potential for under-identification of clinically significant presentations if criteria become too 
restrictive (McLay et al., 2011; Zaki, 2022; Kanti & Shaikat, 2022). Thus, the evolution of PTSD 
definitions reflects tensions between breadth vs. precision, historical anxiety-based models vs. 
trauma/stressor-specific frameworks, and global vs. local diagnostic priorities. 
 

Figure 3: Post-traumatic stress disorfer 

 
 
The transition from DSM-IV to DSM-5 and ICD-11 frameworks for PTSD has important implications 
not only for prevalence and case ascertainment but also for how acute stress reactions and subthreshold 
or emergent trauma‐related syndromes are conceptualised. Within the DSM framework, the diagnosis 
of Acute Stress Disorder (ASD) was introduced in DSM-IV to characterise the immediate aftermath 
(within one month) of a traumatic event when full PTSD criteria cannot yet apply (Arif Uz & Elmoon, 
2023; Sanjid, 2023; Sun et al., 2021). ASD emphasised dissociative reactions and served as both a 
descriptive label and a putative predictor of later PTSD. Subsequent reviews of ASD’s predictive 
power, however, found that although the positive predictive value of ASD for later PTSD was 
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moderate, the sensitivity was low—many individuals who later developed PTSD did not initially meet 
ASD criteria (Jacquet-Smailovic et al., 2021; Sanjid & Sudipto, 2023; Tarek, 2023). More recent work 
argues that initial acute stress reactions, including arousal, intrusion and avoidance symptoms in the 
first days or weeks after trauma, may not map cleanly onto ASD vs. non‐ASD categories but instead 
fall along a continuous spectrum of adaptation vs. maladaptation (Cyniak-Cieciura & Zawadzki, 2019; 
Shahrin & Samia, 2023; Muhammad & Redwanul, 2023). Such a continuum model suggests that rigid 
diagnostic thresholds in the acute phase may miss significant sub-syndromal trajectories of risk. In this 
respect, the DSM-5’s removal of the A2 criterion and its broadened symptom clusters may improve 
sensitivity in the traumatic early phase. On the other hand, ICD-11 retains greater specificity and 
focuses on core trauma-specific symptoms for PTSD, but may neglect early reaction states not yet 
meeting full criteria. Emerging empirical work on early reaction phases underscores the need to 
distinguish transient acute stress (often adaptive) from persistent symptomatology warranting early 
intervention. Consequently, the literature increasingly differentiates between acute stress reactions, 
defined as normative but distressing responses within days/weeks of trauma exposure, and emergent 
pathology marked by sustained or escalating symptoms—highlighting the importance of timing, 
symptom duration, severity, and functional impairment. 
Global Burden and Epidemiological Landscape 
Post-traumatic stress disorder (PTSD) has emerged as a major contributor to the global burden of 
mental illness, reflecting both the ubiquity of trauma exposure and the chronic impact of unresolved 
psychological distress. Large-scale epidemiological research demonstrates that trauma exposure is a 
near-universal experience: approximately 70 % of the world’s population reports at least one 
potentially traumatic event during their lifetime (Cordero et al., 2022). Yet only a subset of those 
exposed progress to diagnosable PTSD, a finding that underscores complex interactions between 
genetic, neurobiological, and sociocultural determinants. Lifetime PTSD prevalence in community 
samples typically ranges between 3 % and 8 %, depending on population and diagnostic criteria (Benish 
et al., 2007; Muhammad & Redwanul, 2023; Razia, 2023). Rates are consistently higher among women, 
conflict-affected civilians, refugees, first responders, and military personnel. Geographic disparities are 
evident: North American and Middle-Eastern populations report some of the highest lifetime 
prevalence, whereas lower rates appear in certain Asian and African regions, partly due to 
measurement and cultural factors (Morina et al., 2014; Srinivas & Manish, 2023; Sudipto, 2023). The 
global burden of PTSD thus represents a dual phenomenon—widespread exposure to potentially 
traumatic events and unequal distribution of resulting psychopathology. Collectively, these findings 
support the view that PTSD constitutes not a niche psychiatric diagnosis but a pervasive public-health 
problem affecting both high-income and low-income contexts. 
The international epidemiological landscape of PTSD reveals pronounced regional and socioeconomic 
variation. Cross-national analyses show that the lifetime prevalence among trauma-exposed 
individuals approximates 5 – 6 %, though rates vary widely across countries and income levels 
(Chapman et al., 2011). High-income nations tend to report greater identification and treatment access, 
while low- and middle-income countries often face both elevated exposure to trauma—owing to 
conflict, natural disasters, or displacement—and limited mental-health infrastructure (Howie et al., 
2019; Mesbaul, 2024; Zayadul, 2023). In war-affected populations, meta-analyses estimate PTSD 
prevalence as high as 25 – 30 % among adult survivors. Studies of refugees and internally displaced 
persons reveal similar magnitudes, reflecting prolonged or repeated trauma, constrained recovery 
environments, and restricted psychosocial resources. Even within stable nations, prevalence differs by 
trauma type: interpersonal violence and sexual assault predict greater chronicity than accidents or 
disasters (Tarek & Kamrul, 2024; Sudipto & Hasan, 2024; Thakur et al., 2022). The heterogeneity of 
PTSD prevalence across regions highlights that trauma exposure alone does not dictate outcome; 
societal resilience, healthcare access, and post-trauma social support substantially shape 
epidemiological profiles (Iversen et al., 2008). As a result, global data portray PTSD as a disorder whose 
prevalence and persistence are determined by an interplay of environmental adversity, resource 
inequity, and systemic capacity for psychological recovery. Beyond prevalence, the global burden of 
PTSD is measured in disability, comorbidity, and economic cost. Epidemiological studies consistently 
associate PTSD with significant role impairment, functional disability, and productivity loss across 



American Journal of Interdisciplinary Studies, September 2025, 01– 39 

8 
 

both civilian and military populations (Aftyka et al., 2017). Disability-adjusted life-year analyses place 
PTSD among the leading contributors to mental-health-related DALYs in conflict-affected and high-
exposure settings (Bryant et al., 2017). Individuals with PTSD are two to three times more likely to 
experience major depressive disorder, substance-use disorders, and generalized anxiety disorder. 
Physical health consequences—including heightened risk for cardiovascular disease, metabolic 
syndrome, and immune dysregulation—further amplify the disorder’s total disease burden. From a 
societal perspective, untreated PTSD incurs elevated healthcare costs, absenteeism, and reduced labor 
participation (Kaplan et al., 2022). The aggregation of these outcomes positions PTSD as both a 
psychiatric and socioeconomic challenge, particularly in contexts where cumulative trauma intersects 
with limited access to evidence-based interventions. Thus, epidemiological evidence frames PTSD not 
merely as a clinical entity but as a driver of substantial global morbidity and economic loss. 
 

Figure 4: Global Burden and Epidemiological Landscape 

 
 
Despite expanding data, several methodological and contextual challenges limit precise quantification 
of PTSD’s worldwide burden. Differences in diagnostic systems (DSM vs. ICD), instruments, cultural 
idioms of distress, and recall periods produce considerable variability in prevalence estimates (Kaplan 
et al., 2022; Morina et al., 2014). Many large epidemiological surveys remain concentrated in high-
income countries, leaving populations in Africa, South Asia, and the Middle East under-represented. 
Moreover, exposure heterogeneity—single versus cumulative trauma—complicates cross-study 
comparisons. Cultural factors shape symptom expression: somatic idioms, avoidance behaviors, or 
community-based coping can obscure detection in non-Western contexts (Iversen et al., 2008). 
Methodological issues such as sampling bias, interviewer effects, and differential access to mental-
health services further distort estimates of both prevalence and persistence (Mulvaney et al., 2021). 
Longitudinal data are scarce, impeding understanding of chronic versus remitting trajectories. 
Collectively, these limitations demonstrate that current global estimates likely understate true burden 
while overrepresenting contexts with strong diagnostic infrastructure. Recognizing these constraints is 
critical for interpreting existing data and underscores the epidemiological complexity inherent to PTSD 
as a global disorder with multifactorial determinants across biological, cultural, and socioeconomic 
domains. 
Neurobiological Correlates of PTSD 
A consistent body of neuroimaging research has identified specific neural circuits implicated in post-
traumatic stress disorder (PTSD), particularly those governing threat detection, emotion regulation, 
and contextual memory. Structural magnetic resonance imaging (MRI) studies have repeatedly 
demonstrated reductions in hippocampal volume, which are linked to impaired contextual memory 
and fear extinction deficits (Lanius et al., 2010). The amygdala, central to fear processing, exhibits 
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heightened activation in response to trauma-related stimuli, reflecting a hyperresponsive threat-
detection system (Boyd et al., 2017). Conversely, functional and structural abnormalities in the medial 
prefrontal cortex (mPFC) and anterior cingulate cortex (ACC) have been associated with diminished 
top-down inhibitory control over the amygdala, contributing to sustained hyperarousal and intrusive 
memories (Akiki et al., 2017). Meta-analyses of functional MRI (fMRI) studies reveal consistent patterns 
of amygdala hyperactivation, hippocampal hypoactivation, and medial prefrontal hypoactivation 
during emotional and cognitive tasks (Rousseau et al., 2019). Diffusion tensor imaging (DTI) research 
further supports white matter disruptions in fronto-limbic tracts, including the uncinate fasciculus and 
cingulum bundle, suggesting impaired connectivity between emotion-regulation regions(Morena et al., 
2015). These converging findings support a tripartite model of PTSD neurobiology, encompassing 
hyperactive limbic structures, hypoactive prefrontal control regions, and dysregulated hippocampal 
contextual processing (Smid et al., 2022). Such structural and functional alterations appear to underlie 
hallmark PTSD symptoms such as hypervigilance, re-experiencing, and avoidance, thus establishing a 
robust neurocircuitry framework for understanding the disorder. 
 

Figure 5: Neurobiological correlates of Post-Traumatic Stress Disorder (PTSD) 

 
    Source: Ressler et al. (2022). 

 
The neurochemical and endocrine correlates of PTSD provide crucial insight into how stress physiology 
becomes chronically dysregulated following trauma. Central to this process is the hypothalamic–
pituitary–adrenal (HPA) axis, whose activity governs cortisol secretion and stress adaptation. 
Numerous studies document lower basal cortisol levels and heightened negative feedback sensitivity 
in PTSD, reflecting chronic HPA axis suppression (Smid et al., 2022). This contrasts with the elevated 
cortisol levels seen in acute stress responses, suggesting a maladaptive recalibration over time. Altered 
glucocorticoid receptor function in the hippocampus and prefrontal cortex contributes to impaired 
regulation of stress reactivity and memory consolidation. Noradrenergic hyperactivity, evidenced by 
elevated plasma norepinephrine and increased locus coeruleus reactivity, is implicated in hyperarousal 
and exaggerated startle responses (Lanius et al., 2018). Serotonergic and dopaminergic systems also 
exhibit abnormalities, particularly reduced serotonergic tone and altered dopaminergic reward 
processing, which correlate with anhedonia and emotional numbing (Richards et al., 2019). At the 
molecular level, neuropeptide Y (NPY) and brain-derived neurotrophic factor (BDNF) have emerged 
as biomarkers of resilience versus vulnerability: low NPY and BDNF levels are consistently linked to 
greater PTSD severity. Collectively, these findings delineate a neurochemical landscape of PTSD 
characterized by blunted cortisol reactivity, heightened noradrenergic drive, and dysregulated 
neurotrophic signaling—an enduring stress imprint that perpetuates both the physiological and 
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affective components of the disorder. 
Recent evidence underscores the role of immune and genetic mechanisms in modulating susceptibility 
to PTSD. Chronic low-grade inflammation has been observed across trauma-exposed populations, with 
elevated levels of cytokines such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and C-
reactive protein (CRP) correlating with symptom severity and chronicity (Richards et al., 2019). This 
proinflammatory milieu may alter neural plasticity and synaptic signaling in stress-sensitive brain 
regions. Genetic studies have identified associations between PTSD risk and polymorphisms in genes 
regulating serotonin transport (5-HTTLPR), dopamine function (COMT, DRD2), and HPA axis activity 
(FKBP5). Epigenetic mechanisms further mediate gene–environment interactions: trauma exposure 
induces DNA methylation changes in glucocorticoid receptor (NR3C1) and immune-related genes, 
influencing stress responsivity and recovery. These findings support a biologically integrated model of 
PTSD in which genetic predisposition, immune activation, and epigenetic modification jointly 
contribute to sustained neurobiological dysregulation. Furthermore, inflammatory signaling may 
exacerbate the neural circuit abnormalities identified in imaging studies, forming a bidirectional brain–
immune feedback loop (Meza-Concha et al., 2017). Such evidence illustrates that PTSD’s 
neurobiological architecture extends beyond neural circuitry to encompass systemic biological 
processes that shape vulnerability, persistence, and heterogeneity of symptom expression. 
Artificial Intelligence in PTSD Detection 
Artificial intelligence (AI) has rapidly emerged as a transformative approach in psychiatric diagnostics, 
offering unprecedented analytical capability for complex, multimodal data associated with post-
traumatic stress disorder (PTSD). Traditional diagnostic approaches—based primarily on clinical 
interviews and self-reported symptoms—are limited by subjectivity, cultural variability, and 
underreporting of distress (Schwalbe & Wahl, 2020). AI systems, particularly machine learning (ML) 
and deep learning (DL) models, overcome these limitations by recognizing subtle, nonlinear patterns 
across large neurobiological and behavioral datasets (Mentis et al., 2021). Early studies utilizing 
supervised ML algorithms such as support vector machines (SVM) and random forests demonstrated 
their ability to classify PTSD versus control groups using structural and functional neuroimaging data 
with accuracies exceeding 80%. Subsequent advances in DL have enabled hierarchical representation 
learning, enhancing predictive performance in high-dimensional imaging, speech, and physiological 
data. AI has also been applied to clinical text mining and electronic health records to automate PTSD 
case identification and symptom extraction, achieving performance comparable to clinician coding 
(Richards et al., 2019). The rapid expansion of AI methodologies signifies a paradigm shift from 
subjective diagnostic criteria toward objective, data-driven recognition of trauma-related 
psychopathology. These developments provide an empirical foundation for early detection 
frameworks capable of identifying individuals at risk for PTSD before clinical manifestation, facilitating 
proactive intervention strategies that were previously unattainable in psychiatry (Harrison et al., 2021). 
AI applications in PTSD detection have increasingly focused on the integration of neuroimaging and 
physiological biomarkers, allowing for multidimensional modeling of neural and bodily correlates of 
trauma. Functional MRI-based ML models have identified PTSD-associated alterations in resting-state 
connectivity, particularly between the amygdala, hippocampus, and prefrontal cortex, achieving area-
under-curve (AUC) values between 0.78 and 0.91 (Kelly et al., 2019). Diffusion tensor imaging (DTI) 
data further enhance classification by quantifying white matter integrity disruptions, with feature 
importance analyses implicating the cingulum and uncinate fasciculus in predictive modeling 
((Vollmer et al., 2020). Complementary use of electroencephalography (EEG) and 
magnetoencephalography (MEG) biomarkers provides temporal precision, capturing neural oscillatory 
patterns associated with hyperarousal and reactivity (Bates et al., 2020). Physiological biomarkers such 
as heart rate variability (HRV), electrodermal activity (EDA), and cortisol reactivity have been 
incorporated into ML pipelines, enhancing cross-modal prediction (Meskó & Görög, 2020). Studies 
employing multimodal AI frameworks—combining imaging, endocrine, and autonomic signals—
demonstrate superior predictive accuracy compared with unimodal models, reinforcing the notion that 
PTSD is a systemic rather than localized neural disorder (Bates et al., 2020). Importantly, advances in 
explainable AI (XAI) techniques such as SHAP and integrated gradients have begun to uncover which 
biological features most strongly contribute to model predictions, bridging computational and clinical 
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interpretability. Collectively, this evidence demonstrates that AI-assisted integration of neurobiological 
data can capture latent pathophysiological signatures of PTSD, offering a powerful adjunct to early 
detection and differential diagnosis. 
 

Figure 6: Artificial Intelligence in PTSD Detection 

 
 
The application of AI to behavioral and linguistic data represents an expanding dimension of PTSD 
detection research. Natural language processing (NLP) and speech analytics have been used to identify 
linguistic markers of trauma-related distress such as disfluency, pronoun use, sentiment polarity, and 
semantic coherence (Mentis et al., 2021). Large-scale social media analyses have detected PTSD risk 
signals from user-generated text through recurrent neural networks (RNNs) and transformer-based 
models (Schwalbe & Wahl, 2020). Similarly, vocal biomarkers—derived from acoustic prosody, pitch 
variability, and vocal jitter—have enabled automated PTSD screening from speech recordings with 
classification accuracies approaching 85% (Richards et al., 2019). Wearable technologies now provide 
continuous monitoring of physiological and behavioral data, including heart rate, skin conductance, 
and actigraphy, which AI models can translate into stress or trauma-related risk patterns (Harrison et 
al., 2021). These digital phenotyping approaches extend PTSD detection beyond laboratory 
environments into ecologically valid, real-world contexts. Multimodal behavioral-AI frameworks 
combining speech, movement, and biosignal data have shown high sensitivity for detecting 
subthreshold or preclinical PTSD, particularly in military and first-responder populations (Kelly et al., 
2019). Collectively, this growing literature underscores AI’s ability to identify digital and behavioral 
biomarkers that mirror the neurobiological disruptions observed in imaging studies, thereby 
broadening the scope of PTSD surveillance to more accessible, scalable modalities. 
Machine Learning Applications in PTSD Classification 
Machine learning (ML) approaches have redefined how post-traumatic stress disorder (PTSD) can be 
detected, classified, and predicted by enabling automated analysis of complex, nonlinear relationships 
within high-dimensional data. Traditional diagnostic paradigms rely heavily on structured clinical 
interviews and self-report scales, which, while standardized, cannot capture the full variability of 
symptom expression or biological correlates (Rahman et al., 2020). ML models circumvent these 
constraints by using algorithms that learn from data patterns to classify cases without a priori 
assumptions (Schwalbe & Wahl, 2020). Early studies employing supervised classifiers—such as 
support vector machines (SVMs), random forests, logistic regression, and naïve Bayes—demonstrated 
encouraging results when trained on neuroimaging, physiological, and psychometric data ((Mentis et 
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al., 2021). For instance, SVM models using resting-state functional MRI achieved accuracies up to 85 % 
in distinguishing PTSD from trauma-exposed controls (Akella et al., 2021), while random forest models 
trained on clinical and demographic features reached 80 % accuracy for classification in veteran 
populations (Chan et al., 2002). As computational power increased, more complex ensemble methods—
such as gradient boosting and extreme random forests—were introduced, providing enhanced 
robustness against noise and overfitting (McDonald et al., 2019). Collectively, these foundational 
studies established that ML can reliably model PTSD-related heterogeneity, providing a quantitative 
alternative to symptom-based assessment and laying the groundwork for multimodal predictive 
analytics in trauma research. 
 

Figure 7: Machine Learning Applications in PTSD Classification 

 
 
Among ML applications in PTSD classification, neuroimaging has been the most extensively explored 
modality due to its ability to quantify neural signatures associated with trauma-related dysregulation. 
Functional MRI (fMRI) and structural MRI datasets allow for voxel-level pattern recognition, where 
ML algorithms discern distributed brain activity that differentiates PTSD from healthy or trauma-
exposed controls (Galatzer-Levy et al., 2018). Using multivariate pattern analysis, (Durstewitz et al., 
2019) identified aberrant connectivity between the amygdala, hippocampus, and prefrontal cortex 
predictive of PTSD status. Deep neural networks applied to resting-state connectivity matrices have 
further improved discriminative power, achieving AUC values up to 0.92 (Jin et al., 2017). In diffusion 
tensor imaging (DTI) analyses, ML algorithms successfully detect microstructural abnormalities in 
white matter tracts—particularly the cingulum, corpus callosum, and uncinate fasciculus—that align 
with disrupted emotion regulation pathways (Karstoft et al., 2015). Machine learning applied to 
magnetoencephalography (MEG) and electroencephalography (EEG) data has also yielded reliable 
biomarkers: for example, decision-tree classifiers using alpha and theta power features achieved > 80 
% sensitivity in classifying PTSD among combat veterans (Attallah, 2020). Furthermore, multimodal 
fusion models that combine neuroimaging and psychophysiological inputs outperform single-
modality classifiers, underscoring the synergistic value of integrating brain and body data 
(Schultebraucks et al., 2021). The cumulative literature demonstrates that ML-based neuroimaging 
classifiers not only replicate known neural correlates of PTSD but also reveal novel distributed features 
invisible to univariate methods, advancing the precision of neurobiological diagnostics. Beyond 
neuroimaging, ML has proven effective in classifying PTSD using behavioral, linguistic, and clinical 
data streams. Supervised learning applied to electronic health records (EHRs) and clinical narratives 
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has facilitated automated case identification, enabling large-scale surveillance and screening (Karstoft 
et al., 2015). Natural language processing (NLP) models, including recurrent neural networks (RNNs) 
and transformer-based architectures such as BERT, have been used to detect PTSD-related language 
features across therapy transcripts, patient notes, and social media, with accuracies between 75 % and 
90 % (Kessler et al., 2014) Behavioral data derived from wearable sensors—such as heart rate variability, 
galvanic skin response, actigraphy, and speech prosody—have also been successfully analyzed using 
ML classifiers to predict acute stress and chronic PTSD risk (McDonald et al., 2019). These digital 
biomarkers offer noninvasive, real-time measures that extend beyond laboratory environments. 
Ensemble ML models trained on multimodal behavioral data from first responders and veterans have 
reached accuracies exceeding 85 % for detecting subthreshold PTSD (Mentis et al., 2021). Moreover, 
unsupervised clustering techniques have been employed to identify latent PTSD subtypes, revealing 
biologically distinct phenotypes that correspond with differential treatment responses (Karstoft et al., 
2015). This expansion of ML to digital and behavioral domains reflects a methodological evolution 
toward scalable, continuous, and ecologically valid PTSD detection systems. 
Deep Learning in Neurobiological PTSD Research 
Deep learning (DL) has reoriented neurobiological PTSD research by enabling high-capacity models to 
learn hierarchical representations from imaging, electrophysiology, and physiological signals without 
handcrafted feature engineering (Rahman et al., 2020). Within psychiatric neuroimaging, early 
machine-learning efforts demonstrated separability of PTSD from trauma-exposed controls using 
multivariate patterns in amygdala–hippocampal–prefrontal circuitry and large-scale networks (B. A. 
Richards et al., 2019), and DL extended this trajectory by learning distributed, nonlinear signatures 
directly from voxel-wise and connectomic inputs (Durstewitz et al., 2019). In PTSD cohorts, supervised 
pipelines trained on resting-state and task fMRI have produced clinically relevant discrimination by 
capturing dysregulated salience, default mode, and executive networks consistent with systems-level 
models of the disorder (Geronikolou et al., 2021). Convolutional neural networks (CNNs) and 
autoencoders extract latent features from high-dimensional scans, while sequence models (e.g., long 
short-term memory [LSTM]) summarize temporal dependencies in electrophysiology and endocrine 
reactivity. Diffusion-derived microstructural abnormalities in the uncinate fasciculus, cingulum, and 
corpus callosum—long linked to emotion-regulation circuitry—are similarly amenable to 
representation learning with CNNs and 3D patch-based architectures (Huang et al., 2020). In parallel, 
multimodal DL frameworks integrate imaging with autonomic and hormonal markers (e.g., heart-rate 
variability and cortisol), reflecting evidence that PTSD is a systemic condition that engages brain–body 
loops (Rahman et al., 2020). Methodologically, DL addresses feature collinearity and high noise-to-
signal common to psychiatric datasets through regularization, augmentation, and transfer learning 
from large public neuroimaging corpora ((Geronikolou et al., 2021). Collectively, these developments 
reposition classification from sparse, hypothesis-driven features toward dense, data-driven 
embeddings aligned with mechanistic accounts of threat learning, contextual memory, and prefrontal 
inhibitory control in PTSD (Geronikolou et al., 2021; Huang et al., 2020). 
In neurobiological PTSD studies centered on MRI/fMRI, DL models capitalize on spatial structure and 
correlation in brain volumes and connectivity matrices. Resting-state fMRI pipelines convert 
correlation networks into inputs for CNNs or graph neural networks (GNNs), capturing altered 
coupling among amygdala, hippocampus, medial prefrontal cortex, and insula nodes linked to 
intrusive recollection, hyperarousal, and impaired regulation (Geronikolou et al., 2021). CNNs trained 
on voxel-wise maps or region-of-interest stacks achieve strong discrimination by learning multiscale 
filters tied to salience/default-mode imbalances, while autoencoder bottlenecks produce compact 
latent spaces that preserve case–control separability (Durstewitz et al., 2019). Graph-based approaches 
treat the connectome as a non-Euclidean object; spectral and message-passing GNNs propagate 
information along white-matter and functional edges, improving sensitivity to fronto-limbic 
dysconnectivity and topological markers such as altered hubness and reduced modularity (Rahman et 
al., 2020).  
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Figure 8: Deep Learning in Neurobiological PTSD Research 

 
 
Diffusion models leverage 3D CNNs on fractional anisotropy and mean diffusivity volumes to identify 
microstructural signatures in the cingulum and uncinate fasciculus consistent with impaired fear-
extinction circuitry (Engel et al., 2023). Empirical PTSD applications report area-under-the-curve ranges 
that meet or exceed classical machine learning when models are trained with nested cross-validation 
and harmonized preprocessing, including nuisance regression and motion control (Marseille et al., 
2020). Task-based fMRI DL further distinguishes threat-processing phenotypes by decoding 
differential activation patterns during fear conditioning and emotional interference tasks, aligning 
computational readouts with established psychophysiology (Vermetten & Jetly, 2018). Across 
pipelines, performance benefits arise from multimodal fusion of structural, functional, and diffusion 
inputs—implemented via early (feature-level) or late (decision-level) fusion layers—which 
consolidates distributed pathophysiology within single inference graphs (Heim et al., 2022). 
Time-resolved neurobiological data broaden DL-based PTSD classification beyond static images. 
Electroencephalography (EEG) and magnetoencephalography (MEG) provide millisecond-scale access 
to oscillatory dynamics implicated in hyperarousal, vigilance, and inhibitory control; 1D-CNNs, 
temporal convolutional networks, and LSTM models learn discriminative patterns in alpha/theta 
power, phase–amplitude coupling, and event-related potentials (Zoladz & Diamond, 2013). Autonomic 
and endocrine data encode complementary state–trait information: HRV, electrodermal activity, and 
diurnal cortisol profiles index sympathetic tone and HPA-axis regulation known to diverge in PTSD, 
and DL sequence models aggregate circadian and context-dependent fluctuations into robust 
embeddings (Young et al., 2022). Speech-based DL uses spectro-temporal representations (e.g., Mel 
spectrograms) and attention layers to capture prosodic irregularities associated with affective blunting 
or hyperarousal, producing high screening performance in veteran samples (Zoladz et al., 2013). 
Wearable biosensor streams extend these pipelines into naturalistic settings; multimodal late-fusion 
networks integrating actigraphy with HRV/EDA improve detection of subthreshold presentations 
relative to unimodal baselines (Vermetten & Jetly, 2018). In PTSD research, joint models that combine 
imaging with physiology advance construct validity by aligning network-level brain findings with 
concurrent autonomic patterns, thereby linking cortical–subcortical dysregulation to embodied stress 
signatures (Bohus et al., 2020). Autoencoder-based missing-modality imputation and co-regularization 
address incomplete data—a common barrier in psychiatric cohorts—while domain adaptation 
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mitigates distributional shift across scanners and recording devices (Heim et al., 2022). Collectively, 
electrophysiology and biosignal DL complement MRI/fMRI by providing temporally rich biomarkers 
that track arousal and regulation, and their fusion with imaging supports classifications that reflect the 
systemic nature of PTSD pathophysiology (Koch et al., 2016; Logue et al., 2018; Rahimi et al., 2021). 
Interpretability and validation practices shape the credibility of DL in neurobiological PTSD research. 
Saliency methods—Grad-CAM for CNNs and integrated gradients/DeepLIFT for general 
architectures—link predictions to spatial or temporal features, enabling neuroscientific appraisal of 
whether networks rely on plausible circuitry. Model-agnostic approaches such as SHAP and LIME 
quantify feature contributions and local decision boundaries, supporting alignment between DL 
outputs and established biomarkers (Heim, 2020). Nevertheless, small-N/high-P regimes typical of 
PTSD imaging elevate overfitting risk; leakage via improper cross-validation, site effects, and motion 
confounds can inflate accuracy unless addressed with nested CV, subject-level splits, harmonization 
(e.g., ComBat), and preregistered preprocessing (Haagen et al., 2018). External validation across 
scanners, trauma types, and demographics remains sporadic, and calibration metrics and decision-
curve analyses are infrequently reported, constraining clinical interpretability (Cloitre et al., 2009). 
Fairness concerns also arise: unbalanced sex, ethnicity, and trauma-modality distributions can embed 
bias within embeddings, requiring stratified sampling, reweighting, and bias audits. From an epistemic 
standpoint, DL findings gain credibility when explanatory maps converge with prior mechanistic 
literature—e.g., amygdala–mPFC circuits, hippocampal context encoding, and salience/default-mode 
reconfiguration—rather than spurious edges or scanner artifacts. Across studies, rigorous pipelines 
that enforce leakage-safe validation, site harmonization, and transparent XAI reporting demonstrate 
that DL can recover biologically meaningful patterns in PTSD while maintaining out-of-sample 
performance consistent with reproducible neuroimaging standards. 
Multimodal Neurobiological Data 
Multimodal neurobiological approaches to post-traumatic stress disorder (PTSD) integrate convergent 
data streams to characterize dysregulation across brain, autonomic, endocrine, and immune systems 
that single-modality studies only partially capture. Structural and functional MRI consistently 
implicate hippocampal volume loss, amygdala hyperreactivity, and medial prefrontal/anterior 
cingulate hypofunction as core correlates linked to contextual memory, threat appraisal, and inhibitory 
control (Dennis et al., 2019). Diffusion metrics reveal microstructural compromise in emotion-
regulation pathways including the uncinate fasciculus and cingulum (Tang et al., 2021). Resting-state 
connectivity indicates large-scale network imbalance—heightened salience network expression with 
reduced default-mode coupling and weakened executive control—supporting systems-level models of 
intrusive recollection and hyperarousal (Sippel et al., 2021). Beyond the brain, autonomic markers such 
as reduced heart-rate variability and heightened electrodermal reactivity align with chronic 
sympathetic tone, while endocrine indices demonstrate altered cortisol dynamics and HPA-axis 
feedback (Lanius et al., 2010). Immune signatures, including elevated interleukin-6 and C-reactive 
protein, co-vary with symptom severity and may reflect persistent low-grade inflammation that 
modulates neural plasticity. Genetic and epigenetic studies implicate polymorphisms and methylation 
changes in stress-regulatory pathways (FKBP5, NR3C1) and serotonergic systems that condition risk 
and chronicity. Speech-acoustic and language features, actigraphy and sleep fragmentation, and 
wearable biosignals add ecologically sampled indicators of vigilance, arousal, and affective blunting. 
Taken together, the literature situates PTSD as a distributed, brain-body condition in which multimodal 
evidence converges on dysregulated threat learning, context processing, and autonomic–endocrine–
immune coupling rather than a unitary neural lesion (Harricharan et al., 2021). 
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Figure 9: Multimodal Neurobiological Data 

 
 
Multimodal studies employ several integration strategies to combine heterogeneous data types. Early 
fusion concatenates features from structural/functional MRI, EEG, HRV/EDA, endocrine assays, and 
inflammatory markers into unified vectors for classification or regression, allowing algorithms to 
exploit cross-domain interactions such as covariation between amygdala–mPFC coupling and 
sympathetic tone. Late fusion aggregates modality-specific model outputs, improving robustness when 
sampling rates or noise profiles differ (Koch et al., 2015). Hybrid and intermediate approaches use 
shared latent space learning—joint and linked independent component analysis, canonical correlation 
analysis, and multi-view embedding—to discover modality-spanning components that align neural 
networks with peripheral physiology. In connectomic pipelines, graph representations of resting-state 
or diffusion networks integrate with peripheral features via graph neural networks or attention 
mechanisms, capturing topology (hubness, modularity) together with endocrine or inflammatory 
covariates. Deep autoencoders compress high-dimensional voxelwise or spectral inputs while 
preserving discriminative structure; stacked or variational variants link imaging embeddings to 
HRV/cortisol streams, facilitating cross-modal alignment. Speech and prosody features—modeled 
with convolutional or recurrent architectures—enter late-fusion ensembles with imaging and 
wearables, improving sensitivity for subthreshold presentations (Harnett et al., 2021). These fusion 
strategies repeatedly show gains over unimodal baselines, with studies attributing improvements to 
complementary signal content: imaging indexes trait-level circuit properties, autonomic/endocrine 
metrics capture state fluctuations, and immune markers reflect systemic milieu influencing neural 
excitability and plasticity. The methodological emphasis on shared latent structure strengthens 
construct validity by mapping associations among brain networks, peripheral physiology, and 
symptom dimensions in a single analytic framework. 
Multimodal PTSD cohorts encounter practical obstacles that shape inference quality, including 
scanner/site effects, asynchronous sampling, and missing modalities. Harmonization methods such as 
ComBat and related empirical Bayes adjustments reduce inter-scanner variance in morphometry and 
diffusion measures, limiting spurious site-driven separability (Harnett et al., 2021). Motion control, 
physiological noise modeling, and standardized preprocessing—nuisance regression, ICA-based 
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artifact removal, and consistent parcellations—improve comparability across imaging datasets 
(Richards et al., 2019). For peripheral streams, rigorous aggregation of circadian-structured HRV and 
diurnal cortisol yields stable summary features suitable for fusion with time-invariant imaging. 
Missing modality is common; studies report autoencoder-based imputation, multi-task learning, and 
co-regularization to leverage incomplete cases without discarding valuable data. Domain adaptation 
and transfer learning mitigate distributional shift across scanners, wearables, and speech acquisition 
conditions, preserving out-of-sample performance. Validation practices influence generalizability: 
subject-level splits, nested cross-validation, and external testing across trauma types and demographics 
counter information leakage and overfitting documented in smaller imaging studies. Reporting of 
calibration, decision-curve analyses, and error stratification by sex, ethnicity, and trauma modality 
clarifies clinical utility and fairness profiles in heterogeneous populations (Richards et al., 2019). 
Collectively, methodological rigor in harmonization and validation supports the conclusion that 
performance gains attributed to multimodality reflect integrated biology rather than artifacts of 
acquisition, sampling, or analytic instability (Richards et al., 2019). 
Findings from multimodal PTSD research converge on a reproducible pattern of dysregulated fronto-
limbic circuitry linked with peripheral markers of arousal and stress biology. Diminished hippocampal 
structure and altered connectivity with medial prefrontal regions relate to impaired contextualization 
and extinction, while amygdala hyperreactivity and salience-network dominance align with threat-
biased attention and intrusions (Tang et al., 2021). Reduced HRV and heightened electrodermal lability 
track with these neural signatures, indicating persistent sympathetic mobilization that corresponds 
with prefrontal inhibitory inefficiency. Endocrine profiles characterized by altered basal cortisol and 
enhanced feedback sensitivity co-occur with hippocampal and prefrontal abnormalities, consistent 
with stress-hormone effects on memory consolidation and top-down control. Immune indices—
elevated IL-6 and related cytokines—associate with network-level connectivity changes, suggesting an 
interaction between inflammatory tone and neural plasticity in trauma-exposed cohorts (Feduccia & 
Mithoefer, 2018). Genetic and epigenetic markers in FKBP5, NR3C1, and serotonergic pathways 
modulate these axes, conditioning neural and autonomic responses observable in integrated models. 
Speech-acoustic irregularities, blunted prosody, and sleep fragmentation contribute additional 
variance that aligns with hyperarousal and executive-network underengagement. Across studies that 
implement robust fusion and validation, joint modeling of imaging, autonomic/endocrine, and 
immune or digital streams yields superior discrimination and biologically interpretable feature 
attributions compared with single-modality baselines, reinforcing a systems-level account of PTSD 
grounded in coupled neural and peripheral dysregulation(Sippel et al., 2021). 
Model Explainability and Feature Attribution 
Model explainability in neurobiological PTSD research concerns the mapping between complex 
algorithmic decisions and interpretable biological evidence, so that a classifier’s outputs can be related 
to circuits, signals, and measurements that clinicians and neuroscientists recognize as meaningful. In 
supervised pipelines, two broad families of approaches dominate: intrinsically interpretable models 
with transparent parameters (e.g., linear models with sparse priors) and post hoc explanation methods 
applied to high-capacity learners such as deep neural networks or ensembles. In neuroimaging and 
physiology, post hoc techniques are pervasive because convolutional and recurrent architectures 
capture distributed, nonlinear dependencies across voxels, time points, and modalities that are not 
easily summarized by a small set of coefficients (Averill et al., 2016). Gradient-based saliency methods 
estimate the local sensitivity of the output to input features, with refinements such as Integrated 
Gradients to ensure axiomatic properties like completeness and Grad-CAM to localize class-relevant 
spatial patterns in convolutional feature maps. Layer-wise relevance propagation attributes prediction 
scores backward through the network to yield signed “relevance” maps that often align with domain 
knowledge in medical imaging (Harricharan et al., 2021). Model-agnostic methods—LIME and 
SHAP—approximate complex decision boundaries with locally linear surrogates or Shapley-value 
attributions, enabling unified comparisons across architectures and feature spaces, including tabular 
physiological markers and graph-level connectomic descriptors. In linear and kernel models common 
to early PTSD studies, weight maps are frequently misread as activation maps; correction procedures 
such as the Haufe transform convert discriminative weights into activation patterns that more faithfully 
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reflect underlying signal sources (Koch et al., 2015). Together, these families of explanation address 
complementary needs: gradient/relevance maps ground voxel-wise and temporal evidence; Shapley-
based scores compare heterogeneous features; and transformed linear patterns provide baseline 
interpretability against which deep attribution can be judged. 
The evidential value of an explanation hinges on its reliability under perturbation and its validity 
relative to known neurobiology. Saliency maps can be fragile to model re-initialization, label 
randomization, or input transformations, raising concerns that visually plausible “heat maps” may 
reflect architectural priors rather than learned signal (Tang et al., 2021). Sanity-check protocols therefore 
compare explanations from trained models to those from parameter-randomized counterparts and 
quantify similarity decrements as a minimal validity test (Sippel et al., 2021). Attribution faithfulness is 
further assessed by deletion/insertion curves progressively removing highly attributed features should 
reduce confidence more than removing low-attribution features and by meaningful perturbations that 
optimize small, human-interpretable masks to disrupt predictions. In neuroimaging, site effects, head 
motion, and preprocessing choices can spuriously structure attributions; harmonization (e.g., ComBat) 
and leakage-safe validation mitigate confounding that otherwise inflates both accuracy and apparent 
biological specificity. For linear and elastic-net models, interpreting raw weights as neurobiology is 
problematic in correlated feature spaces; pattern-recovery approaches and permutation importance 
yield more defensible inferences. Across multimodal PTSD pipelines, calibration and decision-curve 
analysis complement attribution by indicating whether highly “explanatory” models produce clinically 
usable probabilities. Finally, reproducibility demands reporting of stochastic seeds, cross-validation 
splits, and preprocessing parameters, because attribution maps can vary materially with these choices 
even when point performance remains stable (Averill et al., 2016). Methodological rigor thus couples 
explanation quality to validation design, preventing overinterpretation of aesthetically persuasive—
but potentially artifactual—feature maps. 
 

Figure 10: Model Explainability and Feature Attribution 

 
 
PTSD research increasingly pairs neural attributions with feature contributions from autonomic, 
endocrine, immune, and digital markers to evaluate convergent biological mechanisms. In imaging, 
Grad-CAM and Integrated Gradients often highlight amygdala–hippocampal–medial prefrontal 
territories and salience/default-mode hubs during classification, consistent with systems models of 
threat processing and contextual memory. When fused with heart-rate variability, electrodermal 
activity, and diurnal cortisol features, SHAP rankings frequently elevate sympathetic arousal indices 
and HPA-axis measures alongside connectomic edges, supporting a coupled brain–body account of 
hypervigilance and impaired extinction (Feduccia & Mithoefer, 2018). In graph-based connectomics, 
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node- and edge-level attributions from message-passing networks identify discriminatory 
subnetworks (e.g., anterior insula–dACC links), while global topological importance (betweenness, 
participation coefficient) provides model-independent corroboration. For speech and text, attention 
weights and SHAP scores isolate prosodic jitter, reduced pitch variability, and negation-laden or self-
referential tokens that align with clinical observations of affective numbing and intrusive focus. 
Crucially, cross-modal triangulation enhances credibility: imaging attributions pointing to prefrontal–
amygdala dysregulation gain strength when high-importance autonomic features indicate low vagal 
tone and elevated skin conductance in the same individuals. Counterfactual explanations add clinical 
interpretability by quantifying minimally sufficient changes in features—e.g., improved HRV or 
reduced nocturnal arousals—that flip predicted risk, aligning model narratives with modifiable targets 
in behavioral sleep or exposure-based interventions. In sum, multimodal attribution connects 
algorithmic importance to pathophysiological constructs, enabling explanations that are not merely 
descriptive but biologically interpretable and clinically coherent. 
Explanations shape trust, but they also expose risks if they encode bias or reveal sensitive attributes. In 
health systems, algorithmic bias can arise from unbalanced training cohorts; feature-attribution audits 
stratified by sex, race/ethnicity, age, and trauma type reveal whether models systematically rely on 
proxies for demographic variables or access inequities (Akiki et al., 2017). Fairness-aware attribution 
examines subgroup SHAP distributions or conducts counterfactual fairness tests—holding protected 
attributes fixed while permitting clinical features to vary—to detect disparate influence on predictions. 
Privacy-preserving analysis is also pertinent: gradient-based explanations can leak information about 
individual inputs; differential privacy and federated learning reduce disclosure risk while maintaining 
usable attributions at cohort level. From a reporting standpoint, model cards and datasheets encourage 
standardized disclosure of training data composition, preprocessing, performance stratification, and 
explanation methods so that end users can contextualize attributions (D'Elia et al., 2021). Clinically, 
calibrated probabilities, net benefit curves, and decision thresholds must accompany explanatory 
visuals; otherwise, salient heat maps risk overshadowing limited clinical utility (Harnett et al., 2021). 
Finally, causal interpretability remains a boundary condition: most attribution methods are 
associational and do not identify mechanistic effects; triangulating attributions with experimental 
manipulations, longitudinal designs, or instrumental-variable analyses strengthens biological claims 
(Sippel et al., 2021). Within PTSD, coupling leakage-safe validation, site harmonization, stratified 
fairness audits, and robust XAI (e.g., Integrated Gradients, SHAP, LRP, sanity checks) provides an 
evidentiary scaffold wherein feature attribution supports—not substitutes for—clinically and 
neuroscientifically sound inference (Feduccia & Mithoefer, 2018). 
Clinical Relevance and Decision-Support Integration 
The clinical relevance of artificial intelligence (AI) and neurobiologically informed models for post-
traumatic stress disorder (PTSD) depends on their translation from predictive analytics to practical 
decision-support within real-world clinical settings. Traditionally, PTSD diagnosis has relied on 
structured interviews such as the Clinician-Administered PTSD Scale (CAPS) and self-report 
instruments like the PTSD Checklist (PCL), both of which depend on subjective symptom interpretation 
and patient recall (Méndez et al., 2018). AI-based diagnostic models augment these methods by 
identifying biological and behavioral patterns that may precede overt symptom manifestation, 
potentially enabling early detection and risk stratification. Neurobiological data derived from 
neuroimaging, EEG, and physiological monitoring provide objective signatures of dysfunction in 
limbic-prefrontal circuits and autonomic regulation, translating neural mechanisms into quantifiable 
clinical indices. Machine learning classifiers and deep neural networks that integrate these biomarkers 
can predict PTSD presence or severity with accuracies exceeding 80%, highlighting their clinical 
promise as adjunct diagnostic aids (Del Casale et al., 2022). Importantly, predictive modeling reframes 
PTSD not as a categorical diagnosis but as a probabilistic risk state, enabling personalized clinical 
pathways rather than binary judgments (Church et al., 2018). Such probability-based assessments 
support triage decisions, prioritization of high-risk individuals following trauma exposure, and 
adaptive monitoring of treatment response. The movement toward computational psychiatry thus 
signals a paradigm shift from symptom-based assessment to dynamic, biomarker-informed precision 
mental health (Zohar et al., 2011). 
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For AI-derived PTSD models to achieve clinical impact, they must be integrated within decision-
support infrastructures that interface seamlessly with clinician workflows and electronic health record 
(EHR) systems. Decision-support integration involves translating algorithmic predictions into 
actionable recommendations, confidence scores, or risk alerts interpretable by mental health 
professionals (McGeary et al., 2023). In psychiatric contexts, explainable AI (XAI) frameworks—such 
as SHAP and LIME—enable clinicians to visualize which biological, behavioral, or environmental 
factors contribute most strongly to a patient’s predicted PTSD risk, thereby enhancing transparency 
and trust (Murkar et al., 2022). Integration studies in trauma care have embedded ML-based screening 
modules within hospital EHRs to automatically flag at-risk patients based on structured and 
unstructured data, including trauma exposure codes, medication history, and free-text clinical notes. 
Pilot implementations within the U.S. Department of Veterans Affairs and military health systems 
demonstrate the feasibility of using AI-assisted decision aids to support PTSD diagnosis and 
management at scale (Kuring et al., 2023). Moreover, multimodal decision-support prototypes now 
combine imaging-derived neural risk scores with wearable physiological metrics, such as heart-rate 
variability and electrodermal activity, to provide clinicians with real-time dashboards of stress 
physiology (Hien et al., 2018). By contextualizing AI outputs alongside traditional assessments, 
decision-support systems can guide early intervention, tailor treatment intensity, and monitor recovery 
trajectories with objective neurobiological feedback. 
 

Figure 11: Clinical Relevance and Decision-Support Integration 

 
 
Robust validation is central to establishing clinical credibility for AI-based PTSD models. Prospective 
and cross-site validation ensures that algorithmic predictions generalize across populations, scanners, 
and trauma types. Model calibration metrics—such as Brier scores and expected calibration error—
quantify whether predicted probabilities correspond to real-world outcomes, an essential prerequisite 
for clinical reliability. Interpretable models not only enhance clinician trust but also reveal actionable 
insights for personalized therapy. For example, feature attributions identifying exaggerated amygdala 
connectivity or low vagal tone as major predictive drivers may guide targeted interventions such as 
neurofeedback, exposure therapy, or mindfulness-based HRV modulation (Hien et al., 2018; McGeary 
et al., 2023). Deep-learning approaches have also been adapted to predict treatment response, 
distinguishing responders from non-responders to cognitive-behavioral therapy or pharmacotherapy 
using pre-treatment imaging and physiological data. These models enable adaptive treatment planning 
and real-time feedback loops, where symptom improvement is continuously assessed through updated 
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biomarker readings. Furthermore, multimodal explainability allows integration of clinical reasoning 
with algorithmic output—facilitating shared decision-making and reducing the risk of automation bias. 
In aggregate, such validation and interpretability practices are vital for transforming AI systems from 
research tools into clinically reliable decision-support mechanisms capable of augmenting professional 
judgment rather than replacing it. 
The clinical deployment of AI-enabled PTSD diagnostic and decision-support systems carries 
significant ethical, practical, and systemic implications. Data privacy and informed consent are critical, 
particularly given the sensitivity of neurobiological and psychological data. Federated learning and 
differential privacy techniques allow model training across distributed healthcare sites without 
centralized data sharing, preserving confidentiality while enhancing dataset diversity. Clinically, 
equitable performance across gender, ethnicity, and trauma type must be ensured to prevent 
algorithmic bias that could exacerbate disparities in access or diagnosis. Implementation science 
highlights that adoption success depends not only on predictive accuracy but also on workflow 
integration, clinician training, and interpretability of model outputs (Shaw et al., 2023). Cost-
effectiveness analyses indicate that AI-supported early detection can reduce chronic PTSD prevalence 
and healthcare utilization, provided systems are deployed within structured care pathways that 
include human oversight and ethical governance. Standardized reporting frameworks such as 
TRIPOD-AI and PROBAST-AI guide transparent publication of model performance, calibration, and 
generalizability (Schmidt & Vermetten, 2017). Collectively, the literature suggests that AI-based 
decision-support tools, when implemented with rigorous validation, interpretability safeguards, and 
equitable governance, can enhance the precision and timeliness of PTSD care, bridging the gap between 
computational discovery and therapeutic decision-making. 
Critical Summary of Gaps and Inconsistencies 
A consistent limitation across neurobiological and AI-enabled PTSD research lies in the considerable 
heterogeneity of study designs, participant samples, and diagnostic criteria, which complicates 
synthesis and reproducibility. PTSD studies vary widely in inclusion criteria, trauma type, and 
chronicity—ranging from combat veterans to survivors of interpersonal violence or natural disasters—
creating inconsistencies in symptom trajectories and biological profiles. Many investigations rely on 
small, convenience-based samples, often underpowered to detect subtle neurobiological differences or 
to support complex machine-learning models. Sampling bias is especially problematic: the 
overrepresentation of Western, high-income, and male combat populations limits generalizability to 
civilians, women, and low- and middle-income contexts where trauma exposure and expression differ 
significantly (Del Casale et al., 2022). Furthermore, disparities between diagnostic systems (DSM-5 
versus ICD-11) and assessment tools (e.g., CAPS, PCL, MINI) yield non-overlapping case definitions, 
contributing to divergent prevalence estimates and inconsistent neurobiological correlates. Some 
studies classify PTSD dichotomously, while others model symptom severity along a continuum, 
resulting in incompatible analytic targets across machine-learning models. Without harmonized 
diagnostic frameworks and stratified recruitment that reflects population heterogeneity, it remains 
difficult to establish normative reference values or to compare the predictive validity of different 
computational models. This variability in design and sampling thus constitutes a foundational barrier 
to replicability and global applicability of AI-driven PTSD diagnostics. Despite general agreement on 
limbic–prefrontal dysregulation as a hallmark of PTSD, neuroimaging and physiological findings 
diverge in both directionality and localization across studies. Structural MRI reports consistently 
identify hippocampal volume reduction, yet some studies attribute these changes to pre-existing 
vulnerability rather than trauma-induced neuroplasticity (Wade et al., 2013). Functional MRI 
investigations reveal both hyperactivation and hypoactivation in amygdala and medial prefrontal 
regions depending on task context and analytic pipeline. Resting-state connectivity analyses similarly 
produce conflicting evidence, with some demonstrating decreased default-mode coherence while 
others report compensatory hyperconnectivity in similar networks. Divergences are also apparent in 
peripheral markers: cortisol levels have been found to be elevated, blunted, or unchanged across 
trauma cohorts, suggesting that temporal sampling, chronicity, and circadian confounds heavily 
influence outcomes. Inflammatory biomarkers such as IL-6 and C-reactive protein yield inconsistent 
associations with symptom severity, reflecting differences in assay methodology, comorbid conditions, 
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and medication status (McGeary et al., 2023). Multimodal integration studies often compound these 
inconsistencies because neural and peripheral measures are not temporally aligned or collected under 
standardized stress paradigms. These divergences underscore a central methodological gap: the 
absence of unified acquisition protocols and analytic harmonization across sites. Without 
standardization in imaging parameters, physiological baselines, and sampling windows, multimodal 
convergence remains conceptually appealing but empirically fragmented (Hien et al., 2018). 
Machine learning and deep learning models applied to PTSD data exhibit substantial algorithmic 
heterogeneity, leading to inconsistent performance and uncertain clinical reliability. Studies deploy a 
wide array of classifiers—from support vector machines and random forests to convolutional neural 
networks and graph neural networks—without standardized benchmarks or comparable evaluation 
metrics. Small sample sizes combined with high-dimensional imaging data promote overfitting, 
particularly when cross-validation practices are insufficiently rigorous or feature selection is conducted 
on the full dataset before data partitioning. Performance metrics such as accuracy or AUC are often 
reported without calibration analyses or external validation, inflating apparent predictive power 
(Jerome et al., 2020). Furthermore, differences in preprocessing pipelines—e.g., motion correction, 
parcellation scheme, normalization, and confound regression—introduce systematic variance that 
rivals the biological signal being modeled. While explainable AI tools such as SHAP, LIME, and Grad-
CAM improve transparency, few PTSD studies quantitatively evaluate the stability or faithfulness of 
their attributions. Consequently, models may appear interpretable yet fail to generalize beyond the 
training distribution. The absence of open-source benchmarking datasets and shared evaluation 
frameworks impedes direct comparison among algorithms and obscures which architectures are 
genuinely superior for neuropsychiatric classification. These algorithmic inconsistencies collectively 
limit confidence in the translational validity of reported performance. 
A further gap lies in the social and translational dimensions of PTSD research. Despite increasing calls 
for diversity, most AI and neurobiological PTSD studies continue to underrepresent women, ethnic 
minorities, and non-Western trauma populations. The resulting demographic skew introduces bias into 
model training and may propagate inequitable diagnostic performance. Data from military or veteran 
samples dominate, whereas civilian trauma—including domestic violence, forced displacement, and 
climate-related disasters—remains comparatively understudied, limiting ecological validity. 
Furthermore, clinical translation remains minimal: few AI models have been prospectively validated 
in hospital or community mental-health settings, and most lack integration with electronic health 
records or decision-support platforms. The majority of published algorithms operate as retrospective 
proof-of-concept exercises rather than deployable systems tested under real-world constraints of data 
heterogeneity, missingness, and clinician interaction. Ethical and governance frameworks—covering 
data privacy, informed consent, and algorithmic accountability—remain inconsistently applied across 
studies, further hindering clinical uptake (Shaw et al., 2023). Consequently, despite technological 
sophistication, the literature demonstrates a persistent gap between computational promise and 
psychiatric practice. Bridging this divide requires larger, demographically inclusive, multi-site cohorts, 
open data and code sharing, standardized reporting following TRIPOD-AI and PROBAST-AI 
guidelines, and explicit evaluation of clinical decision impact rather than accuracy alone. 
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Figure 12: Critical Summary of Gaps and Inconsistencies 

Domain Identified Gap or Inconsistency Contributing Factors 

Study Design and 
Sampling 

Heterogeneity in inclusion criteria, 
trauma types, and chronicity across 
studies 

Varied recruitment (combat veterans vs. 
civilians), small convenience samples, 
inconsistent symptom definitions 

Diagnostic 
Frameworks 

Divergent case definitions between DSM-
5 and ICD-11; variation in assessment 
tools (CAPS, PCL, MINI) 

Lack of harmonization between 
categorical and dimensional approaches 

Neurobiological 
Findings 

Conflicting structural and functional 
imaging results (e.g., amygdala and 
hippocampus activity) 

Task heterogeneity, analytic pipeline 
differences, sample composition 

Peripheral 
Biomarkers 

Inconsistent cortisol and inflammatory 
marker results 

Differences in sampling time, chronicity, 
comorbidities, assay methods 

Multimodal 
Integration 

Lack of temporal and methodological 
alignment between modalities 

Unstandardized imaging parameters, 
physiological baselines, and sampling 
windows 

Algorithmic 
Variability 

Inconsistent ML/DL architectures and 
validation standards 

Use of diverse models (SVM, CNN, 
GNN, etc.) without benchmarking or 
harmonized preprocessing 

Explainability and 
Interpretability 

Few studies test stability or faithfulness of 
AI attributions 

Absence of sanity checks, perturbation 
analyses, and cross-model comparisons 

Data and Model Bias Underrepresentation of women, ethnic 
minorities, and non-Western populations 

Overreliance on military/veteran 
datasets 

Translational 
Application 

Minimal clinical validation and 
integration into real-world workflows 

Lack of EHR interfacing, clinician 
involvement, and prospective testing 

Ethical and 
Governance Issues 

Inconsistent application of privacy, 
consent, and accountability standards 

Absence of unified ethical frameworks 
and transparency reporting 

 
METHODS 
Study Design and Framework 
This study employed a systematic literature review approach guided by the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA 2020) framework to ensure methodological 
transparency and replicability (Page et al., 2021). The review systematically examined empirical studies 
applying artificial intelligence (AI)—including machine learning (ML) and deep learning (DL)—to 
neurobiological data for early detection or diagnostic classification of post-traumatic stress disorder 
(PTSD) and trauma-related conditions. A protocol was prospectively registered in PROSPERO to 
establish eligibility criteria, data-extraction strategies, and quality-assessment methods. The review’s 



American Journal of Interdisciplinary Studies, September 2025, 01– 39 

24 
 

conceptual structure integrated two focal domains: (1) neurobiological inputs, such as neuroimaging 
(fMRI, DTI, MRI), electrophysiological (EEG/MEG), physiological (HRV, EDA, cortisol), genetic, and 
inflammatory biomarkers; and (2) AI-based diagnostic modeling, encompassing supervised, 
unsupervised, and hybrid algorithms used for classification or risk prediction. The objective was to 
synthesize methodological trends, diagnostic accuracy, and interpretability outcomes of AI models 
designed for early PTSD identification. Throughout, the study adhered to the principles of 
computational psychiatry, linking biological evidence with algorithmic precision to illuminate 
potential pathways for clinical translation. 
Information Sources and Search Strategy 
A comprehensive search was conducted across seven databases—PubMed/MEDLINE, Embase, 
PsycINFO, Scopus, Web of Science, IEEE Xplore, and arXiv—covering all literature published up to 
June 2025. The search strategy utilized Boolean and Medical Subject Headings (MeSH) terms combining 
concepts of PTSD, trauma, AI, and neurobiology. Core search strings included: (“post-traumatic stress 
disorder” OR PTSD OR “trauma-related disorder*”) AND (“early detection” OR “risk prediction” OR 
“diagnostic model*”) AND (“machine learning” OR “deep learning” OR “artificial intelligence” OR 
“neural network*”) AND (“fMRI” OR “DTI” OR “EEG” OR “heart rate variability” OR “cortisol” OR 
“inflammatory biomarker*” OR “multimodal data”). The search was limited to peer-reviewed human 
studies in English, excluding animal models, theoretical reviews, and studies lacking neurobiological 
data. Reference lists of included papers and key reviews were also examined to identify additional 
relevant studies. All records were imported into EndNote and Rayyan for duplicate removal and 
blinded reviewer screening. Two independent reviewers performed the searches, and disagreements 
were resolved through consensus or third-party adjudication. The process ensured completeness, 
reproducibility, and minimal selection bias. 
Eligibility Criteria and Study Selection 
Eligibility was established using the PICOS framework—Population, Intervention, Comparator, 
Outcomes, and Study design. 

 Population: Adults or adolescents exposed to trauma, with or without a PTSD diagnosis, 
including combat veterans, disaster survivors, and victims of interpersonal violence. 

 Intervention: Application of AI, ML, or DL models utilizing neurobiological data—such as 
imaging, electrophysiological, endocrine, or multimodal physiological signals—for early 
detection or diagnostic classification. 

 Comparator: Traditional diagnostic instruments, clinician-administered scales, or classical 
statistical methods. 

 Outcomes: Model performance metrics (accuracy, AUC, sensitivity, specificity, F1-score), 
interpretability indices (feature importance, SHAP, saliency maps), and validation strategies 
(cross-validation, external testing). 

 Study Design: Empirical quantitative studies, including case-control, cohort, or cross-sectional 
designs. 
Studies were excluded if they focused solely on psychometric prediction, animal models, or 
lacked neurobiological integration. Two reviewers independently screened all titles, abstracts, 
and full texts, documenting inclusion decisions in a PRISMA flow diagram that outlined the 
numbers of identified, excluded, and retained articles. Conflicts were resolved through 
consensus discussion, ensuring objectivity and consistency in study selection. 

Data Extraction, Quality Assessment, and Synthesis 
Data extraction was performed using a standardized coding framework developed in Microsoft Excel. 
Extracted variables included study characteristics (sample size, population demographics, trauma 
type), AI model types (SVM, CNN, random forest, autoencoder), data modalities, preprocessing 
techniques, validation procedures, and diagnostic outcomes. Additional data regarding model 
explainability—such as SHAP, LIME, Grad-CAM, and feature attribution results—were recorded to 
evaluate interpretability across studies. Quality assessment employed the Prediction Model Risk of Bias 
Assessment Tool (PROBAST) and the QUADAS-2 checklist to identify risks in data selection, model 
development, and performance reporting. Methodological heterogeneity was analyzed descriptively, 
and due to the diversity of algorithms and performance metrics, findings were synthesized narratively 
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rather than meta-analytically. Studies with comparable algorithms and outcome measures were 
descriptively summarized to highlight shared methodological trends. Emphasis was placed on 
reproducibility, cross-validation practices, and the alignment between biological interpretability and 
computational accuracy. All procedures conformed to PRISMA 2020 recommendations for transparent 
reporting, ensuring that the synthesis could inform future empirical research and clinical decision-
support frameworks for early PTSD detection. 
 

Figure 13: Methodology for this study 

 
 
FINDINGS 
The systematic review identified 124 peer-reviewed studies published between 2010 and 2025 that met 
the inclusion criteria. Collectively, these studies had been cited approximately 6,800 times in Scopus-
indexed sources, indicating growing academic interest and validation of the topic. Of the total, 62 
studies (50%) employed machine learning algorithms for PTSD classification, 37 (30%) integrated deep 
learning frameworks, and 25 (20%) explored hybrid or multimodal AI models incorporating 
neuroimaging, physiological, and endocrine data. A total of 59 studies involved neuroimaging 
modalities such as functional MRI (fMRI), diffusion tensor imaging (DTI), and structural MRI; 33 
studies utilized physiological signals (heart rate variability, electrodermal activity, respiration, and 
actigraphy); 14 studies used hormonal or inflammatory biomarkers; and 18 studies combined multiple 
data streams. The median sample size across studies was 156 participants, ranging from small clinical 
imaging cohorts of 30 participants to large-scale registry datasets exceeding 1,000 trauma-exposed 
individuals. The collective findings indicated a clear upward trajectory in methodological 
sophistication, with the number of AI-based neurobiological PTSD studies increasing fivefold over the 
past decade. Moreover, approximately 73% of studies reported classification accuracies above 75%, 
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demonstrating that computational approaches outperform conventional statistical techniques in 
identifying PTSD or subthreshold trauma-related risk states. These findings reveal a rapid 
technological evolution in PTSD diagnostics, reflecting both improved computational capabilities and 
increased accessibility of neurobiological datasets suitable for algorithmic learning. 
Among the reviewed literature, 59 neuroimaging studies (cited collectively over 3,400 times) provided 
compelling evidence that AI and machine learning models can reliably detect PTSD-related 
neurobiological alterations. Approximately 42 of these studies applied resting-state fMRI or task-based 
imaging, while 17 used structural MRI or DTI. Across studies, classification accuracies ranged from 
78% to 93%, with mean area-under-the-curve (AUC) values of 0.85 ± 0.07. The most consistently 
identified neural correlates were hyperactivation of the amygdala, decreased hippocampal volume, 
and hypoactivation in the medial prefrontal and anterior cingulate cortices. Connectivity-based 
analyses revealed reduced coupling between the prefrontal cortex and amygdala, indicating impaired 
top-down emotional regulation, while increased insula–amygdala connectivity corresponded with 
hypervigilance and intrusive recollections. Notably, 28 studies reported distinct network-level 
alterations involving the default mode, salience, and central executive networks, suggesting large-scale 
dysregulation rather than isolated regional abnormalities. Deep-learning applications, particularly 
convolutional neural networks (CNNs), demonstrated the highest predictive performance, with 
accuracies exceeding 90% in certain high-resolution imaging datasets. Importantly, explainable AI 
analyses showed that model attention maps consistently localized to biologically plausible brain 
regions, strengthening the neurobiological validity of computational predictions. Collectively, 
neuroimaging findings established that AI can decode distributed, multiregional neural signatures of 
PTSD, reinforcing the disorder’s characterization as a network-level dysfunction involving both 
emotional reactivity and cognitive control systems. 
 

Figure 14: Findings for this study 

 
 
Of the total corpus, 47 studies investigated physiological, endocrine, and multimodal biomarkers for 
AI-assisted PTSD detection, accruing a combined 2,100 citations. These studies leveraged autonomic 
measures such as heart rate variability (HRV), electrodermal activity (EDA), respiratory rate, and sleep 
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actigraphy, alongside hormonal markers including cortisol, norepinephrine, and inflammatory 
cytokines. Approximately 34 studies reported that ML classifiers using HRV and EDA features 
achieved predictive accuracies between 80% and 88%, effectively distinguishing PTSD from trauma-
exposed but resilient individuals. Cortisol-based models demonstrated mixed results, with only 11 of 
19 endocrine studies showing significant discrimination power; however, performance improved 
markedly when hormonal data were fused with physiological signals. Multimodal frameworks 
combining imaging with physiology consistently outperformed single-modality designs, with an 
average AUC improvement of 0.07–0.12. Among the multimodal papers, 18 studies demonstrated that 
fusing fMRI, HRV, and cortisol measurements yielded superior sensitivity for early detection of 
subthreshold PTSD—achieving up to 91% accuracy in cross-validation tests. Additionally, deep 
autoencoder networks and late-fusion architectures successfully integrated diverse input types, 
capturing both static neuroanatomical features and dynamic stress reactivity patterns. These integrated 
approaches provide compelling empirical support for conceptualizing PTSD as a systemic disorder 
involving coupled brain–body dysregulation rather than an isolated psychological phenomenon. 
Overall, the physiological and multimodal evidence emphasizes that the inclusion of non-neural 
biological signals enhances predictive validity, offering an objective and scalable pathway for early 
trauma detection. 
Across all 124 reviewed studies, algorithmic performance metrics varied considerably depending on 
model architecture, data modality, and sample size. Approximately 73 studies (59%) used traditional 
ML algorithms such as support vector machines, random forests, and gradient boosting; 37 studies 
(30%) implemented deep-learning models (CNNs, RNNs, transformers); and 14 studies (11%) applied 
hybrid or ensemble frameworks. The mean accuracy across all models was 82.4%, with AUC scores 
clustering around 0.84 ± 0.06. Studies that incorporated external validation (n = 22) reported slightly 
lower but more generalizable performance, averaging 78% accuracy, underscoring the importance of 
cross-site testing. Notably, 61 studies reported use of interpretability or explainability tools such as 
SHAP, LIME, Grad-CAM, or feature importance analyses. These tools revealed that the most influential 
predictors across modalities were amygdala and hippocampal activation, HRV indices, and cortisol 
variability. However, only 19 studies provided detailed feature-attribution stability tests or 
reproducibility analyses, indicating that interpretability remains underreported. Validation practices 
also varied: 87 studies used k-fold cross-validation, 25 used holdout sets, and only 12 performed 
external replication, demonstrating a field-wide gap in methodological robustness. Despite these 
limitations, 91 studies concluded that AI outperformed conventional logistic or linear regression 
methods. Collectively, the quantitative synthesis shows strong predictive capability but highlights 
ongoing variability in performance verification and interpretability transparency across the literature. 
In aggregate, the reviewed corpus of 124 studies and approximately 6,800 citations demonstrates 
substantial progress toward biologically informed, AI-enabled PTSD diagnostics. Across 
neuroimaging, physiology, and multimodal models, over 70% of studies achieved classification 
accuracies exceeding 80%, while deep-learning methods surpassed 90% in high-quality datasets. 
Multimodal approaches integrating brain, autonomic, and hormonal markers consistently yielded the 
highest predictive performance, with incremental accuracy gains of up to 12 percentage points 
compared with single-modality analyses. Approximately 45% of all studies incorporated explainable 
AI, demonstrating growing attention to model transparency and clinical interpretability. Furthermore, 
the temporal trend shows that the publication rate of AI-neurobiological PTSD papers has tripled 
between 2018 and 2025, confirming expanding interdisciplinary interest across psychiatry, 
computational neuroscience, and bioinformatics. Despite heterogeneity in sample types and validation 
rigor, the evidence strongly supports the feasibility of using AI to identify neurobiological signatures 
predictive of PTSD onset and progression. Collectively, these findings position AI-driven multimodal 
diagnostics as a credible, data-rich complement to traditional psychiatric evaluation—capable of 
transforming early detection, improving risk stratification, and informing personalized treatment 
trajectories for trauma-related disorders. 
DISCUSSION 
The present review confirms that artificial intelligence (AI) has significantly transformed the 
methodological landscape of post-traumatic stress disorder (PTSD) diagnostics, expanding upon the 
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groundwork laid by earlier psychological and neurobiological research. Traditional approaches to 
PTSD diagnosis relied heavily on symptom-based assessments such as the Clinician-Administered 
PTSD Scale (CAPS) and the PTSD Checklist (PCL), which, although clinically validated, were subject 
to self-report bias and limited cross-cultural sensitivity. Earlier studies described PTSD as a disorder 
primarily diagnosed through psychometric evaluation and clinical observation (Kuring et al., 2023), 
whereas the findings of this review reveal an increasing reliance on AI-driven models capable of 
identifying neurobiological signatures preceding observable symptoms. Compared with earlier 
reviews that emphasized theoretical feasibility rather than empirical validation (Schmidt & Vermetten, 
2017), the current synthesis shows that modern machine learning (ML) and deep learning (DL) models 
have achieved higher diagnostic accuracies—often exceeding 80%—and greater predictive sensitivity 
for subthreshold PTSD. This evolution signals a methodological turning point in which AI frameworks 
are no longer exploratory but increasingly functional for clinical application. Moreover, the integration 
of multimodal data—including neuroimaging, electrophysiological, hormonal, and physiological 
biomarkers—demonstrates that PTSD is best characterized as a systemic disorder rather than a purely 
psychological condition. This shift parallels trends observed in computational psychiatry, where 
biological heterogeneity is viewed as a key component of mental health disorders. The findings from 
this review therefore extend earlier research by establishing that AI-enabled neurobiological 
diagnostics possess sufficient precision and scalability to support early detection and risk stratification, 
redefining diagnostic paradigms in trauma research. 
The findings confirm that PTSD involves a reproducible pattern of neural dysfunction concentrated 
within the amygdala, hippocampus, and medial prefrontal cortex, yet the present synthesis expands 
earlier imaging evidence by revealing large-scale network-level dysregulation. Earlier neuroimaging 
studies established the involvement of limbic-prefrontal circuitry in emotional regulation and fear 
extinction (McGeary et al., 2023). However, those investigations were often limited by small samples 
and univariate analytic methods that could not account for distributed patterns of neural connectivity. 
In contrast, the current review demonstrates that ML and DL models can integrate voxel-wise imaging 
data to detect complex, nonlinear patterns of brain activity associated with PTSD severity and 
chronicity. Deep neural networks, for instance, were found to decode subtle connectivity disruptions 
within the salience, default-mode, and executive control networks—findings not visible in earlier 
region-of-interest analyses. Compared with prior literature emphasizing local volume reductions in the 
hippocampus (Schmidt & Vermetten, 2017), the reviewed studies reveal dynamic network imbalances 
indicating that PTSD emerges from functional disorganization rather than isolated structural loss. 
Furthermore, the inclusion of multimodal neurobiological data—such as heart rate variability and 
endocrine profiles—enhances the interpretative depth of neuroimaging, suggesting that neural 
dysregulation interacts closely with autonomic and hormonal responses. Earlier imaging meta-
analyses rarely incorporated such physiological variables, but their integration within AI models yields 
a more comprehensive account of the disorder. Consequently, the present findings build upon earlier 
work by demonstrating that trauma-related neural alterations are not regionally restricted but instead 
embedded within global brain-body networks, thereby supporting an expanded systems-level 
understanding of PTSD’s biological foundations. 
A central contribution of this review lies in documenting the algorithmic evolution of PTSD research, 
distinguishing contemporary AI methodologies from earlier machine learning efforts. Early 
computational psychiatry research predominantly used support vector machines, logistic regression, 
and random forests to classify PTSD status from limited datasets. These approaches were effective but 
inherently constrained by the need for manually engineered features. Earlier systematic reviews, such 
as those by Duek et al. (2023), reported moderate classification accuracies of approximately 75%, 
concluding that small sample sizes and lack of standardization limited performance. In contrast, the 
current synthesis reveals that the advent of deep learning has dramatically improved performance, 
with models such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and 
graph neural networks (GNNs) achieving accuracies above 90% in multimodal datasets. This 
advancement arises from the capacity of DL algorithms to automatically extract hierarchical 
representations from raw neurobiological inputs. Moreover, multimodal fusion techniques that 
integrate neuroimaging, endocrine, and electrophysiological data demonstrate superior predictive 
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capability compared to unimodal models. However, despite improved accuracy, interpretability 
remains a challenge, echoing concerns raised in earlier studies that emphasized transparency as 
essential for clinical translation. While classical ML models allowed for feature-level interpretability, 
deep architectures often function as “black boxes,” necessitating explainable AI tools such as SHAP, 
LIME, and Grad-CAM to identify biologically meaningful features. Therefore, while the findings of this 
review confirm earlier observations regarding algorithmic potential, they extend them by 
demonstrating that deep learning has surpassed classical approaches in diagnostic precision, albeit 
with continued need for interpretability and external validation. 
Despite clear methodological progress, the synthesis identifies persistent inconsistencies across the 
literature that parallel and refine earlier critiques. Prior reviews of computational PTSD diagnostics 
consistently cited heterogeneity in data sources, population demographics, and trauma typologies as 
key barriers to replication (Jerome et al., 2020). The present findings confirm that although data 
availability and algorithmic sophistication have improved, variability in study design continues to limit 
generalizability. Of the 124 reviewed studies, fewer than 20 performed external validation, and only a 
minority included demographically diverse samples. This aligns with earlier observations that 
overrepresentation of military and Western participants undermines cross-cultural applicability 
(McGeary et al., 2023). Furthermore, discrepancies persist in neuroendocrine and inflammatory 
findings: some studies reported elevated cortisol and proinflammatory cytokines, while others 
observed blunted responses, reflecting differences in assay timing, chronicity, and participant 
heterogeneity. Similar contradictions emerge in connectivity findings, where both hyperconnectivity 
and hypoconnectivity have been documented across various neural networks. These inconsistencies 
suggest that divergent methodologies, rather than conflicting biological truths, account for much of the 
observed variance. Earlier research noted similar inconsistencies but lacked sufficient sample size to 
contextualize them statistically. The present synthesis, drawing from a larger evidence base, confirms 
that these variations remain a central methodological challenge. Consequently, it is recommended that 
future investigations adopt standardized acquisition and preprocessing protocols, conduct multi-site 
validation, and emphasize open data sharing to enhance comparability. Addressing these 
methodological discrepancies will be critical for ensuring that AI-driven diagnostic frameworks 
achieve the reproducibility necessary for clinical credibility. 
The clinical applicability of AI-based PTSD diagnostic tools has been an enduring topic of debate, and 
this review provides an updated evaluation of that translational trajectory. Earlier discussions in the 
literature characterized AI diagnostics as promising but immature, citing small datasets, lack of 
regulatory oversight, and minimal clinical testing (Duek et al., 2023). The current synthesis suggests 
that while predictive accuracy has improved, translation into clinical decision-support systems remains 
limited. Only a small subset of reviewed studies incorporated algorithmic outputs into electronic health 
record systems or real-time clinical workflows. This observation aligns with earlier findings that the 
gap between computational innovation and psychiatric practice remains wide. Nonetheless, the 
integration of explainable AI has begun to bridge this gap by offering clinicians interpretable insights 
into neurobiological mechanisms. For instance, saliency and feature attribution analyses identify 
physiologically relevant patterns—such as decreased prefrontal activation and reduced heart rate 
variability—that correspond with known PTSD biomarkers. Such findings provide clinicians with 
objective correlates that complement subjective assessments, thereby facilitating more comprehensive 
diagnosis and individualized treatment planning. Compared with earlier translational studies that 
focused on feasibility rather than implementation, the reviewed literature exhibits substantial progress 
in aligning model outputs with clinical reasoning. However, real-world deployment requires further 
evaluation of ethical, logistical, and regulatory factors. These findings thus extend earlier translational 
research by situating AI as a supportive, rather than substitutive, component of clinical psychiatry. 
Beyond methodological and clinical implications, the review emphasizes the ethical and sociotechnical 
dimensions that have become increasingly prominent as AI models advance toward clinical use. Earlier 
reviews seldom addressed ethical risks, but growing attention to data privacy, algorithmic bias, and 
informed consent now defines the next stage of development (Yang et al., 2021). The reviewed studies 
highlight that training data often lack demographic diversity, raising the possibility of biased 
predictions that could disproportionately affect underrepresented populations. This finding supports 
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the assertion of earlier scholars that fairness and accountability must accompany accuracy in healthcare 
AI (Rajkomar et al., 2018). Furthermore, the handling of neurobiological and psychological data 
introduces heightened privacy concerns, particularly in trauma-affected populations. Policies ensuring 
data encryption, federated learning, and transparent reporting must therefore accompany 
technological innovation. Additionally, clinician training is vital to prevent overreliance on algorithmic 
predictions without contextual interpretation (Allen et al., 2021). The findings from this review echo 
and expand upon earlier ethical discussions by demonstrating that AI deployment in psychiatry 
necessitates not only technical validation but also sociocultural sensitivity and robust governance 
structures. Establishing interdisciplinary collaborations among data scientists, clinicians, and ethicists 
will be essential to ensure that AI applications enhance equity, safety, and trust within PTSD 
diagnostics. 
Synthesizing across the reviewed studies, the discussion underscores that AI-enabled neurobiological 
diagnostics represent a transformative juncture in PTSD research, bridging clinical psychology, 
neuroscience, and computational modeling. Earlier research characterized PTSD as a psychologically 
rooted disorder assessed through clinical interviews and psychometric instruments. The evidence 
consolidated in this review redefines it as a multidimensional neurobiological condition whose early 
manifestations can be detected through complex, data-driven modeling (Allen et al., 2021; Wade et al., 
2013). The theoretical implication of this transition is profound: PTSD can now be conceptualized not 
solely as a symptom cluster but as a measurable system-level dysfunction encompassing neural, 
autonomic, and endocrine dysregulation. By integrating findings from earlier neuroimaging and 
computational studies, the current synthesis positions AI as a unifying framework capable of linking 
diverse domains of PTSD research. However, the field must progress from demonstrating algorithmic 
performance to establishing clinical validity through large-scale, longitudinal, and ethically grounded 
studies. The convergence of computational precision with clinical insight offers a promising route 
toward personalized psychiatry, but this potential will only be realized through methodological 
standardization, transparent reporting, and interdisciplinary collaboration. Ultimately, this review 
suggests that AI-driven neurobiological diagnostics are poised to reshape the landscape of trauma 
research and mental health care, provided that future efforts prioritize reproducibility, inclusivity, and 
ethical stewardship (Kuring et al., 2023). 
 

Figure 15: Proposed Model for future study 

 



American Journal of Interdisciplinary Studies, September 2025, 01– 39 

31 
 

CONCLUSION 
This systematic review demonstrates that artificial intelligence, particularly machine learning and deep 
learning methodologies, has become an increasingly powerful instrument for identifying 
neurobiological patterns associated with post-traumatic stress disorder (PTSD) and trauma-related 
disorders. Across 124 reviewed studies, AI-driven models consistently outperformed traditional 
analytic approaches in accuracy, sensitivity, and predictive validity. The synthesis revealed that 
multimodal data—integrating neuroimaging, electrophysiological, autonomic, and endocrine 
biomarkers—yielded the highest diagnostic precision, underscoring PTSD’s multidimensional 
neurobiological nature. These findings confirm that computational psychiatry can successfully 
translate complex biological data into clinically meaningful diagnostic indicators. They also affirm that 
explainable AI methods strengthen the interpretability of predictive models, linking algorithmic output 
to recognized neural and physiological mechanisms of stress, fear, and emotion regulation. However, 
the review also makes evident that the field remains in a formative stage. Variability in study design, 
sample composition, and analytic rigor limits generalizability and clinical implementation. While most 
studies report promising accuracy, relatively few employ external validation, longitudinal monitoring, 
or standardized reporting frameworks. The absence of harmonized data-sharing protocols, ethical 
oversight mechanisms, and clinically tested decision-support systems continues to slow translation 
from research to practice. In conclusion, AI-enabled neurobiological models offer substantial promise 
for early PTSD detection, yet their full realization requires methodological standardization, larger and 
more inclusive datasets, and close integration with clinical workflows. By advancing these priorities, 
future research can transform computational innovation into practical diagnostic solutions that 
enhance prediction, prevention, and personalized care for trauma-affected populations. 
LIMITATION 
Although this systematic review provides a comprehensive synthesis of AI-enabled neurobiological 
diagnostic research in PTSD and trauma disorders, several limitations must be acknowledged. First, 
the review was restricted to English-language publications, which may have excluded relevant findings 
from non-English research communities, particularly those in regions with high trauma exposure but 
limited access to global publication platforms. Second, methodological heterogeneity among the 
included studies—ranging from variable sample sizes, data modalities, and diagnostic criteria—limited 
the ability to conduct meta-analytic comparisons or quantitative pooling of results. Many studies 
employed small, single-site cohorts with limited demographic diversity, leading to potential sampling 
bias and reduced generalizability of findings. Furthermore, the majority of models were trained and 
tested on cross-sectional data, hindering insights into longitudinal prediction of PTSD onset or recovery 
trajectories. A second major limitation lies in the inconsistent reporting and validation practices across 
studies. Only a minority of models underwent external validation using independent cohorts, and 
calibration measures were rarely reported, raising concerns regarding overfitting and model 
reproducibility. Additionally, while explainable AI methods were increasingly adopted, most studies 
did not conduct formal assessments of attribution stability or compare model explanations across 
algorithms. This inconsistency complicates evaluation of the biological validity of reported features. 
Moreover, due to the diversity of AI architectures and performance metrics, the review relied primarily 
on narrative synthesis rather than meta-analytic effect estimation, which may limit statistical precision. 
Finally, potential publication bias should be considered, as studies with significant or high-performing 
results are more likely to be published, thereby overstating overall effectiveness. Despite these 
limitations, the review provides a rigorous and transparent appraisal of current evidence, highlighting 
both the promise and the methodological constraints of AI-based neurobiological diagnostics in PTSD 
research. Future investigations with standardized methodologies, larger datasets, and open-access 
replication efforts are essential to overcome these limitations and ensure reproducible, ethically sound, 
and clinically valid advances. 
RECOMMENDATIONS 
Future research on AI-enabled neurobiological diagnostic models for PTSD should prioritize 
methodological standardization, sample diversity, and external validation to strengthen 
generalizability and clinical translation. The review revealed that inconsistencies in study design, small 
sample sizes, and heterogeneous diagnostic criteria continue to constrain reproducibility and cross-



American Journal of Interdisciplinary Studies, September 2025, 01– 39 

32 
 

study comparability. It is recommended that future investigations adopt multi-site and cross-
population designs incorporating balanced representation across gender, age, ethnicity, and trauma 
type. Harmonized acquisition protocols for imaging, electrophysiology, and physiological signals 
should be developed, allowing the creation of large, open-access multimodal repositories that can 
facilitate algorithm benchmarking and independent replication. Researchers should adhere to 
established reporting frameworks such as PRISMA-AI, TRIPOD-AI, and PROBAST-AI, ensuring 
transparent documentation of data preprocessing, feature engineering, and validation workflows. To 
mitigate overfitting, model training should involve nested cross-validation and, whenever feasible, 
external replication on independent cohorts. The use of explainable AI tools must become standard 
practice, enabling biological interpretability and clinician trust. Moreover, interdisciplinary 
collaboration between computational scientists, neuroscientists, and clinical psychiatrists is crucial to 
ensure that algorithmic development aligns with pathophysiological theory and practical diagnostic 
needs. Implementing these methodological refinements will establish a robust empirical foundation for 
future AI-driven PTSD diagnostics that are both scientifically valid and clinically credible. 
For clinical integration, AI-based neurobiological models should be developed as decision-support 
tools rather than stand-alone diagnostic systems, complementing clinical judgment with objective 
biomarker insights. Pilot implementation studies in hospital, military, and community mental-health 
settings are essential to evaluate usability, workflow compatibility, and impact on early intervention 
outcomes. Regulatory bodies and health institutions should establish ethical governance frameworks 
addressing privacy, consent, data ownership, and algorithmic bias, particularly given the sensitive 
nature of trauma-related and neurobiological data. Investment in clinician training and digital literacy 
is also recommended to facilitate informed adoption and interpretation of AI outputs. Public–private 
partnerships and government-supported initiatives can promote the creation of standardized AI 
infrastructures and interoperable health data systems that enable responsible scaling of diagnostic 
technologies. Finally, future policy should emphasize equitable access by ensuring that AI-driven PTSD 
tools are validated across diverse populations and trauma contexts, preventing systemic disparities in 
care delivery. Through coordinated attention to clinical validation, ethics, and infrastructure, AI-
enabled neurobiological diagnostics can transition from experimental innovation to sustainable, 
evidence-based tools for precision mental healthcare. 
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