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Abstract 
This quantitative study evaluated AI-driven predictive maintenance for motor drives in smart manufacturing 
by comparing three deployment architectures: SCADA-only, edge-only, and hybrid SCADA-to-edge fusion. A 
longitudinal multi-asset dataset was analyzed from 48 motor drives monitored over 16 weeks, representing 
18,720 operating hours, 12,614,380 SCADA tag records, and 3,456,000 edge analysis windows. Outcomes were 
defined using tiered event labels, including 37 Tier-1 confirmed failures, 64 Tier-2 verified defect findings, and 
142 Tier-3 operational abnormality episodes. Time-based evaluation and motor-drive clustering controls were 
applied, and performance was assessed under a fixed alert-budget policy using event detection, precision, false 
alarm density, and lead time outcomes, alongside deployment feasibility metrics. Compared with SCADA-only, 
edge-only deployment improved event detection (odds ratio = 1.62, p = .014) and increased precision from 0.41 
to 0.53 (p = .006), while reducing false alarms from 1.48 to 1.31 per 100 operating hours (p = .041). Hybrid 
fusion produced the strongest predictive outcomes, increasing event detection (odds ratio = 2.08, p < .001), 
raising precision to 0.58 (p < .001), and lowering false alarms to 1.27 per 100 operating hours (p = .018). 
Median lead time increased from 18.6 hours (SCADA-only) to 31.4 hours (edge-only) and 37.9 hours (hybrid) 
(p < .01). Deployment tradeoffs were quantified: inference latency increased from 18 ms per window (SCADA-
only) to 122 ms (edge-only) and 141 ms (hybrid), while bandwidth use was reduced by 96.1%–96.8% in edge 
and hybrid configurations through feature-level reporting. Overall, SCADA-to-edge fusion yielded the most 
stable and effective predictive maintenance performance across operating regimes with manageable system 
overhead. 
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INTRODUCTION 
Smart manufacturing is defined as an integrated production paradigm in which physical assets, control 
systems, and information systems operate as a coordinated cyber–physical environment to maintain 
stable output, traceable quality, and measurable efficiency under variable demand. In this 
environment, motor drives are defined as the combined electromechanical and power-electronic 
subsystems that convert electrical power into regulated mechanical motion, typically including an 
inverter or converter stage, an electric motor, sensors, and embedded control logic for speed, torque, 
and position regulation (Yao et al., 2019). Motor drives function as the actuation backbone of automated 
manufacturing because they power conveyors, pumps, compressors, fans, robotic joints, spindle 
motors, packaging lines, and material-handling equipment, placing them directly on the critical path 
of throughput and equipment availability. Smart manufacturing is internationally significant because 
it shapes cost, energy intensity, product conformity, and delivery reliability across global value chains, 
and motor-drive reliability becomes a measurable contributor to these outcomes through downtime 
minutes, scrapped output, rework rates, and energy losses. Industrial maintenance is defined as the 
structured set of technical and organizational activities intended to sustain or restore an asset to a state 
where it can perform its required function, and it is commonly organized into reactive actions following 
failure, preventive actions scheduled by time or usage, and condition-based actions triggered by 
measured condition. Predictive maintenance is defined as a data-driven maintenance approach that 
estimates the likelihood, timing, or trajectory of failure so maintenance actions can be scheduled 
according to predicted degradation rather than fixed intervals. Across many empirical investigations 
of industrial maintenance programs, condition-informed and prediction-informed interventions are 
repeatedly associated with measurable reductions in unplanned downtime, improved planning 
accuracy for maintenance windows, and better alignment between spare-parts availability and actual 
need (Chen et al., 2020). Multiple comparative analyses across process plants and discrete 
manufacturing lines report that unplanned stops linked to rotating equipment and power-electronic 
failures contribute disproportionately to production losses because they interrupt synchronized 
operations and trigger cascading stops. Numerous operational studies that analyze event logs and 
work orders find that time-based schedules frequently replace parts that still have usable life while also 
missing failures driven by usage intensity, thermal overload, contamination, or vibration, producing a 
measurable mismatch between calendar schedules and true degradation. Several investigations of asset 
fleets in high-uptime industries indicate that motor-driven systems account for a substantial share of 
maintenance labor and energy cost, so improving drive health assessment is not limited to equipment 
reliability but extends to measurable energy performance under load. In the smart manufacturing 
context, predictive maintenance for motor drives becomes an architectural and analytical problem 
shaped by data availability, signal fidelity, and where computation occurs across the control-to-
supervisory stack, which motivates a SCADA-to-edge deployment framing that connects supervisory 
monitoring with asset-proximate analytics (Qu et al., 2019). 
Predictive maintenance, when treated as a quantitative discipline, can be decomposed into measurable 
stages that transform raw operational signals into decision variables suitable for maintenance planning. 
Data acquisition establishes which variables are observed, at what sampling rates, under what 
synchronization rules, and with what instrumentation uncertainty (Andronie et al., 2021). Data 
preparation then addresses filtering, resampling, missing values, time alignment across sensors and 
controllers, and segmentation into analysis windows aligned with operating states such as start-up, 
steady-state, transients, and shutdown. Feature construction or representation learning translates raw 
measurements into health-relevant descriptors, including time-domain statistics, frequency-domain 
indicators, time–frequency patterns, multivariate correlations, and learned embeddings that preserve 
discriminative structure. Modeling maps those descriptors to outcomes such as fault class, anomaly 
score, degradation index, or remaining useful life, and decision logic converts model outputs into 
maintenance triggers, alerts, or prioritized work orders. Across a broad set of industrial case studies, 
predictive maintenance performance is commonly evaluated using metrics that include detection rate, 
false alarm rate, precision and recall under class imbalance, time-to-detection, lead time before 
functional failure, and stability across changing operating regimes. Many investigations emphasize that 
rare failure events create an imbalanced learning problem in which naive accuracy measures can be 
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misleading, and they recommend evaluation designs that report error distributions, confusion 
matrices, and lead-time statistics rather than only overall accuracy. Multiple studies comparing 
classical machine-learning models and deep learning models indicate that model choice interacts with 
data volume, signal quality, and regime variability; feature-based models may perform strongly on 
stable operating regimes with engineered indicators, while representation-learning approaches often 
gain advantage when raw signals contain complex nonlinear patterns and sufficient data exists to learn 
them reliably (Abikoye et al., 2021). Several investigations show that maintenance labels derived from 
work orders and alarms contain noise and inconsistency, which introduces measurement error into 
supervised learning and motivates approaches that combine anomaly detection with weak supervision 
or semi-supervision. Many empirical deployments report that operational context variables such as 
load, duty cycle, ambient temperature, product recipe, and operator actions explain a large portion of 
variance in sensor signals, so models that incorporate context often achieve more stable performance 
than models trained on signals alone. Numerous comparative studies show that model drift occurs 
when equipment is repaired, retuned, reconfigured, or moved into different operating schedules, 
producing shifts in baseline behavior that must be managed through monitoring, recalibration, or 
retraining cycles governed by measurable drift indicators (Kalsoom et al., 2020). In motor-drive 
applications specifically, predictive maintenance is strongly influenced by the fact that electrical, 
mechanical, and thermal processes interact through control logic, inverter switching, and load 
dynamics, creating multivariate dependencies that can be exploited for prediction when data is 
synchronized and captured with sufficient resolution. 
 

Figure 1: Smart Manufacturing Predictive Maintenance Framework 

Motor drives present a rich set of observable phenomena for predictive maintenance because their 
dominant failure mechanisms generate signatures across currents, voltages, vibration, acoustic signals, 
speed, torque estimates, temperature, and internal diagnostic flags. Mechanical degradation pathways 
such as bearing wear, lubrication breakdown, misalignment, shaft imbalance, and coupling defects 
often manifest as changes in vibration spectra, increases in broadband noise, shifts in harmonics tied to 
rotational speed, and correlated changes in current due to load modulation (Huang et al., 2023). 
Electrical degradation pathways such as insulation aging, winding shorting, phase imbalance, rotor bar 
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defects, and eccentricity can appear as characteristic spectral components in stator current, abnormal 
thermal rise patterns, and changes in control effort required to maintain speed or torque. Power-
electronic degradation pathways such as capacitor aging, gate-driver anomalies, solder fatigue, and 
semiconductor wear can influence DC-link ripple, switching behavior, thermal profiles, and fault-code 
frequency, and these effects can propagate into motor current and torque ripple patterns observed by 
the controller. Across many laboratory and industrial investigations, current-based monitoring 
repeatedly appears as a practical approach because current sensors are commonly present in drives 
and can capture both electrical and mechanically induced modulation, while vibration sensing is often 
used as a complementary channel that increases sensitivity to mechanical defects. Numerous 
comparative studies report that combining electrical and mechanical sensing improves fault 
discrimination and reduces ambiguous alarms, particularly when operating speed varies and fault 
signatures shift with speed. Many studies examining variable-frequency drive environments find that 
switching harmonics and control strategies add structured components to signals, so preprocessing 
that accounts for operating frequency and control state improves feature stability. Several 
investigations highlight that start-up and transient periods can be highly informative for early fault 
detection because they excite dynamic responses that remain muted during steady-state operation, and 
segmentation by operating state can yield measurable gains in detection performance (Tambare et al., 
2021). Multiple industrial evaluations show that drive health assessment benefits from incorporating 
operational context such as commanded speed, load estimate, torque reference, and temperature, 
because these variables help distinguish genuine degradation from benign changes caused by 
production scheduling. Many studies that evaluate remaining useful life estimation for rotating 
equipment indicate that uncertainty grows when degradation signals are weak or intermittently visible, 
so probabilistic outputs or calibrated confidence measures improve decision utility by quantifying the 
risk of acting too early or too late. Several investigations that analyze maintenance economics for 
rotating assets report that predictive models deliver the most operational value when they provide 
sufficient lead time for planned interventions without inflating false alarms that disrupt production, 
which motivates designs that optimize for lead-time distributions and alarm rates per operating hour 
rather than only classification scores (Sobb et al., 2020). In this quantitative framing, motor-drive 
predictive maintenance becomes a multivariate inference problem that benefits from high-resolution 
sensing, careful synchronization, and models that can separate operating-regime effects from 
degradation-induced changes. 
SCADA is defined as the supervisory layer that collects operational measurements from industrial 
equipment, provides operator visualization, manages alarms, and records historical data for reporting 
and analysis, typically sitting above programmable controllers and drive-level control loops. In many 
manufacturing plants, SCADA aggregates tag-based measurements such as motor speed, current, 
temperature, run status, fault codes, and setpoints, and it stores those values in historians that support 
trend analysis, compliance reporting, and operational dashboards (Mostaani et al., 2022; Mohiul, 2020). 
From a predictive maintenance perspective, SCADA-level data offers essential longitudinal context: it 
includes timestamps for alarms, operational modes, batch identifiers, production schedules, operator 
acknowledgments, and maintenance-related events recorded as downtimes or status changes. Across 
numerous investigations of industrial analytics programs, SCADA and historian data are frequently 
the first available data sources used to establish baseline performance and to build early predictive 
maintenance models because they are centralized, standardized within a plant, and linked to 
operational events. At the same time, SCADA architectures impose measurable constraints that affect 
predictive maintenance fidelity. Polling intervals, historian compression, and network prioritization 
commonly reduce sampling resolution, which can blur transient signatures that precede failure and 
can merge distinct events into a single trend point. Tag semantics may differ across vendors and 
projects, creating inconsistencies in units, scaling, and naming conventions that can introduce 
systematic errors into feature computation and model training. Many studies of industrial time-series 
data quality show that missing values, time skews, sensor replacements, and tag re-mapping are 
common in long-running SCADA systems, requiring explicit data validation rules and audit trails for 
reliable quantitative analysis (Felsberger et al., 2022). Several investigations report that alarm logs 
reflect both genuine faults and nuisance alarms triggered by process variability, manual resets, or 
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threshold misconfiguration, so models that treat alarms as labels without verification can inherit bias 
and noise. Multiple studies comparing historian-derived features with high-frequency waveform 
features find that coarse supervisory data can capture macro-level degradation patterns and 
operational stress exposure, while finer signatures linked to incipient faults are often absent or 
attenuated at SCADA sampling rates. Many plant analytics assessments indicate that SCADA-level 
predictive maintenance improves when it includes contextual covariates such as production mode, 
duty cycle, environmental conditions, and uptime segments, and when the modeling objective aligns 
with the granularity of available data, such as predicting fault occurrence within broader time windows 
rather than instant detection. In motor-drive applications, SCADA data can capture repeated fault-code 
occurrences, rising temperature trends under similar loads, increases in current draw, and changes in 
start frequency, all of which are useful for trend-based risk scoring (Butt, 2020; Jinnat & Kamrul, 2021). 
The SCADA-to-edge perspective arises when the supervisory layer provides governance and context 
while asset-proximate computation supplies the signal detail needed for more sensitive detection and 
robust inference. 
 

Figure 2: Smart Manufacturing Technology Driver Framework 

Edge computing is defined as the placement of computation near the data source, enabling localized 
processing, reduced network load, and faster inference relative to centralized-only architectures. In 
industrial settings, edge platforms can take the form of embedded modules within drives, industrial 
PCs installed in control cabinets, gateway devices bridging field networks, or dedicated accelerators 
connected to sensors and controllers (Huang et al., 2021; Rabiul & Samia, 2021; Mohiul & Rahman, 
2021). For motor-drive predictive maintenance, edge placement is technically meaningful because it 
can capture higher-rate electrical and mechanical signals that are not routinely transmitted to SCADA, 
enabling feature extraction and inference closer to the physical phenomena of degradation (Rahman & 
Abdul, 2021; Haider & Shahrin, 2021). Across many empirical evaluations of industrial IoT 
architectures, edge processing is repeatedly associated with measurable reductions in bandwidth 
consumption because raw waveforms are transformed into compact health indicators, summary 
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statistics, or anomaly flags before transmission. Multiple studies of latency-sensitive industrial 
applications report that edge inference improves responsiveness for detection tasks by avoiding round 
trips to centralized servers and by maintaining local operation when network connectivity is degraded 
(Uddin et al., 2022; Zulqarnain & Subrato, 2021). Several investigations highlight that edge deployment 
introduces constraints that shape model design: compute budgets, memory limits, real-time 
scheduling, deterministic execution requirements, and the need for robust error handling to avoid 
interfering with control operations (Akbar & Sharmin, 2022; Foysal & Subrato, 2022). Many studies that 
examine deployment reliability emphasize that edge nodes require standardized lifecycle 
management, including secure software distribution, version control for models, integrity checks, and 
logging to support auditability and troubleshooting (Rahman, 2022; Zulqarnain, 2022). Edge-based 
predictive maintenance also changes data governance patterns by creating a layered telemetry 
approach in which only selected features and events are forwarded to SCADA or centralized platforms, 
while raw data segments are retained locally or transmitted only when anomalies occur (Habibullah & 
Mohiul, 2023; Hasan & Waladur, 2023; Jiang et al., 2020). Numerous industrial case analyses show that 
this selective approach improves scalability when monitoring large fleets of similar assets, because 
centralized storage and processing are reserved for high-value data rather than continuous raw streams 
(Rabiul & Mushfequr, 2023; Shahrin & Samia, 2023). In motor-drive contexts, edge analytics can 
compute spectral indicators, time–frequency representations, and health indices aligned with control 
states, such as computing features only during specific speed ranges or transient phases, which 
improves comparability across cycles and reduces confounding from operating variability (Rakibul & 
Alam, 2023; Kumar, 2023). Many studies focusing on model robustness indicate that combining local 
preprocessing with centralized training can improve generalization because the edge layer enforces 
consistent feature computation across sites and devices, reducing the variability introduced by 
differing data pipelines (Rifat & Rebeka, 2023; Saikat & Aditya, 2023). Edge deployment therefore 
becomes part of the scientific question in a deployment study, because predictive performance can be 
evaluated alongside operational metrics such as inference time per window, CPU utilization, memory 
footprint, packet loss sensitivity, and the rate of actionable alerts per operating hour (Hu et al., 2023; 
Masud & Hossain, 2024; Zulqarnain & Subrato, 2023). In a SCADA-to-edge architecture, the edge layer 
functions as an analytic microscope for motor-drive behavior, while the supervisory layer retains 
oversight, traceability, and integration with maintenance workflows. 
A SCADA-to-edge deployment framework can be defined as an integrated architecture in which 
supervisory monitoring and localized analytics are coordinated so that maintenance-relevant 
intelligence is produced at the appropriate level of the automation hierarchy (Md & Praveen, 2024; Md 
Nahid & Bhuya, 2024; Sundmaeker et al., 2022). In this framework, SCADA contributes plant-wide 
visibility, historical continuity, operational context, and governance for alarms and work processes, 
while edge systems deliver high-resolution signal processing and AI inference close to motor drives 
(Akbar, 2024; Foysal & Abdulla, 2024). The analytical value of this integration can be expressed 
quantitatively as the combination of context completeness and signal fidelity: supervisory data supplies 
operating-mode labels, setpoints, sequence information, and maintenance event markers, while edge 
data supplies detailed electrical and mechanical signatures that strengthen early fault detection and 
stable classification (Ibne & Aditya, 2024; Mosheur & Arman, 2024). Across many investigations 
comparing centralized-only and hybrid architectures, improvements are frequently observed when 
context variables are fused with high-frequency features, because operating conditions such as speed, 
load, and thermal state strongly modulate signal distributions (Rabiul & Alam, 2024; Saba & Hasan, 
2024). Multiple studies of rotating equipment analytics report that model error increases when 
operating regimes shift, and that explicit conditioning on regime indicators reduces false alarms caused 
by benign process variability (Filip & Leiviskä, 2023; Kumar, 2024; Praveen, 2024). Several empirical 
comparisons indicate that hybrid architectures can improve detection lead time by enabling edge 
models to trigger alerts at finer temporal resolution while SCADA aggregates those alerts into 
structured alarm management and maintenance planning tools (Jinnat, 2025; Shaikat & Aditya, 2024). 
Many deployment reports emphasize that integration requires disciplined time synchronization and 
event correlation; the same physical phenomenon must be traceable across edge feature windows, drive 
diagnostics, controller states, and supervisory timestamps so that model outputs can be validated 



American Journal of Interdisciplinary Studies, April  2025, 394-444 

400 
 

against ground truth (Arman, 2025; Rashid, 2025b). Numerous investigations identify data semantics 
as a key integration challenge, because tags, scaling, and naming conventions differ across SCADA 
projects, while edge pipelines may use signal channels with different units and sampling bases; 
consistent schemas and transformation rules improve reproducibility of quantitative results. Several 
studies of industrial analytics governance note that model outputs become operationally usable when 
they are mapped into maintenance language: severity scoring, confidence levels, asset identifiers, and 
recommended inspection categories aligned with existing work-order systems (Rashid, 2025a; Nahid, 
2025). Many analyses show that alarm fatigue reduces trust in predictive maintenance, so architectures 
that control alert rates and provide interpretable supporting evidence, such as feature trends or 
anomaly explanations, improve operational acceptance as a measurable outcome reflected in reduced 
alarm acknowledgments without action (Kuo & Kusiak, 2019; Mosheur, 2025; Rabiul, 2025). In motor-
drive predictive maintenance, SCADA-to-edge integration can support multi-level health assessment: 
edge models identify subtle degradations, supervisory models track long-term stress exposure and 
recurring fault-code patterns, and a combined decision layer prioritizes interventions based on risk 
scores and production constraints. The deployment study lens treats architecture as part of the 
experimental design, enabling quantitative comparison of performance across placements and data 
resolutions, and enabling assessment of how computation locality influences prediction stability, alert 
timeliness, and overall maintenance decision quality (Shahrin, 2025; Rakibul, 2025). 
A quantitative paper on AI-driven predictive maintenance for motor drives in a SCADA-to-edge 
deployment is anchored in measurement structure, validation discipline, and architecture-aware 
evaluation, with the primary aim of characterizing how predictive performance and operational utility 
vary with data resolution and computational placement (Raj & Surianarayanan, 2020; Kumar, 2025; Sai 
Praveen & Md, 2025). The research object is not only an algorithm but also a deployed pipeline that 
includes sensing, synchronization, preprocessing, model inference, communication, supervisory 
integration, and maintenance decision signaling. Quantitative design begins with defining measurable 
targets such as fault occurrence within a time horizon, anomaly scores aligned to operational windows, 
or degradation indices that correlate with maintenance findings, then selecting evaluation metrics 
appropriate to those targets. For detection and classification tasks, quantitative evaluation commonly 
includes sensitivity, specificity, precision, recall, and false alarm rates normalized by operating hours, 
along with detection lead time and stability across operating regimes. For degradation estimation tasks, 
evaluation can include error distributions, calibration of uncertainty intervals, and consistency across 
assets with different duty cycles. Across many studies of industrial predictive maintenance evaluation, 
leakage control is repeatedly emphasized: data splits must respect time order and asset identity so that 
training windows do not overlap with test windows in ways that inflate measured performance. Many 
analyses of industrial datasets show that maintenance actions change baseline behavior, so validation 
designs that include pre- and post-maintenance segments help quantify how models behave across 
system resets (Li et al., 2021). Several investigations highlight that ground truth in industrial 
maintenance is imperfect; work-order records may lag physical degradation, and alarm logs may reflect 
control thresholds rather than physical failure, so quantitative studies often use layered ground truth 
definitions that combine maintenance records, fault codes, operator notes, and inspection findings. In 
SCADA-to-edge deployments, additional measurable dimensions arise, including inference latency 
from signal capture to alert creation, communication delay to supervisory displays, packet loss impacts, 
and computational resource usage, all of which influence operational feasibility. Many case analyses 
report that the same model can produce different alert rates when deployed with different 
preprocessing windows or sampling rates, so pipeline standardization becomes part of quantitative 
reproducibility (Gan et al., 2023). Motor-drive predictive maintenance also requires explicit accounting 
for operating context, including load, speed, temperature, and process mode, because these variables 
explain structured variance that can be mistaken for degradation. A deployment-oriented quantitative 
introduction therefore frames the study around how supervisory context and edge signal fidelity 
combine to produce reliable predictions, how measurable system constraints shape model behavior, 
and how architecture choices influence the statistical properties of predictions in real industrial 
operation, while keeping the narrative focused on definitions, measurement, and evaluable system 
characteristics without adding a concluding synthesis or implication statements (Vermesan et al., 2022). 
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The objective of this quantitative study titled “AI-Driven Predictive Maintenance for Motor Drives in 
Smart Manufacturing: A SCADA-to-Edge Deployment Study” is to design, implement, and evaluate 
an end-to-end predictive maintenance pipeline that operates across supervisory and edge layers while 
producing measurable, reproducible performance outcomes for motor-drive health monitoring in 
smart manufacturing environments. The study aims to establish a clear architectural and analytical 
linkage between SCADA-based supervisory data streams and edge-level high-resolution signals so that 
predictive models can be assessed under realistic data constraints and operational variability. A core 
objective is to quantify how predictive performance changes when maintenance intelligence is 
generated from (a) supervisory SCADA tags and historian records, (b) edge-extracted signal features 
derived from motor-drive electrical and condition channels, and (c) integrated fusion inputs combining 
supervisory context with edge representations. The study also seeks to define and compute 
standardized evaluation metrics suitable for motor-drive predictive maintenance, including detection 
sensitivity and specificity, false alarm rate normalized by operating hours, lead time before confirmed 
failure events, robustness across operating regimes, and stability over extended observation periods. 
Another objective is to formalize the data preparation and synchronization workflow required to align 
SCADA timestamps, controller states, and edge-sampled windows so that model inputs and labels can 
be consistently generated without leakage across time or assets. The study further aims to compare 
multiple AI model families under identical data partitions and operational constraints, enabling a 
quantitative examination of how feature-based machine learning and representation-learning 
approaches behave when deployed close to the asset versus centrally within supervisory 
infrastructures. An additional objective is to measure deployment feasibility indicators associated with 
edge inference, such as inference latency per window, compute utilization, memory footprint, data 
transmission volume reduction relative to raw streaming, and reliability of alert delivery into 
supervisory dashboards or maintenance workflows. The research also targets the creation of an 
interpretable health-scoring and alerting scheme that can be mapped to asset identifiers and 
operational context so that the resulting outputs support auditability and systematic comparison across 
machines. Collectively, these objectives define a measurable framework for assessing how SCADA-to-
edge deployment influences predictive maintenance effectiveness for motor drives, emphasizing 
quantification of performance, data integrity, and deployment characteristics within smart 
manufacturing systems. 
LITERATURE REVIEW 
The literature review for AI-Driven Predictive Maintenance for Motor Drives in Smart Manufacturing: 
A SCADA-to-Edge Deployment Study synthesizes research that quantifies how predictive 
maintenance outcomes for motor drives depend on signal physics, supervisory data constraints, and 
analytics placement across SCADA and edge layers. Motor drives operate under variable speed, 
variable load, and inverter-mediated switching dynamics, which generate measurable electrical, 
thermal, and mechanical signatures of degradation (Bokrantz et al., 2020). Predictive maintenance 
research in this domain therefore spans condition indicator design, time-series learning, failure 
labeling, and evaluation protocols that translate sensor streams into health scores, fault probabilities, 
or remaining useful life estimates. At the same time, smart manufacturing plants commonly rely on 
SCADA and historian infrastructures as the primary sources of operational telemetry, which introduces 
quantifiable limitations in sampling rate, compression, tag semantics, and event timestamp quality. 
Edge deployment addresses these limitations by enabling higher-rate sensing and localized inference, 
and it adds a second set of measurable outcomes tied to latency, compute utilization, data transmission 
volume, and alert delivery reliability (Bokrantz & Skoogh, 2023). This literature review is organized to 
connect these streams into a single quantitative framing: (1) what signals and fault mechanisms are 
measurable in motor-drive systems, (2) what predictive models and representations are most effective 
under industrial constraints, (3) how validation protocols and metrics determine credible performance 
claims, and (4) how SCADA-only, edge-only, and fused SCADA-to-edge architectures compare when 
performance and deployment overhead are measured with the same experimental rules. The section 
therefore emphasizes studies that report operationally meaningful metrics such as false alarms per 
operating hour, detection lead time distributions, robustness across speed/load regimes, and 
computational feasibility indicators, because these measures directly determine whether predictive 
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maintenance outputs can be trusted and integrated into manufacturing maintenance workflows (Kim 
et al., 2023). 
Smart Manufacturing and Maintenance Performance Constructs 
Smart manufacturing provides the operational setting in which predictive maintenance is framed as a 
measurable, data-governed function rather than a reactive repair activity. In the literature, smart 
manufacturing is consistently described as an integrated cyber–physical production environment 
where sensing, automation, and information systems are orchestrated to stabilize throughput, quality, 
and resource efficiency under changing demand and operating conditions (Parhi et al., 2021). Within 
this environment, quantitative maintenance performance constructs act as the shared language for 
comparing plants, lines, and assets. Asset availability and uptime ratio are commonly used to 
summarize how consistently equipment remains operational over a defined period, while downtime 
minutes per month and stop frequency provide more granular views of how disruptions accumulate 
and how often production is interrupted. Reliability-oriented measures such as mean time between 
failures and mean time to repair are repeatedly used to separate failure propensity from repair 
responsiveness, making it possible to distinguish chronic reliability problems from operational or 
staffing constraints that slow recovery. The literature also treats overall equipment effectiveness as a 
composite indicator that partitions performance loss into availability loss, speed loss, and quality loss, 
enabling researchers to examine how motor-drive stops can translate into availability reductions, cycle-
time instability, and downstream scrap or rework when drives power conveyors, pumps, robots, or 
spindles that synchronize multiple process steps (Mittal et al., 2020). Maintenance execution metrics 
extend the measurement system beyond technical failure events by capturing the organizational load 
created by maintenance decisions. Work-order volume reflects the intensity of maintenance demand, 
the emergency-to-planned ratio signals the degree to which maintenance is proactive versus crisis-
driven, and spare-parts stockouts quantify a logistics constraint that can convert a short repair into 
prolonged downtime. Across many empirical studies of industrial maintenance programs—well 
exceeding ten across sectors such as discrete manufacturing, process plants, logistics automation, and 
energy-intensive operations—these constructs are used together to connect asset-level behavior to 
plant-level outcomes, allowing predictive maintenance approaches to be judged not only by model 
accuracy but also by whether they reduce stoppage frequency, compress downtime duration, improve 
schedule adherence, and stabilize OEE availability components (Y. Liu et al., 2023). In motor-drive 
contexts, these metrics are particularly emphasized because drive failures often generate immediate 
line stops, propagate through interlocked systems, and trigger alarms that require coordinated 
troubleshooting across electrical, mechanical, and controls teams, which then appears quantitatively as 
elevated MTTR, increased emergency work orders, and repeated downtime clusters within monthly 
reporting windows. 
Predictive maintenance is treated in the research literature as a measurable decision system that 
converts observed signals into standardized outputs that can be acted on under operational constraints. 
Studies commonly organize predictive maintenance outputs into discrete event indicators and 
continuous risk indicators, reflecting different decision styles used by maintenance organizations. 
Discrete outputs include binary fault flags that indicate whether a monitored state is abnormal and 
multi-class fault labels that identify likely fault types for targeted troubleshooting (Bustinza et al., 2022). 
Continuous outputs include anomaly scores that quantify deviation from baseline patterns, health 
indices that summarize condition on a normalized scale, failure probability curves that express risk 
intensity across time horizons, and remaining useful life estimates that approximate the time window 
before functional failure under current operating conditions. These outputs are not treated as purely 
technical artifacts; they are evaluated as decision variables that must align with maintenance 
workflows, alarm management practices, and resource constraints. A recurring quantitative theme is 
thresholding: researchers examine how alarm thresholds are selected to control false alarm frequency, 
often in terms of alarms per operating hours or alerts per asset per week, because nuisance alerts 
increase inspection burden, degrade trust, and inflate the emergency-to-planned ratio when teams 
respond reactively to low-quality signals. In parallel, missed detections are examined as risk exposures 
that can increase unplanned downtime and amplify availability loss, especially for motor-drive assets 
that sit on production bottlenecks (Pech et al., 2021). The literature therefore frames predictive 
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maintenance as a cost-balanced decision system where the trade-off between missed detection and 
unnecessary intervention is quantified through operational outcomes such as downtime minutes 
avoided, work-order load created, inspection time consumed, spare-part usage variance, and 
maintenance scheduling disruption. Multiple industrial case studies and cross-case syntheses—again 
exceeding ten across published applications—report that decision-system performance depends on 
how predictive outputs are calibrated to operational realities: the same model can be considered 
successful or unsuccessful depending on whether its threshold policy matches the plant’s tolerance for 
inspection volume, the criticality of the motor-driven process, and the lead time required to mobilize 
parts and labor. For motor drives, this decision framing is strengthened because failure precursors can 
emerge gradually as drift in current, temperature, or vibration patterns, and maintenance teams require 
sufficient lead time to schedule planned stops without escalating emergency interventions. As a result, 
studies repeatedly evaluate predictive maintenance systems not only by technical detection quality but 
also by whether alert timing and alert frequency produce manageable, measurable changes in work-
order distribution and downtime patterns (Qu et al., 2019). 
 

Figure 3: Predictive Maintenance Decision Framework 

Quantitative maintenance constructs and predictive outputs are closely linked in smart manufacturing 
because measurement systems define what “success” means for predictive maintenance and how it is 
reported. The literature frequently emphasizes that availability, downtime minutes, stop frequency, 
and repair responsiveness form the baseline against which predictive maintenance claims are 
interpreted (Zhou et al., 2022). When predictive maintenance outputs are introduced, researchers 
examine whether the system changes the distribution of maintenance actions, shifting work orders 
from emergency to planned categories and reducing repeated failure clusters that inflate monthly 
downtime. This link is often analyzed through before-and-after comparisons or matched-period 
analyses that track changes in MTTR, the number of unplanned stops, the frequency of alarms requiring 
manual intervention, and the rate at which maintenance actions are initiated from predictive alerts 
rather than from failures. In addition to operational measures, many studies incorporate production 
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metrics that are sensitive to motor-drive disruptions, including micro-stoppages that reduce speed 
performance and quality-related losses that arise when synchronization breaks down in automated 
lines. The literature also discusses how spare-parts stockouts can distort evaluation: a predictive system 
may correctly identify risk, yet downtime remains high if parts cannot be sourced, which shifts the 
measurable benefit from downtime reduction to improved planning accuracy and reduced diagnostic 
time. Several studies across industries use work-order volume and backlog measures to quantify 
whether predictive maintenance reduces the maintenance burden or simply redistributes it, 
recognizing that an increase in planned work orders may be acceptable if it reduces emergency work 
and stabilizes production schedules (Lu et al., 2020). Predictive maintenance outputs such as anomaly 
scores and health indices are frequently mapped into prioritized lists that align with limited 
maintenance capacity, enabling a quantified triage process where high-risk assets receive attention first. 
This prioritization is often evaluated using measurable indicators such as the percentage of alerts that 
lead to verified findings, the average lead time between alert issuance and corrective action, and the 
rate of repeated alerts for the same asset, which can signal threshold misalignment or unresolved 
underlying causes. Across a broad collection of empirical studies—well beyond ten—the consistent 
pattern is that predictive maintenance effectiveness in smart manufacturing is inseparable from how 
performance constructs are chosen, how they are measured, and how decisions are operationalized. 
Motor-drive assets intensify this dependency because they are simultaneously high-frequency signal 
sources and high-impact actuators; disruptions in drives show up quickly in availability metrics and in 
the emergency-to-planned ratio when failures occur unexpectedly. The literature therefore treats 
quantitative constructs not as secondary reporting tools but as core elements that shape the design of 
predictive maintenance outputs, threshold policies, and maintenance response rules (Wang et al., 2019). 
A final theme in the literature is the importance of aligning predictive maintenance as a measurable 
decision system with the realities of plant operations, where metrics capture both technical reliability 
and organizational behavior. Studies repeatedly show that measurement definitions influence 
deployment choices: if the primary target is reducing downtime minutes per month, systems may focus 
on high-criticality drives and tune thresholds to minimize missed detections. If the primary target is 
reducing alarm fatigue and inspection waste, systems may tune thresholds to limit false alarms per 
operating hour, even if that reduces sensitivity to early weak signals (Huang et al., 2021). This 
measurement dependence encourages multi-metric reporting frameworks that include both risk-
related and workload-related indicators, such as alert precision, alert volume, work-order conversion 
rate, emergency-to-planned ratio changes, and MTTR changes following alert-guided interventions. 
The literature also emphasizes that predictive maintenance outputs become operationally meaningful 
when they support consistent action pathways: a binary flag may be appropriate for safety-critical 
shutdown decisions, whereas a health index may be more suitable for maintenance planning and 
scheduling. Multi-class fault labels are often evaluated in terms of whether they reduce troubleshooting 
time and improve first-time fix rates, which then appears as shorter repair durations and reduced 
repeat downtime events. Remaining useful life estimates are evaluated by whether they provide 
actionable lead time consistent with procurement and staffing cycles, which can reduce stockouts and 
enable planned maintenance windows (Wang & Gao, 2022). Many studies also recognize that the 
reliability of maintenance records affects evaluation; work orders and failure logs can be inconsistent, 
which can complicate the measurement of missed detections and verified detections, leading 
researchers to emphasize process-aligned verification practices and consistent event definitions. Across 
more than ten empirical investigations in industrial contexts, the recurring quantitative insight is that 
predictive maintenance systems must be evaluated as socio-technical decision systems: their 
measurable effect emerges through how outputs trigger actions, how actions change work-order 
patterns, and how those changes translate into availability and OEE outcomes. In smart manufacturing 
environments dominated by motor-driven automation, these linkages are particularly visible because 
motor-drive disruptions create immediate stops and measurable losses, while predictive signals can be 
translated into maintenance actions that shift the balance from emergency work to planned work 
(Rahman et al., 2022). The literature therefore frames predictive maintenance not merely as a model 
that predicts failures, but as a structured decision process governed by thresholds, workload capacity, 
and performance constructs that define, measure, and validate maintenance improvement. 
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Motor-Drive Failure Mechanisms  
Motor-drive predictive maintenance research consistently treats electrical machine degradation as a set 
of progressive physical processes that leave measurable traces in thermal, electrical, and vibro-acoustic 
signals. Within this body of work, stator insulation aging is commonly framed as a thermally 
accelerated deterioration mechanism that changes how winding systems respond to load, ambient 
conditions, and repeated thermal cycling (Gultekin & Bazzi, 2023). Studies focusing on insulation 
health frequently report that insulation degradation is reflected in temperature rise patterns under 
comparable operating points, including steeper thermal gradients, higher steady-state temperatures at 
similar loads, and slower cooling responses after load reduction. Across experimental and field-
oriented investigations, researchers also describe how insulation deterioration can correlate with 
current imbalance and changes in phase relationships, particularly in multi-phase systems where 
asymmetry increases as insulation weakens or partial defects accumulate. A recurring observation in 
the literature is that insulation-related changes often appear as gradual drifts rather than abrupt events, 
which encourages trend-based analysis and condition indices that summarize deviations relative to 
asset baselines. In parallel, rotor defects and eccentricity are discussed as faults that alter 
electromagnetic symmetry, yielding repeatable spectral and sideband patterns in both electrical and 
mechanical domains. Multiple investigations show that eccentricity and rotor anomalies can introduce 
characteristic components in motor current as well as in vibration signatures, and that these 
components often scale with rotational speed and load conditions, which makes context-aware 
interpretation important (Wen et al., 2023). In the mechanical domain, bearing wear is repeatedly 
identified as a dominant contributor to rotating machinery failures and a strong target for quantified 
symptom formation. Studies in this area frequently report that bearing defects manifest in vibration 
RMS increases, changes in impulsiveness captured through kurtosis-like measures, and structured 
patterns in envelope-based representations that highlight repetitive impact behavior. Acoustic 
monitoring studies similarly describe shifts in broadband noise and the emergence of tonal elements 
associated with mechanical impacts, particularly when lubrication degrades and contact conditions 
worsen. Across a wide range of published investigations—well beyond ten—these electrical machine 
mechanisms are treated as complementary rather than isolated: insulation changes can co-occur with 
mechanical imbalance effects, and bearing degradation can modulate load, which then alters current 
signatures. Consequently, a common synthesis across the literature is that measurable indicators must 
be interpreted within the operating regime and in relation to other channels, because the same 
observable trend can be produced by different underlying mechanisms if context and multi-sensor 
evidence are not incorporated into analysis (Xia et al., 2021). 
Variable-frequency drives and power-electronic subsystems introduce additional aging pathways and 
symptom structures that are central to motor-drive predictive maintenance, especially in smart 
manufacturing environments where variable speed operation is the norm. Across many studies of 
inverter-fed systems, researchers emphasize that power-electronic degradation produces measurable 
effects both in the converter’s internal electrical behavior and in the motor’s observed signals, since the 
inverter is the interface that shapes the voltage and current waveforms delivered to the machine 
(Khaneghah et al., 2023). A widely discussed mechanism is DC-link capacitor degradation, often 
characterized in empirical reports by increases in ripple-related behavior, altered response under load 
transients, and correlations between ripple behavior and thermal stress exposure. Investigations 
frequently connect capacitor aging to operating stressors such as elevated temperature, high ripple 
currents, and cycling intensity, with measurement strategies focusing on ripple-related features and 
thermal patterns observed during stable and transient operation. Another common focus is 
semiconductor switching degradation, described in the literature through symptom sets that include 
increasing thermal strain signatures, irregularities in switching-related behavior, and elevated fault-
code recurrence or protective trips under comparable production conditions. In applied studies, fault-
code histories are often treated as weak but useful indicators when combined with contextual variables, 
because fault codes alone may reflect protective thresholds, process disturbances, or operator 
interventions. Across a broad set of investigations, researchers also address quantitative symptom 
reliability across operating regimes, noting that symptom detectability changes when speed and load 
bands shift (Teler et al., 2023). Many studies report that indicators derived from current or vibration 
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can appear stable in one speed band and become less discriminative in another, because baseline 
spectral content, mechanical resonance, and control behavior change with operating point. This has led 
to repeated emphasis on stratified analysis, where model performance and symptom strength are 
evaluated separately across speed/load bands rather than reported as a single aggregated metric. A 
synthesis that emerges across more than ten studies is that inverter-fed environments create structured 
signal components that can mask or mimic fault signatures if not accounted for, and that robust 
symptom formation requires combining electrical indicators, thermal behavior, and event history 
rather than relying on a single signal family. The literature also repeatedly highlights that power-
electronic aging is operationally significant because it can produce intermittent, hard-to-reproduce 
events that elevate nuisance alarms and maintenance uncertainty, which increases the importance of 
quantified reliability of symptoms under realistic production variability (Hashemi et al., 2023). 
 

Figure 4: Motor-Drive Predictive Maintenance Framework 

The literature on regime dependence consistently explains that motor-drive symptoms are not 
stationary, and that signal distributions shift systematically across operational phases such as start-up, 
steady-state running, transients, and braking. Many investigations treat this as a primary reason why 
predictive maintenance models that ignore regime structure show inflated false alarms or unstable 
performance when moved from controlled datasets to industrial production (Lang et al., 2021). A 
recurring practice across studies is separate modeling or segmentation by operating phase, where data 
is partitioned into start-up segments, steady-state windows, transient ramps, and braking intervals, 
and features are computed within those partitions to reduce confounding from normal control-driven 
changes. Start-up behavior is often described as information-rich because electromechanical dynamics 
are strongly excited during acceleration, allowing certain defects to surface as measurable deviations 
relative to baseline start profiles. Steady-state windows are treated as suitable for monitoring slow 
drifts, such as gradual increases in current draw, temperature rise, or vibration energy under 
comparable load. Transients and braking are discussed as phases where control actions and torque 
changes can introduce high variability that may overwhelm weak fault signatures unless models 
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explicitly incorporate control state indicators. Another consistent theme is normalization by speed and 
load to prevent confounding, since many indicators scale naturally with speed and load even in healthy 
machines (Jin, Mao, et al., 2023). Studies describe normalization strategies that condition features on 
speed bands, load categories, or operating modes, allowing comparisons to be made within comparable 
contexts and reducing the risk that normal production variability is misinterpreted as degradation. 
Across multiple empirical evaluations, segmentation is reported to produce measurable changes in 
detection performance, often described as improvements in precision and recall for fault detection, 
reductions in nuisance alarm density, and greater stability of health indices across shifts. Many studies 
further report that segmentation improves interpretability by linking anomalies to a specific phase of 
operation, which helps maintenance teams validate whether a detected deviation is plausible and 
actionable (Liang et al., 2020). A synthesized conclusion across the reviewed body of work is that 
regime-aware modeling is a methodological requirement in inverter-driven motor systems, not a minor 
optimization, because phase-dependent control behavior and operating-point dependence 
fundamentally shape how symptoms appear in data. 
Across the broader motor-drive predictive maintenance literature, the combined view of failure 
mechanisms, symptom formation, and regime dependence produces a consistent methodological 
pattern: robust maintenance analytics require multi-domain indicators, context conditioning, and 
careful evaluation of how symptoms persist across operational variability (Sun et al., 2022). Studies 
examining bearing wear, rotor eccentricity, insulation aging, capacitor degradation, and switching 
device stress consistently emphasize that each mechanism has signal manifestations that can overlap, 
especially when operating conditions shift and when inverter control introduces structured waveform 
components. As a result, many investigations promote multi-sensor strategies that fuse current, 
vibration, temperature, and event logs to improve diagnostic separability and reduce ambiguous 
alarms. A frequently reported operational issue is that symptom reliability changes not only with 
speed/load but also with production schedules, ambient temperature, lubrication intervals, and 
maintenance interventions that reset baselines. This motivates evaluation practices that report 
performance across stratified regimes and across time, rather than providing a single performance 
figure that hides regime-specific instability (Jin, Wang, et al., 2023). In the literature, the measurable 
impact of segmentation is often discussed in terms of changes in alert density, improvements in 
actionable alert proportions, and reductions in repeated alerts for the same asset that can occur when 
models repeatedly trigger under one phase due to a confounded baseline. Researchers also emphasize 
that inverter-fed systems can produce non-fault-related harmonics and switching artifacts that create 
false positives if models treat spectral components as fault signatures without accounting for operating 
point and control mode. Consequently, regime-aware normalization and phase-aware feature 
extraction are repeatedly linked to improved precision, more stable health indices, and lower false 
alarm rates under industrial variability (Swanke et al., 2023). The literature also recognizes that power-
electronic aging can produce intermittent symptom patterns and fault-code bursts that require 
temporal aggregation logic and contextual filtering to be operationally meaningful. Across more than 
ten studies spanning laboratory experiments, case studies, and industrial deployments, the most 
consistent synthesis is that quantified symptom formation is inseparable from the deployment context: 
the same physical fault can look different across regimes, and the same indicator can reflect normal 
operation in one mode and degradation in another. For motor-drive predictive maintenance, this has 
led to a dominant emphasis on context-aware pipelines that treat operating regimes as first-class 
variables, integrate multi-domain measurements, and evaluate performance using regime-stratified 
reporting and alarm-density measures tied to operating hours and production cycles (Sun et al., 2022). 
Data Sources Across the SCADA-to-Edge Spectrum 
SCADA and historian telemetry are repeatedly described in the literature as the most accessible and 
operationally embedded data sources for motor-drive monitoring in smart manufacturing, largely 
because they are already integrated into plant supervision, alarm management, and reporting 
workflows. Studies that examine SCADA-centered predictive maintenance commonly note that the 
SCADA layer captures a stable set of “tag” variables that can be trended across long horizons, including 
drive current (often aggregated or scaled), commanded and measured speed, run/stop status, fault and 
warning codes, temperature readings (motor or drive cabinet), and accumulated run hours (Samuelsen 
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et al., 2019). Researchers frequently emphasize that these tags provide strong contextual value: they 
encode operating mode, duty-cycle exposure, stop–start patterns, and alarm histories that help explain 
why a motor drive experiences stress during certain production schedules. Across numerous empirical 
analyses, historian records are used to reconstruct sequences of events, such as repeated overload 
alarms or thermal warnings, which are then linked to maintenance actions documented in logs or work 
orders. At the same time, the literature also highlights data quality variables that consistently influence 
quantitative outcomes. Missingness is a recurring issue in long-horizon historian data due to sensor 
dropouts, network disruptions, tag decommissioning, and maintenance-driven instrumentation 
changes; many studies report that even moderate missingness can distort trend features and create 
spurious anomalies if gaps are not handled with explicit rules. Timestamp jitter and time-skew 
problems are also widely discussed because SCADA systems often collect tags through polling and 
buffering mechanisms that introduce variable delays; small time errors can be inconsequential for slow 
temperature trends but become important when aligning faults to control events or when comparing 
multi-tag relationships (Martín-Martín et al., 2021). Historian compression intervals are repeatedly 
identified as another limiting factor because compression algorithms preserve broad trends while 
discarding local fluctuations; this leads to quantifiable losses in transient information that can contain 
early fault signatures. Tag mapping errors and scaling inconsistencies appear frequently in multi-
vendor environments, where the same physical measurement can be represented differently across 
lines or after upgrades. A consistent conclusion across well over ten studies is that SCADA/historian 
telemetry is strong for macro-level condition tracking, exposure modeling, and event context, yet it is 
structurally limited for fine-grained fault physics because typical supervisory sampling and 
compression reduce the visibility of fast transients and weaken spectral detail that is central to 
diagnosing many motor-drive degradation mechanisms (Cai et al., 2019). 
 

Figure 5: SCADA–Edge Telemetry Synchronization Framework 

Edge telemetry is described in the literature as complementary to SCADA because it enables direct 
access to higher-rate signals that preserve the physical structure of motor-drive behavior. Studies across 
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rotating equipment and inverter-fed systems repeatedly report that high-rate sampling of phase 
currents and voltages, combined with vibration, acoustic, and high-resolution thermal channels, 
reveals symptom patterns that are not visible at supervisory resolution (Fritz et al., 2019). In motor-
drive predictive maintenance research, edge data is commonly organized into windowed segments, 
where signals are sampled at high frequency and analyzed in short time windows aligned to operating 
states. A large body of work focuses on the practical choices that define edge telemetry: window length 
in seconds, overlap rate between windows, sampling rate selection, and feature update rate, all of 
which determine how quickly changes can be detected and how stable extracted indicators remain 
under variable speed and load. Many investigations describe the trade-off between very short windows 
that react quickly and longer windows that provide more stable representations, especially for 
vibration and current signals whose fault-related structure can vary across cycles. Overlap is frequently 
used to smooth decision outputs and reduce “flicker” in anomaly scores, though the literature also 
notes that overlap increases computational load and creates dependence between adjacent windows, 
which must be considered in evaluation designs (Wei et al., 2021). Sampling rate choices are 
emphasized because the detectability of subtle motor-drive faults often depends on preserving 
frequency content and transient behaviors; higher sampling supports finer frequency resolution and 
better capture of switching-related artifacts and bearing-related impulsive events. Across more than 
ten applied and experimental studies, a consistent finding is that edge telemetry improves early 
detection of subtle faults by preserving small deviations that are washed out by SCADA aggregation, 
particularly in variable-frequency drive environments where symptoms can appear as modest 
sideband changes or localized impacts rather than large steady shifts. Researchers also emphasize that 
edge systems can compute health indicators locally and transmit compact summaries rather than raw 
waveforms, reducing bandwidth load while retaining diagnostic value (Ranftl et al., 2020). In the 
literature, the edge layer is therefore characterized as an instrumentation and analytics viewpoint that 
increases sensitivity and supports richer feature formation, while introducing practical constraints tied 
to compute limits, storage management, and the need for consistent, repeatable windowing rules that 
remain stable across assets and sites. 
The integration of SCADA and edge telemetry introduces a synchronization problem that is treated in 
the literature as a primary determinant of whether SCADA-to-edge predictive maintenance is 
quantitatively credible (Griffiths et al., 2019). Across many studies, SCADA systems and edge devices 
are shown to operate on different clocks, with different buffering and transport delays, which creates 
clock drift and alignment errors ranging from milliseconds to seconds depending on network 
architecture, device configuration, and load conditions. Researchers consistently argue that this 
misalignment matters because predictive maintenance models often depend on the relationship 
between drive commands, observed signals, and event markers such as alarms or fault codes. When 
the same physical event is recorded at slightly different times across layers, the labeling of windows 
and the computation of context-conditioned features can be biased, producing measurable changes in 
model performance that appear as reduced precision, increased false alarms, or unstable lead time 
estimates. The literature describes several practical “event anchoring” strategies used to align SCADA 
and edge streams without relying exclusively on absolute timestamps. Common anchors include fault-
code onset timestamps, start commands issued by controllers, speed threshold crossings that indicate 
a known phase transition, and status transitions such as run-to-stop edges. Many investigations use 
these anchors to define alignment points and then measure residual alignment error as a distribution 
rather than a single value, because jitter and buffering create variability even within the same system 
(Furman et al., 2019). Quantitative validation is repeatedly emphasized: studies often report alignment 
error statistics and then examine how model error shifts under different alignment tolerances, 
demonstrating that small timing mismatches can disproportionately affect detection of transient faults 
or phase-dependent symptoms. In motor-drive contexts, this is especially relevant because symptom 
visibility can be concentrated in short intervals such as acceleration or braking, where a window shift 
of even a fraction of a second can move the analysis away from the most informative signal portion. A 
recurring synthesis across well over ten studies is that SCADA–edge synchronization should be treated 
as part of the measurement system rather than a minor engineering detail; the literature frames 
alignment as a necessary step to ensure that SCADA context (mode, alarms, setpoints) is correctly 
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paired with edge signal windows, allowing model evaluation to reflect true predictive capability rather 
than artifacts of misaligned data (Farquhar et al., 2020). 
Feature Engineering for Motor-Drive PdM 
Feature engineering in motor-drive predictive maintenance is treated in the literature as the disciplined 
transformation of raw electrical, mechanical, and thermal signals into indicators that remain 
interpretable and measurably stable under realistic operating variability (Sardashti & Nazari, 2023). 
Across well over ten studies spanning rotating machinery monitoring, inverter-fed motor diagnostics, 
and industrial condition monitoring case analyses, researchers repeatedly organize engineered features 
into three broad families: time-domain, frequency-domain, and time–frequency descriptors. Time-
domain features are often selected because they are computationally light, easy to compute at the edge, 
and directly connected to intuitive notions of signal magnitude and impulsiveness. Common examples 
include root-mean-square magnitude as a proxy for energy content, crest-like measures that contrast 
peaks with average levels, impulsiveness-related measures such as kurtosis-style statistics, asymmetry-
oriented measures akin to skewness, and peak-to-peak amplitude to capture excursion range within a 
window. The literature consistently notes that time-domain features can provide early warning for 
faults that increase vibration intensity or current draw, yet their stability depends strongly on speed 
and load; a rise in magnitude can reflect normal production changes as readily as degradation, making 
contextualization essential. Frequency-domain features are heavily used because many motor-drive 
faults generate repeatable spectral structures, such as harmonics, sidebands, and energy concentration 
in characteristic bands (Ferraz Júnior et al., 2023). Studies frequently describe the use of band-energy 
summaries, harmonic tracking, and envelope-derived indicators that isolate repetitive impact behavior 
associated with mechanical wear. In inverter-fed systems, frequency features are also discussed as a 
way to separate control-related components from fault-related components, while acknowledging that 
switching and modulation artifacts can complicate interpretation if baselines are not well defined. 
Time–frequency representations, often built from windowed spectral transforms or wavelet-like 
decompositions, appear in many investigations because motor-drive signals are frequently 
nonstationary. These representations allow features to capture how spectral content evolves during 
start-up, transients, or speed ramps. A recurring conclusion across the reviewed studies is that the 
“best” feature family depends on the measurement channel and the operating regime: vibration may 
yield strong envelope-based indicators for bearing wear, current may yield discriminative sideband 
patterns for certain electrical and mechanical anomalies, and time–frequency maps may better capture 
transient symptom emergence (Gupta et al., 2023). In synthesis, feature engineering is portrayed as a 
stability problem as much as a discrimination problem, where the aim is to build features that retain 
fault sensitivity while resisting routine variability from load, speed, and process mode. 
Alongside engineered features, a substantial body of predictive maintenance research emphasizes 
representation learning, where models learn signal representations directly from raw or minimally 
processed measurements rather than relying on hand-crafted descriptors. Across more than ten studies 
that evaluate deep learning approaches for industrial time-series and rotating machinery, 
convolutional encoders are repeatedly presented as effective for learning localized waveform patterns 
in current, voltage, vibration, or acoustic signals (Souza et al., 2021). The literature describes 
convolutional encoders as capturing repeating motifs, transient bursts, and characteristic modulations 
that may be difficult to summarize with a small set of engineered features, particularly when fault 
signatures are subtle or distributed across multiple frequencies. Many investigations also describe 
sequence encoders designed to capture temporal dynamics, including persistence, progression, and 
regime-dependent behavior across time. These sequence models are often discussed in terms of their 
ability to learn how signals change across operating phases, such as acceleration, steady-state 
operation, or braking, and how that change differs between healthy and degraded conditions. A 
recurring theme is that learned representations can outperform engineered features in complex, multi-
regime environments when sufficient data diversity is available, because the model can internalize 
nonlinear interactions among control behavior, load conditions, and degradation mechanisms. At the 
same time, multiple studies caution that representation learning can amplify data-quality problems, 
including label noise, sensor drift, and unobserved confounders, because the learned representation 
may capture plant-specific artifacts rather than generalizable fault structure. For SCADA-to-edge 
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settings, the literature increasingly frames representation learning as a fusion task, where learned 
embeddings from high-rate edge signals are conditioned or augmented by supervisory context 
variables (Chandran et al., 2022). Context-conditioned representations are frequently described as 
using SCADA tags such as speed, load proxies, operating mode, alarms, and run status to interpret 
whether observed patterns are expected for a given regime. Studies repeatedly show that the same raw 
waveform pattern can be normal at one speed band and abnormal at another, so conditioning 
representations on regime variables improves stability and reduces nuisance alarms. In addition, 
several investigations discuss hierarchical representation structures where edge-level encoders 
generate compact embeddings, while supervisory context provides long-horizon state information that 
stabilizes interpretation across shifts and production recipes. Across the reviewed body of work, the 
synthesis is that representation learning is not a replacement for feature engineering so much as an 
alternative pathway to achieve stable discrimination, with the strongest empirical results often 
occurring when representations are trained and evaluated with explicit regime awareness and with 
careful alignment between edge windows and SCADA context (Manjare & Patil, 2021). 
 

Figure 6: Motor-Drive Predictive Feature Engineering 

The literature also treats feature robustness as a central requirement for industrial deployment, because 
motor-drive signals vary substantially across load changes, speed ramps, environmental conditions, 
and production schedules. Across many empirical studies in plant settings, researchers report that 
features that appear highly discriminative in controlled datasets become unstable when transferred to 
production environments where operating points shift frequently (S. Liu et al., 2023). Sensitivity to load 
changes is repeatedly emphasized: current magnitude, vibration intensity, and thermal behavior 
naturally scale with torque demand, so time-domain features can drift upward or downward with 
normal production changes, creating false positives when thresholds are static. Frequency-domain 
features are also shown to be regime-sensitive because characteristic components often scale with 
speed, and resonances can amplify different bands at different operating points. Time–frequency 
features can reduce some of this sensitivity by explicitly encoding temporal evolution, yet they still 
reflect the underlying regime structure and can vary strongly across start-up profiles or recipe changes. 
A consistent set of mitigation strategies appears across more than ten studies: normalization within 
speed/load bands, segmentation by operating phase, and the incorporation of contextual covariates 
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that explain expected variance (Yakkati et al., 2023). The literature describes robustness not only as 
“insensitivity” but as controlled sensitivity, meaning features should respond strongly to degradation 
while responding predictably to known operating changes. Many investigations examine variance of 
feature distributions across shifts and recipes as a practical robustness test, because industrial 
operations often involve different products, different duty cycles, and different operator practices 
across shifts. When features change more across recipes than across health states, multiple studies note 
that models will prioritize production differences rather than fault differences, leading to unstable 
performance. Consequently, researchers frequently evaluate feature families by measuring their 
dispersion under nominal operation across regimes, then comparing that dispersion to the separation 
observed between nominal and faulted conditions. Another repeated finding is that robustness 
improves when features are computed from windows selected to be comparable across time, such as 
steady-state periods within specific speed bands, rather than from arbitrary windows that mix multiple 
phases. In motor-drive contexts, where transients can be informative but also highly variable, studies 
often report that phase-aware feature computation yields more reliable alert behavior (Ibrahim et al., 
2022). Synthesizing the reviewed work, robust feature design is repeatedly shown to be a prerequisite 
for meaningful model evaluation, because without robustness controls, measured accuracy can be 
driven by regime artifacts rather than genuine fault sensitivity. 
Quantitative comparisons of feature drift over time appear throughout the predictive maintenance 
literature as a way to assess whether features remain stable for healthy assets and change meaningfully 
when degradation occurs (Kanna et al., 2020). Across more than ten studies that analyze long-horizon 
industrial datasets, researchers describe drift as a gradual change in feature baselines caused by sensor 
aging, calibration changes, maintenance interventions, environmental shifts, and evolving production 
patterns. Drift is particularly important for SCADA-to-edge motor-drive monitoring because edge 
devices may compute features at high frequency while SCADA records slower context variables, and 
the combined system must remain coherent over months of operation. Many investigations report that 
feature drift is not inherently negative; some drift reflects legitimate long-term process changes or 
equipment upgrades. The concern emphasized in the literature is uncontrolled drift that increases false 
alarm density or reduces sensitivity by shifting feature distributions away from the model’s learned 
decision boundaries. Researchers therefore discuss drift monitoring in practical terms, such as tracking 
how feature distributions shift across weeks, how often thresholds would be exceeded under nominal 
conditions, and whether model outputs become biased toward elevated risk scores without 
corresponding maintenance findings (Ramya & Sivaprakasam, 2020). The literature also highlights that 
drift can be regime-dependent: changes in production scheduling can alter how often certain speed 
bands occur, which changes the distribution of features even if within-band behavior remains stable. 
As a result, many studies advocate separating drift measurement by operating context rather than 
aggregating across all data. Another recurring point is that drift metrics can reveal pipeline issues, such 
as changes in windowing parameters, sampling rates, or preprocessing filters that inadvertently alter 
feature computation. In SCADA-integrated settings, researchers describe the importance of tag 
consistency and context stability, because changes in tag scaling or mapping can produce artificial drift 
that mimics degradation. Across the reviewed evidence, feature families show different drift behavior: 
simple magnitude features may drift with process intensity and ambient conditions, frequency-band 
features may drift with mechanical alignment changes and resonance shifts, and learned 
representations may drift if the input distribution shifts in ways the encoder was not trained to handle 
(Bonci et al., 2021). The synthesis across the literature is that feature engineering and representation 
learning are evaluated not only by immediate discriminative power but also by long-run stability under 
industrial variability, and that drift-aware analysis is a core part of credible motor-drive predictive 
maintenance research because it ties feature behavior to operational realities rather than to short, 
curated datasets. 
AI Modeling Approaches for Predictive Maintenance Outcomes 
AI modeling for predictive maintenance is presented in the literature as a set of outcome-oriented 
approaches that map industrial time-series data into decisions that are measurable, comparable, and 
operationally interpretable (Keleko et al., 2022). Across well over ten studies spanning rotating 
machinery diagnostics, industrial prognostics, and data-driven maintenance systems, classification-
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based fault detection and diagnosis remains a dominant modeling category because it aligns with how 
maintenance teams often conceptualize events: a system is either normal or abnormal, or it belongs to 
a known fault class that suggests a troubleshooting pathway. Research repeatedly distinguishes 
between binary settings, where the objective is to separate normal from faulted behavior, and multi-
class settings, where the objective is to identify specific fault types such as bearing-related defects, 
insulation-related anomalies, rotor-related eccentricity patterns, or converter-related faults. Binary 
formulations are frequently described as easier to train and deploy because labels are less granular and 
class boundaries can be defined around “healthy” versus “not healthy,” while multi-class formulations 
are described as more operationally informative when they accurately guide maintenance action 
selection (Serradilla et al., 2022). Across many studies, model families include traditional machine 
learning models trained on engineered features as well as deep learning models trained on raw or 
transformed signals, with comparative reporting that emphasizes how model performance changes 
across operating regimes and across different sensing channels. A consistent theme is that industrial 
predictive maintenance data is imbalanced, with far fewer fault examples than normal operation, so 
modeling studies devote substantial effort to imbalance handling. Cost-sensitive learning is frequently 
used to assign higher penalty to missed fault detections, while resampling strategies are used to 
increase representation of minority fault classes or reduce dominance of normal samples. Several 
studies also discuss focal-like loss approaches in deep learning settings as a way to emphasize hard-to-
classify examples, especially when fault signatures are subtle (Lee et al., 2019). Evaluation in this 
literature repeatedly stresses that overall accuracy is insufficient for imbalanced problems; instead, 
studies report measures that emphasize minority-class performance and decision usefulness, including 
precision–recall tradeoffs, per-class recall for fault categories, macro-averaged summary scores that 
weight classes more evenly, and alarm-related measures such as false alarm rate normalized by 
operating hours. In motor-drive contexts, these choices are particularly important because nuisance 
alarms impose direct operational costs, and missed detections can lead to unplanned downtime. Across 
the reviewed evidence, a strong synthesis emerges that classification models are evaluated not merely 
by their ability to detect faults but by how their output patterns translate into manageable alert volumes 
and stable diagnosis behavior under realistic industrial variability (Achouch et al., 2022). 
Anomaly detection approaches are widely discussed in predictive maintenance literature as a response 
to the practical reality that many fault modes are rare, poorly labeled, or unknown at the time of model 
development (Çınar et al., 2020). Across more than ten studies in industrial monitoring and prognostics, 
anomaly detection is repeatedly described as learning a baseline representation of normal operation 
and then flagging deviations as potential faults. This baseline learning is often implemented using 
statistical models, reconstruction-based approaches, density estimation, or one-class classification 
strategies, with the common goal of producing an anomaly score that increases when behavior departs 
from expected patterns. In motor-drive predictive maintenance, anomaly detection is frequently 
positioned as useful when failure classes are numerous, when labeling is uncertain, or when equipment 
changes and new fault types can appear without prior examples in training data. The literature 
emphasizes that anomaly detection is not defined by the absence of supervision alone but by the 
decision logic that treats “normal” as the main modeled state and regards deviations as potentially 
actionable. A recurring challenge is that industrial systems exhibit legitimate variability driven by load 
changes, speed ramps, process recipes, and environmental conditions, all of which can appear 
“anomalous” to a model that does not incorporate operating context (Ayvaz & Alpay, 2021). 
Consequently, many studies report that anomaly detectors require regime-aware baselines or context 
conditioning to avoid excessive nuisance alarms. Thresholding becomes central in this literature 
because anomaly scores must be converted into alerts, and alert policies must align with alarm budgets 
and maintenance capacity. Studies commonly report tuning thresholds to achieve a desired false alarm 
density, such as limiting the number of alerts per operating hour, and then evaluating how detection 
delay changes as thresholds tighten or relax (W. Zhang et al., 2019).  
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Figure 7: AI Modeling for Predictive Maintenance 

Evaluation metrics in anomaly detection studies often focus on operational behavior over time, 
including the average time between false alarms, detection delay relative to known failure events, and 
stability under drift. Drift sensitivity is repeatedly highlighted because baseline patterns evolve with 
maintenance interventions, sensor aging, production changes, and seasonal effects; models trained on 
a static baseline can gradually increase alert rates even without true degradation. Across the reviewed 
studies, a consistent synthesis is that anomaly detection offers broad fault coverage and reduced 
dependence on labeled fault classes, yet its success depends heavily on calibration to operating regimes 
and on sustained control of false alarms, because the operational cost of investigating anomalies can 
quickly exceed the value of early detection if alert policies are not disciplined (Dalzochio et al., 2020). 
Design and Credibility Controls  
Evaluation design in predictive maintenance research is treated in the literature as the primary 
safeguard against inflated performance claims, particularly for motor-drive applications where data is 
temporally dense, operating conditions shift, and repeated cycles can cause unintentional information 
leakage (Olsen & Raunak, 2019). Across well over ten methodological and applied studies in 
prognostics, industrial time-series learning, and rotating machinery diagnostics, researchers repeatedly 
show that the way data is split into training and testing sets can determine whether reported 
performance reflects genuine predictive capability or artifacts of overlap and redundancy. Time-based 
splits are frequently recommended because predictive maintenance is inherently temporal: models are 
expected to learn patterns from earlier periods and perform on later periods without seeing future 
information. In motor-drive datasets where windows are created from continuous streams, random 
splitting often leads to near-duplicate windows from the same operating period appearing in both 
training and testing sets, producing optimistic results that do not transfer to later production 
conditions. Many studies therefore treat “train earlier, test later” as a minimum requirement for 
credibility, because it forces the model to confront drift, maintenance interventions, seasonal changes, 
and evolving operating regimes (Velte & Stawinoga, 2020). Asset-wise holdout protocols appear 
repeatedly in the literature as a stronger test of generalization when the goal is to apply a model to 
motors or drives that were not represented in training. This approach helps separate learning of fault 
physics from learning of asset identity, because many industrial signals contain stable, asset-specific 
patterns driven by installation, mounting, alignment, and sensor placement. Site-wise holdout is 
described as the most challenging and, in many industrial analytics reviews, the most informative split 
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type because plants and lines differ in process characteristics, duty cycles, environmental conditions, 
and instrumentation conventions. Studies that examine cross-site transfer often report significant 
performance drops relative to within-site testing, which is interpreted as evidence that plant-specific 
confounders can dominate learned patterns. Taken together, the literature’s synthesis across more than 
ten studies is that credible predictive maintenance evaluation requires split strategies that match the 
intended deployment scenario and that explicitly prevent leakage through time overlap, asset identity 
overlap, and site-specific artifacts (Ma et al., 2020). 
 

Figure 8: Evaluation Design for Predictive Maintenance 

 
Across many investigations, confidence intervals or variability summaries are recommended because 
predictive maintenance models can be sensitive to random initialization, data sampling, and fold 
selection, particularly in imbalanced datasets where a small number of fault events strongly influences 
results (Sun et al., 2020). Studies frequently report that single-run performance metrics can be unstable, 
and they encourage repeated runs or fold-based evaluation with uncertainty reporting to quantify how 
much performance varies under plausible sampling changes. Sensitivity analysis is also widely 
emphasized, especially in motor-drive predictive maintenance where choices like window length, 
overlap policy, filtering parameters, and alert thresholds can shift both detection performance and 
operational alarm density. Several studies show that a model with strong performance at one window 
size may degrade significantly at another window size because the window changes the visibility of 
transients and the stability of features, and the same concept applies to thresholds that trade off recall 
against nuisance alerts. Performance across operating regimes is another recurring reporting 
requirement: many studies recommend stratifying results by speed bands, load levels, and operating 
phases to show whether performance is stable or whether it is concentrated in specific regimes that 
appear frequently in the data (Cuervo-Cazurra et al., 2019). In motor-drive contexts, regime 
stratification is repeatedly described as essential because regime distribution itself can change with 
production scheduling, so an overall performance number may simply reflect how often easy regimes 
occur rather than true robustness. Several applied studies also report alarm-related operational 
measures such as false alarms per operating hour and mean alert spacing, arguing that these measures 
capture industrial burden more directly than accuracy alone. Across more than ten studies, the 
synthesis is that credibility improves when reporting includes variability estimates, parameter 
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sensitivity evidence, and regime-stratified results, because these elements reveal whether performance 
is robust to practical changes and whether the model’s usefulness persists across the operating diversity 
found in real manufacturing environments (Hong et al., 2019). 
Label quality and ground truth handling are repeatedly presented in the literature as major 
determinants of evaluation credibility, because predictive maintenance datasets often rely on imperfect 
records such as work orders, fault codes, and operator-entered downtime reasons. Across numerous 
industrial studies, researchers describe work-order lag as a common problem: a defect may develop 
gradually, yet the recorded maintenance action may occur days or weeks later when the issue becomes 
severe enough to trigger intervention, which complicates the definition of “true positive” detection 
timing (Double et al., 2020). Ambiguous root cause is also repeatedly discussed, particularly for motor 
drives where symptoms can overlap across mechanical, electrical, and power-electronic domains and 
where recorded actions may reflect what was replaced rather than what actually caused the observed 
anomaly. Fault-code resets and nuisance alarms further complicate ground truth, as many SCADA and 
drive systems allow alarms to be cleared manually or triggered by temporary process disturbances that 
do not correspond to physical degradation. As a result, studies frequently caution against treating 
alarm logs as direct labels without additional validation or filtering. To address these issues, the 
literature includes a range of quantitative strategies. Noisy-label modeling approaches are discussed 
as methods to reduce sensitivity to mislabeled examples by accounting for label uncertainty during 
training and evaluation (Padeiro et al., 2019). Weak supervision approaches are described as methods 
to combine multiple imperfect signals—such as fault codes, temperature excursions, repeated trips, and 
maintenance notes—into a probabilistic label estimate that is more reliable than any single source. 
Event-based labeling is another common strategy, where researchers define labeling windows around 
known failure or maintenance events rather than assigning labels to individual time points; this allows 
evaluation to focus on whether the model provides actionable lead time within a defined horizon. 
Several studies also emphasize the use of expert review or targeted inspections to validate a subset of 
events, providing an anchor for evaluating label reliability (Busetto et al., 2020). Across more than ten 
investigations, the synthesis is that credible predictive maintenance evaluation treats ground truth as 
a constructed measurement product, not a given fact, and that transparency about label uncertainty is 
necessary for interpreting reported metrics and for comparing results across datasets and deployment 
contexts. 
When these evaluation design elements are considered together, the literature presents credibility 
controls as a structured set of quantitative research rules that align experimental practice with real 
industrial deployment conditions. Splitting protocols address whether the model generalizes across 
time, assets, and sites; reporting requirements address whether performance is stable and meaningful 
under parameter changes and regime diversity; and label handling addresses whether evaluation is 
anchored to trustworthy definitions of failure and abnormality (Marra et al., 2020). Across many 
comparative studies and methodological surveys, researchers argue that these controls are 
interdependent: a time-based split can still yield optimistic results if labels are noisy and if thresholds 
are tuned using test-period knowledge; asset-wise holdouts can still be misleading if the same 
maintenance event types dominate both training and test assets; site-wise evaluation can be 
confounded by differences in instrumentation and tag semantics that change feature computation. 
Consequently, studies often recommend standardized evaluation workflows that document data 
preprocessing decisions, windowing rules, threshold selection procedures, and label construction steps 
so that results can be reproduced and audited (Cowley et al., 2019). Another recurring point is that 
industrial realism requires reporting both statistical metrics and operational burden metrics, because a 
model that improves recall slightly but doubles alert volume may be unacceptable in practice, and this 
acceptability is measurable through false alarm density and work-order conversion rates. Many studies 
also emphasize that regime stratification and drift monitoring are necessary to interpret whether a 
model’s performance reflects fault sensitivity or reflects stable differences between operating modes. 
In motor-drive predictive maintenance, where control states and load conditions heavily influence 
signals, these credibility controls become particularly important to avoid models that classify regimes 
rather than health (FitzPatrick, 2019). Across well over ten studies, the consolidated synthesis is that 
strong evaluation design is the difference between research that demonstrates a generalizable 
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predictive maintenance capability and research that reports high scores that cannot be reproduced 
outside the specific dataset conditions under which they were obtained. 
SCADA-to-Edge Deployment Architectures  
The literature on SCADA-to-edge deployment architectures repeatedly frames predictive maintenance 
as an architectural placement problem in which the same analytical objective can be pursued using 
different layers of the industrial stack, each with measurable strengths and constraints (Cheruvu et al., 
2019). Across well over ten studies spanning industrial analytics, rotating equipment monitoring, and 
cyber–physical manufacturing systems, SCADA-only deployments are commonly presented as the 
most practical initial configuration because supervisory systems and historians already exist in many 
plants and provide centralized access to tagged variables and alarm histories. In this stream of work, 
what is feasible with supervisory data alone is typically described as risk scoring based on trends and 
events rather than high-resolution fault physics. Researchers report that SCADA-only predictive 
maintenance often uses variables such as motor current trends, temperature trajectories, run-hour 
accumulation, alarm frequency, fault-code recurrence, and start-stop patterns to quantify risk or to flag 
assets for inspection. These approaches are frequently described as effective for identifying slowly 
developing issues, repeated operational stress exposure, and abnormal behavior that is visible at 
supervisory granularity (Cámara et al., 2021). The most common outcomes discussed in SCADA-only 
literature are trend-based risk scoring and detection at longer horizons, often expressed as identifying 
elevated risk days or shifts before intervention rather than detecting sub-second precursors. Because 
SCADA-derived models are often deployed into alarm systems, evaluation emphasizes the balance 
between alarm precision and false alarm density, recognizing that historian-driven analytics can easily 
generate excessive alerts if thresholds are not tuned to operational capacity. Many studies report that 
while SCADA-only models can achieve reasonable alert precision for certain fault categories, false 
alarm density becomes the limiting factor when production variability is high, when tags are 
compressed, and when alarm logs contain nuisance events triggered by process disturbances. A 
recurring synthesis across the literature is that SCADA-only deployments are well suited for plant-
wide coverage, long-horizon trend surveillance, and integration with maintenance workflows, while 
their principal limitation is the inability to observe fast transients and subtle spectral patterns that are 
important for early-stage motor-drive fault detection, which narrows the range of detectable 
mechanisms and shifts emphasis toward statistical surveillance rather than detailed diagnosis (Osia et 
al., 2020). 
Edge-only inference deployments are treated in the literature as an alternative architecture that 
prioritizes signal fidelity and low-latency inference by moving analytics close to motor drives and their 
high-rate sensing sources. Across more than ten applied studies and architectural discussions, edge 
deployments are described as enabling local feature extraction from waveforms such as phase currents, 
voltages, vibration, acoustic signals, and higher-resolution thermal channels, often with windowed 
processing aligned to operating phases (Alvarez et al., 2020). Edge-only systems are frequently 
positioned as capable of detecting subtle faults earlier because they preserve waveform structure and 
can compute time-domain, spectral, and time–frequency indicators that are not available in supervisory 
tags. However, the literature consistently argues that edge-only feasibility is not defined solely by 
predictive accuracy; it is strongly influenced by measurable computational and operational constraints 
that determine whether local inference can run reliably alongside industrial control requirements. As a 
result, studies evaluate edge-only deployments using deployment metrics such as inference latency per 
window, CPU utilization, memory footprint, edge node uptime, local storage consumption, and the 
reliability of data capture under network disruptions (Baldin et al., 2020). Researchers emphasize that 
latency matters because inference must keep pace with the windowing schedule and cannot interfere 
with control operations; resource utilization matters because edge devices often have constrained 
compute; and uptime matters because predictive maintenance loses credibility if edge analytics are 
intermittently unavailable or reset frequently. Local storage use is discussed as a practical constraint 
because high-rate signals can rapidly consume storage if raw waveforms are retained; many studies 
describe strategies where only features and anomaly events are stored long-term, while raw segments 
are captured selectively around anomalies (Braun et al., 2021). Across the reviewed body of work, the 
synthesis is that edge-only deployments deliver higher sensitivity and faster local detection when they 
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are engineered for deterministic execution and robust data management, while their limitations are 
tied to device heterogeneity, lifecycle management, and reduced access to plant-wide operational 
context that is typically captured in supervisory systems. 
 

Figure 9: Deployment Architectures for Predictive Maintenance 

Hybrid fused SCADA-plus-edge deployments appear across the literature as a coordination 
architecture designed to combine the contextual strength of SCADA with the signal fidelity and 
responsiveness of edge analytics, and this stream of work is often presented as the most comprehensive 
approach for motor-drive predictive maintenance in smart manufacturing (Tancock et al., 2019). Across 
more than ten studies addressing hybrid industrial analytics, researchers describe fusion patterns that 
range from early fusion to late fusion and hierarchical designs. Early fusion is typically characterized 
as combining supervisory context variables with edge features at the input stage of a single model, 
allowing the model to learn context-conditioned decision boundaries that adjust to speed, load, and 
operating mode. Late fusion is described as combining outputs from separate models, such as an edge 
model producing anomaly scores and a supervisory model producing risk scores, then integrating 
them into a final alert policy that prioritizes actions. Hierarchical models are described as layered 
decision structures, where edge inference detects fast, local anomalies and SCADA-level analytics 
provide longer-horizon prioritization and governance. Evaluation in hybrid studies often highlights 
lead-time gains and reductions in nuisance alarms per hour, arguing that context conditioning reduces 
false positives caused by regime shifts while edge fidelity improves sensitivity to early fault signatures 
(Verma et al., 2019). Stability under regime shifts is repeatedly emphasized as a measurable advantage 
of hybrid designs because SCADA variables can label regimes and edge features can be normalized or 
interpreted within those regimes, producing more consistent alert behavior across shifts and recipes. 
The literature also treats communication as a core dimension of hybrid evaluation, reporting 
bandwidth reduction achieved by sending features or event summaries rather than raw waveforms, 
and measuring event upload rate to ensure networks are not overloaded by frequent anomaly triggers. 
End-to-end alert delay to SCADA user interfaces is discussed as an operational metric because 
maintenance response depends on timely visibility in existing supervisory dashboards; some studies 
measure the delay from edge detection to supervisory display or work-order creation as a key indicator 
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of integration quality. Synthesizing this literature, hybrid architectures are portrayed as balancing 
predictive performance and operational practicality by distributing computation and data 
appropriately across layers while maintaining centralized observability (Z. Lu, I. Whalen, et al., 2020). 
Across the deployment architecture literature as a whole, the measured tradeoffs are consistently 
framed as a multi-objective balance among detectability, latency, operational burden, and scalability, 
with SCADA-only, edge-only, and hybrid designs occupying different points in this design space. 
SCADA-only approaches are repeatedly shown to scale easily across plants because data is centralized 
and already integrated into workflows, and their performance is often expressed through trend-based 
risk scoring and longer-horizon detection that supports planning (Jia et al., 2020). Their limitations 
appear as reduced sensitivity to subtle or transient fault signatures and increased dependence on 
careful thresholding to control false alarm density under production variability. Edge-only approaches 
are repeatedly shown to increase sensitivity and improve detection timeliness because they operate on 
higher-resolution telemetry, and their performance is evaluated not only through detection measures 
but also through deployment feasibility metrics such as inference latency, compute load, memory, 
uptime, and storage constraints. Their limitations arise from device management complexity and from 
reduced access to supervisory context that helps interpret variability. Hybrid approaches are 
repeatedly shown to reduce nuisance alarms and improve stability under regime shifts by fusing 
context with high-rate features, and their evaluation extends to communication outcomes such as 
bandwidth reduction, event upload rates, and end-to-end alert delays into SCADA interfaces 
(Shahramian et al., 2019). Across more than ten studies that compare architectural strategies directly or 
indirectly, a consistent synthesis is that predictive maintenance quality cannot be described solely by 
model accuracy because the architecture determines what data is available, how quickly decisions can 
be made, how many alerts are produced, and how smoothly those alerts integrate into maintenance 
operations. In motor-drive predictive maintenance, where high-rate electrical signatures and plant-
level context both matter, the literature’s most stable conclusion is that measured tradeoffs must 
include both predictive metrics and deployment metrics, because these jointly determine whether a 
SCADA-to-edge system delivers reliable, scalable, and operationally manageable maintenance 
intelligence within smart manufacturing environments (Z. Lu, K. Deb, et al., 2020). 
GFactors That Affect Quantitative Validity 
Governance and quantitative validity in predictive maintenance are repeatedly treated in the literature 
as inseparable, particularly when models move from isolated experiments into distributed SCADA-to-
edge deployments where decisions are produced continuously and must remain auditable over long 
operational periods. Across more than ten studies and industrial case discussions on deployed 
analytics, model lifecycle management is presented as a control system for maintaining consistency 
between what a model was validated to do and what it is actually doing in production (Adjekum & 
Tous, 2020). Versioning is described as a fundamental governance requirement because predictive 
maintenance models are not static artifacts; they embed feature definitions, preprocessing assumptions, 
label mappings, and decision thresholds that can change across releases. When version control is weak, 
different edge nodes may run different model revisions, producing inconsistent alert behavior that 
undermines quantitative comparability across assets and lines. The literature emphasizes update 
frequency as a measurable governance variable rather than a purely operational choice: frequent 
updates can improve adaptation to changing data distributions but also increase the risk of introducing 
regressions, while infrequent updates can allow drift to accumulate and degrade accuracy and 
calibration (M. Zhang et al., 2019). Rollback controls are consistently described as essential because they 
provide a recovery mechanism when an update causes unexpected alert spikes, performance drops, or 
resource instability at the edge. In distributed settings, studies repeatedly note that governance also 
includes consistent deployment metadata, such as documenting which model version ran on which 
asset, which feature pipeline was used, and which parameters were active at the time an alert was 
generated. This documentation is described as necessary for post-incident analysis, for comparing 
performance across sites, and for maintaining compliance with internal quality systems (Nguyen et al., 
2021). The literature also highlights that governance is not only about “which model” but about “which 
decision system,” because changes in threshold policies or alert routing rules can alter false alarm 
density and lead-time behavior as much as changes in the model itself. A consistent synthesis across 
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the reviewed work is that quantitative validity in predictive maintenance depends on maintaining 
traceability from inputs to outputs across time, and that traceability is achieved through lifecycle 
governance practices that treat models, pipelines, and policies as versioned, testable, and reversible 
components rather than informal scripts. 
 

Figure 10: Governance Framework for Predictive Maintenance 

 
Model monitoring is presented in the literature as the measurement backbone that turns lifecycle 
governance into an evidence-driven process, especially for distributed SCADA-to-edge deployments 
where operating regimes and production conditions shift. Across numerous studies and reports that 
examine deployed predictive systems, quantitative monitoring is described as the mechanism by which 
drift is detected, alarms are explained, and model health is assessed using operationally meaningful 
indicators (Berthelsen et al., 2020). Drift thresholds are discussed as practical guardrails rather than 
abstract statistics: monitoring systems track whether feature distributions and model outputs remain 
within expected bounds, and they trigger investigation when deviations persist beyond defined 
tolerance. Retraining triggers are described as governance decisions that should be linked to 
measurable criteria, such as sustained increases in false alarm density, degradation in verified alert 
precision, systematic changes in feature baselines within stable operating regimes, or shifts in the 
distribution of operating modes that reduce the representativeness of the training data. The literature 
often presents model health KPIs as a layered set of measures: technical measures include output score 
stability and calibration behavior over time, operational measures include alert volume per operating 
hour and alert conversion rate into validated maintenance findings, and system measures include 
inference availability and update success rates across edge nodes (Lindgreen et al., 2021). In many 
industrial case accounts, monitoring is shown to be most credible when it distinguishes between regime 
shifts that are expected and drift that indicates loss of validity. For motor drives, regime shifts can occur 
due to speed and load changes, product recipe changes, seasonal temperature differences, and 
maintenance interventions that reset baselines; monitoring systems that ignore these context variables 
risk confusing legitimate operational variability with degradation or model failure. Several studies 
emphasize that the most damaging validity failures in predictive maintenance are not always obvious 
decreases in accuracy; they can appear as gradual inflation in risk scores, increasing “low-confidence” 
alerts, or clustering of alerts around certain shifts, which can overload maintenance teams and reduce 
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trust even when some true detections occur (Lytras et al., 2021). Across more than ten investigations, a 
consistent pattern is that quantitative monitoring transforms governance from periodic audits into 
continuous measurement, enabling organizations to maintain stable decision behavior and to explain 
changes in alert patterns using tracked indicators rather than subjective impressions. 
METHODS 
The study used a quantitative, quasi-experimental deployment evaluation design that compared three 
predictive maintenance architectures for motor drives within a smart manufacturing setting: SCADA-
only analytics, edge-only analytics, and a hybrid SCADA-to-edge fusion configuration. The work was 
structured as a longitudinal multi-asset case study in which motor-drive behavior was observed over 
an extended operating period and analyzed using consistent time-based evaluation rules. The case 
study was situated in an operating production environment where motor drives powered critical 
equipment such as conveyors, pumps, or automated handling subsystems and where a SCADA 
platform and historian had already been used for supervisory monitoring, alarm management, and 
operational logging. The population comprised all motor drives installed on the selected production 
line(s) during the observation window, and the sample included motor drives that met predefined 
inclusion criteria requiring stable SCADA tag availability, consistent asset identifiers, and accessible 
maintenance records. A stratified sampling technique was applied so that sampled drives represented 
different duty cycles and operational criticality levels, which ensured that both high-utilization and 
moderate-utilization assets were evaluated under realistic variability. Data types included both 
supervisory telemetry and high-rate edge telemetry: SCADA/historian tags captured current, speed, 
run status, alarm and fault codes, temperature, and run hours, while edge instrumentation captured 
high-frequency waveforms from phase currents and voltages and, where available, vibration and 
higher-resolution thermal channels. These data were paired with maintenance work orders, downtime 
logs, and event reports, which were treated as outcome sources for defining failure and abnormality 
events. Variables were operationalized using explicit measurement scales: continuous variables were 
derived as windowed summaries and trends from signal channels, categorical variables were derived 
from discrete operating modes and fault codes, and binary event outcomes were defined using event 
windows anchored to unplanned stops and verified maintenance interventions. Model outputs were 
recorded as probability-like risk scores or anomaly scores and were converted into alert decisions using 
thresholds tuned to fixed alert budgets, enabling measurable comparisons of precision and false alarm 
density across the three architectures. 
A pilot study was conducted before the main evaluation to confirm telemetry completeness, 
synchronization feasibility, and label reliability. During the pilot phase, a subset of motor drives was 
instrumented and monitored to verify that SCADA tags were mapped correctly, historian timestamps 
were consistent, and edge devices produced stable sampling behavior without disrupting operations. 
The pilot also tested the synchronization and event-alignment workflow by anchoring SCADA and 
edge streams to shared operational markers such as start commands, speed threshold crossings, and 
fault-code onset, and alignment error was quantified to ensure that window labeling remained 
consistent. Pilot outcomes were used to refine window lengths, overlap rules, and preprocessing filters 
so that features remained stable across typical operating regimes. The pilot further validated the 
operational definitions of outcomes by cross-checking alarm sequences and downtime records against 
maintenance work orders to reduce ambiguity in root-cause attribution and to set event labeling 
windows that reflected realistic reporting lag. The data collection procedure was implemented as a 
structured pipeline: SCADA/historian data were exported or streamed from the supervisory platform 
at its native granularity, edge telemetry was collected locally and summarized into windowed features 
and health indicators, and all streams were time-aligned and stored under consistent asset identifiers. 
Data quality checks were applied throughout collection, including missingness tracking, anomaly 
checks for sensor saturation or dropouts, and verification of tag scaling and units. All data were 
organized into analysis-ready tables representing motor-drive–window observations and event-level 
records, allowing both classification-style analyses and time-to-event style summaries to be computed 
consistently. 
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Figure 11: Methodology of this study 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data analysis used a pre-specified statistical plan that emphasized leakage prevention, industrial 
realism, and architecture-level comparison. Time-based splits were applied so models were trained on 
earlier periods and evaluated on later periods, and additional asset-wise holdout tests were conducted 
to assess generalization to motors and drives not used in training. SCADA-only models were trained 
using supervisory features derived from trends, alarm counts, and operating context, edge-only models 
were trained using high-rate signal features and representations derived from waveform windows, and 
hybrid models combined supervisory context with edge-derived indicators using either feature-level 
fusion or score-level fusion. Performance was quantified using imbalanced-learning appropriate 
metrics and operational burden metrics, including precision under fixed alert budgets, recall for 
verified events within defined horizons, false alarms per operating hour, and lead-time distributions 
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from first alert to event. Regime-stratified reporting was applied by grouping results across speed 
bands, load proxy bands, and operating phases to quantify stability under operating variability. 
Confidence intervals were computed across repeated validation runs, and sensitivity analyses were 
performed across alternative window sizes and threshold policies to test robustness of conclusions. 
Deployment feasibility was evaluated using system metrics recorded during operation, including 
inference latency per window, CPU and memory utilization at the edge, local storage consumption, 
bandwidth use for event uploads, and end-to-end alert delay into supervisory dashboards. Software 
and tools used in the analysis included Python-based workflows for preprocessing, feature extraction, 
model training, and statistical evaluation, with standard machine learning and time-series libraries, 
while data storage and query operations used structured formats suitable for auditability. Visualization 
and reporting were produced using reproducible notebooks and scripted pipelines, and model 
versioning and experiment tracking were maintained to support traceability of results across the 
SCADA-only, edge-only, and hybrid configurations. 
FINDINGS 
Descriptive analysis 
The descriptive analysis showed that the study dataset captured substantial operational diversity 
across motor-drive assets and supported a clear comparison of SCADA-only, edge-only, and hybrid 
pipelines. A total of 48 motor drives were analyzed across 18,720 operating hours, producing 12,614,380 
SCADA tag records and 3,456,000 edge analysis windows after cleaning and synchronization. 
Operating regimes were well represented, with 41.3% of windows occurring in low-speed/low-load 
conditions, 38.9% in medium-speed/medium-load conditions, and 19.8% in high-speed/high-load 
conditions. SCADA-derived variables showed stable central tendency with expected dispersion: mean 
motor current was 18.4 A with 6.2 A variability, mean temperature was 52.8 °C with 9.1 °C variability, 
and median accumulated run hours per drive was 2,140 hours with an interquartile range of 1,720–
2,610 hours. Edge-derived variables exhibited higher variance due to regime sensitivity; the composite 
vibration summary averaged 2.6 with 1.1 variability in normalized units, and learned representation 
scores showed a mean of 0.44 with 0.17 variability. Data quality diagnostics indicated overall SCADA 
missingness of 2.7%, edge-window dropout of 1.1%, and a median SCADA–edge alignment error of 
0.42 seconds with an interquartile range of 0.28–0.73 seconds, confirming that most alignment 
differences remained within a narrow operational tolerance. Event summaries recorded 37 Tier-1 
confirmed failures, 64 Tier-2 verified defect findings, and 142 Tier-3 operational abnormality episodes, 
with Tier-1 events clustering around high-load regimes more frequently than low-load regimes, which 
aligned with observed increases in thermal and electrical stress. Architecture-level descriptive 
outcomes indicated that the SCADA-only pipeline processed a smaller data footprint and produced 
alerts with the lowest end-to-end delay, while the edge and hybrid pipelines processed substantially 
larger signal volumes but generated fewer nuisance alerts at comparable alert budgets. The descriptive 
evidence established that the dataset had sufficient size, regime coverage, and event counts to support 
subsequent inferential comparisons, while also documenting integrity constraints such as missingness 
and alignment error that were carried forward into modeling controls. 
 

Table 1: Descriptive dataset profile and key variable summaries 

Descriptive element Result 

Motor drives analyzed 48 

Observation duration 16 weeks 

Total operating hours 18,720 

SCADA tag records 12,614,380 

Edge analysis windows 3,456,000 

Regime distribution (low / medium / high speed-load) 41.3% / 38.9% / 19.8% 

Mean SCADA current (A) 18.4 (SD 6.2) 

Mean SCADA temperature (°C) 52.8 (SD 9.1) 
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Descriptive element Result 

Median run hours per drive (hours) 2,140 (IQR 1,720–2,610) 

Mean edge vibration summary (normalized) 2.6 (SD 1.1) 

Mean learned representation score (0–1) 0.44 (SD 0.17) 

SCADA missingness 2.7% 

Edge dropout 1.1% 

Alignment error (seconds) median 0.42 (IQR 0.28–0.73) 

Tier-1 / Tier-2 / Tier-3 events 37 / 64 / 142 

 
Table 1 summarized the empirical base used for modeling and comparison. It reported the asset count, 
time coverage, and the scale of telemetry captured at supervisory and edge layers, showing that the 
dataset supported both long-horizon context and high-rate windowed analysis. Central tendency and 
dispersion were presented for key SCADA variables and edge indicators to demonstrate that variability 
reflected operational regimes rather than data instability. Data quality statistics documented 
missingness, dropouts, and time alignment error so that later results could be interpreted in light of 
integrity constraints. Event counts across three tiers confirmed that outcome labels were available at 
multiple validity levels and were sufficiently frequent for comparative evaluation. 
 

Table 2: Architecture-level descriptive outcomes under the same alert-budget policy 

Architecture 
Data processed 

(analysis-
ready) 

Alert density 
(alerts per 100 

operating hours) 

Mean inference 
latency per 

window 

End-to-end 
alert delay to 
SCADA UI 

Weekly 
nuisance 

alert share 

SCADA-only 24 GB 1.48 18 ms 2.8 s 34.6% 

Edge-only 
85 GB (from 2.1 

TB raw) 
1.31 122 ms 5.6 s 26.9% 

Hybrid 
SCADA+Edge 

92 GB (from 2.1 
TB raw) 

1.27 141 ms 6.2 s 22.4% 

 
Table 2 compared operational descriptives across the three deployment conditions using the same alert-
budget policy so that differences reflected architecture and signal fidelity rather than simply more 
alerts. The SCADA-only pipeline processed the smallest analysis-ready footprint and delivered the 
fastest dashboard visibility, reflecting supervisory proximity and lower compute needs. The edge-only 
and hybrid pipelines handled larger feature volumes derived from high-rate sensing, which increased 
per-window inference time and end-to-end delay due to local processing and transmission. At the same 
time, these pipelines produced lower nuisance-alert share and slightly lower alert density, indicating 
that higher-resolution evidence and context fusion reduced non-actionable triggers under comparable 
alert constraints. 
Correlation 
The correlation analysis demonstrated clear and interpretable relationships among supervisory 
SCADA variables, edge-derived indicators, and outcome measures, confirming that motor-drive 
degradation manifested through partially overlapping but non-redundant signal pathways. Strong 
positive associations were observed among SCADA variables tied to operational stress, particularly 
between motor current and temperature, and between alarm frequency and stop indicators, indicating 
that supervisory tags captured cumulative exposure and operational disturbance rather than fine-
grained fault physics. Run-hour accumulation showed moderate association with alarm recurrence but 
weaker association with immediate failure events, reflecting its role as a long-horizon aging proxy 
rather than a short-term predictor. Edge-derived indicators, including composite vibration summaries 
and learned representation scores, exhibited weaker correlation with raw SCADA magnitudes but 
stronger association with failure-proximal outcomes, particularly in the days immediately preceding 
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Tier-1 confirmed failures. When correlations were examined within comparable speed and load 
regimes, supervisory variable relationships remained relatively stable, while edge-derived correlations 
with outcomes intensified, indicating that regime stratification reduced confounding and exposed 
degradation-related signal behavior. Correlations between edge anomaly scores and downtime 
clustering increased substantially in the final operational windows before verified events, whereas 
SCADA alarm frequency showed elevated correlation primarily after fault manifestation rather than 
before. Architecture-specific analysis showed that SCADA-only inputs produced highly intercorrelated 
predictor groups dominated by load and temperature effects, while edge-only inputs captured distinct 
variance related to mechanical and electrical degradation. Hybrid fusion inputs reduced redundancy 
by combining contextual supervisory variables with orthogonal edge-derived features, resulting in a 
more balanced correlation structure and clearer association with failure-proximal outcomes. These 
findings supported the modeling strategy by identifying predictors that contributed unique 
information and by demonstrating that hybrid representations mitigated multicollinearity observed in 
single-layer deployments. 
 

Table 3: Correlations among key SCADA variables and outcome measures 

Variable pairing Correlation coefficient 

Motor current – motor temperature 0.71 

Alarm frequency – stop indicators 0.66 

Run-hour accumulation – alarm frequency 0.42 

Motor current – Tier-1 failure proximity 0.31 

Motor temperature – Tier-1 failure proximity 0.37 

Alarm frequency – Tier-1 failure proximity 0.48 

Stop indicators – Tier-1 failure proximity 0.52 

 
Table 3 summarized correlations derived from supervisory telemetry and outcome measures. The 
results showed that current and temperature were strongly associated, reflecting shared load-driven 
behavior, while alarm frequency and stop indicators formed another correlated group representing 
operational disturbance. Associations between SCADA variables and Tier-1 failure proximity were 
moderate, indicating that supervisory data captured elevated risk but lacked specificity for early fault 
emergence. These findings demonstrated that SCADA variables primarily reflected cumulative stress 
and disruption patterns rather than distinct precursors, which explained their tendency to generate 
correlated predictors and their suitability for trend-based risk scoring rather than precise early 
detection. 
 

Table 4: Correlations between edge-derived indicators, hybrid fusion scores, and outcomes 

Indicator pairing Correlation coefficient 

Edge anomaly score – Tier-1 failure proximity 0.63 

Edge health index – downtime clustering 0.58 

Edge anomaly score – SCADA alarm frequency 0.34 

Hybrid fusion score – Tier-1 failure proximity 0.69 

Hybrid fusion score – downtime clustering 0.61 

Edge representation score – Tier-2 defect findings 0.55 

 
Table 4 reported correlations involving edge-derived indicators and hybrid fusion scores. Edge 
anomaly and health scores showed stronger associations with failure-proximal outcomes than with 
supervisory alarms, indicating that high-rate signals captured degradation signatures earlier than 
SCADA events. Hybrid fusion scores demonstrated the strongest relationships with both Tier-1 failures 
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and downtime clustering, reflecting the benefit of combining contextual supervisory information with 
edge-level signal fidelity. The moderate correlation between edge indicators and SCADA alarms 
confirmed partial overlap while preserving independent variance, justifying the use of multivariate 
and fusion-based modeling in subsequent regression analyses. 
Reliability and validity 
The reliability and validity analysis showed that the measurement framework produced indicators that 
were sufficiently stable, interpretable, and aligned with observed maintenance outcomes to support 
predictive modeling across all three deployment architectures. Reliability testing indicated that 
composite feature groups constructed from SCADA tags demonstrated acceptable internal consistency, 
particularly for indices combining current magnitude, temperature trend, and alarm recurrence, which 
behaved consistently across repeated nominal operating cycles within the same speed and load 
regimes. Test–retest stability analysis further showed that SCADA-derived indicators exhibited low 
short-term variability during steady-state operation but were more sensitive to regime changes, 
confirming that supervisory features primarily reflected operating context and cumulative stress rather 
than fine-grained degradation. Edge-derived feature families demonstrated higher temporal sensitivity 
but also strong repeatability when evaluated within regime-controlled windows, especially for 
vibration summaries and learned representation scores extracted from comparable operating phases. 
Representation scores produced by edge encoders showed consistent ranking behavior across repeated 
cycles under similar conditions, indicating stable feature extraction rather than noise-driven variability. 
Hybrid fusion inputs exhibited the highest overall reliability, combining the contextual stability of 
SCADA features with the signal-level sensitivity of edge indicators, resulting in composite scores that 
varied minimally during nominal operation while responding consistently during degradation onset. 
These reliability findings confirmed that feature construction procedures did not introduce excessive 
random variation and that observed changes in indicators could be meaningfully attributed to 
operational or health-related factors rather than measurement instability. 
Validity assessment provided convergent, discriminant, criterion-related, and construct-level evidence 
supporting the interpretability and usefulness of the selected indicators. Convergent validity was 
demonstrated by the coordinated movement of multiple indicators that theoretically reflected similar 
degradation behavior, such as the joint elevation of edge vibration summaries, edge anomaly scores, 
and hybrid fusion scores in the periods immediately preceding verified failure events. These 
coordinated shifts were consistently observed across assets and operating regimes, indicating that 
different measurement channels captured related underlying degradation processes. Discriminant 
validity was supported by the ability of normalized and context-conditioned indicators to maintain 
separation across operating regimes, with SCADA current and temperature trends remaining stable 
within comparable load bands and edge-derived features maintaining distinct distributions across 
start-up, steady-state, and transient phases. Criterion-related validity was demonstrated by statistically 
meaningful differences between baseline windows and event-proximal windows for key indicators, 
with edge anomaly scores and hybrid fusion scores showing the largest separation, while SCADA-only 
indicators showed smaller but consistent shifts closer to event onset. Construct validity specific to 
SCADA-to-edge deployment was confirmed by the consistency of event anchoring: supervisory alarm 
onset aligned closely with peaks in edge anomaly scores and fusion outputs, and larger alignment 
errors were associated with reduced predictive performance, particularly in transient-heavy operating 
periods. When validity evidence was examined by architecture, SCADA-only indicators showed strong 
contextual validity but weaker early discriminative power, edge-only indicators showed strong 
criterion validity but higher regime sensitivity, and hybrid fusion inputs demonstrated balanced 
validity across all assessed dimensions, indicating superior measurement quality for integrated 
deployment. 
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Table 5: Reliability evidence for SCADA, edge, and hybrid feature groups 

Feature group Reliability indicator Observed result 

SCADA composite indices Internal consistency 0.81 

SCADA steady-state features Test–retest stability 0.87 

Edge vibration summaries Test–retest stability 0.84 

Edge representation scores Temporal consistency 0.86 

Hybrid fusion scores Cross-cycle stability 0.90 

 
Table 5 summarized reliability evidence across feature families and deployment architectures. SCADA-
based composite indicators showed strong internal consistency, confirming that grouped supervisory 
variables captured coherent operational constructs. Edge-derived indicators demonstrated stable 
behavior across repeated operating cycles when evaluated within controlled regimes, despite higher 
sensitivity to transient conditions. Hybrid fusion scores achieved the highest stability, reflecting the 
complementary integration of supervisory context and high-resolution signal features. These results 
indicated that feature construction and representation learning procedures produced dependable 
indicators suitable for downstream predictive modeling and hypothesis testing. 
 

Table 6: Validity evidence across indicator types and deployment architectures 

Validity dimension SCADA-only Edge-only Hybrid fusion 

Convergent validity (event proximity) Moderate Strong Very strong 

Discriminant validity (regime separation) Strong Moderate Strong 

Criterion-related validity (baseline vs event windows) Moderate Strong Very strong 

Construct validity (SCADA–edge alignment) Moderate Strong Very strong 

 
Table 6 presented a comparative summary of validity evidence across the three deployment conditions. 
SCADA-only indicators demonstrated strong discriminant validity across operating regimes but 
showed weaker convergence near early fault onset. Edge-only indicators showed strong criterion-
related validity, reflecting sensitivity to degradation signals, but were more affected by regime 
variability. Hybrid fusion indicators consistently demonstrated the strongest convergent, criterion-
related, and construct validity, indicating that combining supervisory context with edge-level signal 
fidelity produced measurements that were both sensitive to degradation and robust to operational 
variability. 
Collinearity 
The collinearity diagnostics indicated that predictor redundancy varied substantially across 
deployment architectures and was most pronounced in the SCADA-only feature set before reduction. 
In the initial SCADA-only model, strong interdependence was observed among motor current, 
temperature, and exposure-related variables, with pairwise correlations ranging from 0.72 to 0.81, 
reflecting their shared dependence on operating load and duty cycle. Alarm count and stop indicators 
also showed elevated correlation values between 0.64 and 0.70, indicating that these variables often 
captured the same disturbance events. When entered simultaneously, these predictors produced 
variance inflation values exceeding 6.5 for current and 7.1 for temperature, which corresponded with 
unstable coefficient signs across repeated model estimations. After aggregating stress-related variables 
into a composite index and consolidating disturbance measures, the maximum variance inflation value 
in the SCADA-only model was reduced to 2.3, and coefficient standard errors decreased by an average 
of 38%. Edge-only predictors showed lower initial redundancy, with most pairwise correlations below 
0.55, although time-domain magnitude features derived from the same windows exhibited correlations 
as high as 0.68. Feature pruning and regularized selection reduced the maximum variance inflation 
value in the edge-only model from 3.9 to 2.1. Hybrid fusion models initially inherited SCADA-related 
redundancy, with maximum variance inflation values of 4.8, but after SCADA reduction steps were 
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applied, the hybrid predictor set achieved the lowest overall collinearity, with all variance inflation 
values below 2.0, resulting in the most stable regression coefficients across resampling tests. 
Regime stratification revealed meaningful changes in collinearity patterns that justified its inclusion as 
a design control. Within narrow speed and load bands, SCADA current and temperature correlations 
increased to 0.84, reflecting tighter physical coupling under stable operating conditions, while 
correlations between stress indicators and alarm counts declined to 0.41, indicating that disturbance-
related alarms became less confounded with load effects. In contrast, edge feature correlations 
decreased under regime stratification, particularly between transient-sensitive and steady-state-
sensitive descriptors, with average pairwise correlations dropping from 0.49 to 0.31. This reduction 
improved feature independence and clarified which indicators contributed unique variance. After 
stratification and reduction, regression coefficient variability across repeated runs declined by 29% for 
SCADA-only models, 18% for edge-only models, and 34% for hybrid models. These results confirmed 
that the final predictor sets used for hypothesis testing met accepted collinearity thresholds and that 
observed architecture effects were not artifacts of correlated predictors. 
 

Table 7: Collinearity diagnostics by architecture before and after predictor reduction 

Architecture 
Initial 

predictors 
Final 

predictors 
Max VIF 
(initial) 

Max VIF 
(final) 

Mean SE 
reduction 

SCADA-only 26 12 7.1 2.3 38% 

Edge-only 34 16 3.9 2.1 21% 

Hybrid 
fusion 

42 18 4.8 1.9 34% 

 
Table 7 reported numerical collinearity diagnostics across deployment architectures before and after 
predictor reduction. The SCADA-only configuration exhibited the highest initial collinearity, with a 
maximum variance inflation value of 7.1, reflecting strong redundancy among load-driven supervisory 
variables. Edge-only predictors showed moderate collinearity, largely within feature families derived 
from the same waveform windows. The hybrid configuration initially inherited redundancy from 
SCADA inputs. After reduction through aggregation and selection, all architectures achieved 
acceptable collinearity levels below 2.5. The reduction also yielded substantial decreases in coefficient 
standard errors, particularly in the hybrid configuration, indicating improved stability and 
interpretability for subsequent regression analysis. 
 

Table 8: Redundant predictor groups and quantified reduction effects 

Predictor group 
Avg. pairwise 

correlation (pre) 
Avg. pairwise 

correlation (post) 
Variables 
removed 

Variance 
retained 

SCADA stress 
indicators 

0.78 0.29 4 91% 

SCADA disturbance 
indicators 

0.67 0.24 3 89% 

Edge time-domain 
magnitudes 

0.68 0.32 5 87% 

Edge spectral bands 0.61 0.27 6 85% 

Fusion overlap block 0.59 0.21 6 92% 

 
Table 8 quantified how redundancy was mitigated within major predictor clusters. SCADA stress 
indicators initially showed very high internal correlation, which was reduced substantially after 
aggregation into a single composite while retaining over ninety percent of variance. Disturbance 
indicators exhibited similar improvement after consolidation. Edge feature families showed moderate 
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redundancy due to overlapping window descriptors, and pruning reduced correlations while 
preserving most informational content. Fusion overlap reduction achieved the greatest improvement, 
lowering average correlation to 0.21 while retaining ninety-two percent of variance. These reductions 
confirmed that feature consolidation improved model stability without materially degrading 
explanatory power. 
Regression and hypothesis testing 
The regression and hypothesis testing results showed that deployment architecture significantly 
influenced predictive maintenance effectiveness, operational burden, and feasibility metrics after 
controlling for operating regime and clustering at the motor-drive level. In the primary event-
prediction models targeting Tier-1 confirmed failures within a seven-day horizon, both edge-only and 
hybrid fusion architectures outperformed the SCADA-only baseline in statistically meaningful ways. 
Compared with SCADA-only, edge-only deployment increased the odds of correctly detecting verified 
events by 1.62 times with a statistically significant effect, while hybrid deployment increased the odds 
by 2.08 times, indicating a stronger architecture advantage when supervisory context was combined 
with edge fidelity. Under the fixed alert-budget policy used across all architectures, SCADA-only 
precision averaged 0.41, edge-only precision increased to 0.53, and hybrid precision increased to 0.58, 
and these differences remained significant after regime stratification. False alarm density, reported as 
alerts per 100 operating hours, decreased from 1.48 in SCADA-only to 1.31 in edge-only and 1.27 in 
hybrid, with the hybrid reduction showing the largest and most reliable improvement. Lead time 
analysis confirmed that edge and hybrid deployments produced earlier actionable signaling. Median 
lead time from first alert to Tier-1 event was 18.6 hours for SCADA-only, 31.4 hours for edge-only, and 
37.9 hours for hybrid, and hypothesis tests indicated that both edge-only and hybrid lead times were 
significantly longer than SCADA-only. Interaction-style tests assessing regime moderation showed that 
hybrid performance remained more stable across speed/load strata. The hybrid model’s precision 
varied by 0.09 across low, medium, and high regimes, compared with 0.16 variation for SCADA-only 
and 0.12 variation for edge-only, indicating lower regime sensitivity when fusion inputs were used. 
Deployment feasibility models showed predictable tradeoffs: edge and hybrid inference required more 
compute and produced longer end-to-end alert delay, but both reduced communication load through 
feature-level reporting rather than raw streaming. Mean inference latency rose from 18 ms per window 
(SCADA-only) to 122 ms (edge-only) and 141 ms (hybrid), CPU utilization increased from 9.8% to 27.4% 
and 31.8%, and memory footprint increased from 0.42 GB to 1.26 GB and 1.44 GB, respectively. 
Bandwidth use was reduced by 96.1% in edge-only and 96.8% in hybrid relative to raw waveform 
streaming, reflecting the effectiveness of local feature extraction. Robustness checks using alternative 
thresholds and two alternative window lengths produced consistent architecture rankings, with hybrid 
remaining best on precision and lead time while maintaining the lowest nuisance-alert share. 
 

Table 9: Primary regression outcomes and hypothesis test results by architecture 

Outcome (Tier-1, 7-day horizon) 
SCADA-

only 
Edge-
only 

Hybrid 
fusion 

Statistical test result 

Odds ratio vs SCADA-only (event 
detection) 

1.00 1.62 2.08 
Edge p = 0.014; Hybrid p < 

0.001 

Precision under fixed alert budget 0.41 0.53 0.58 
Edge p = 0.006; Hybrid p < 

0.001 

False alarms per 100 operating 
hours 

1.48 1.31 1.27 
Edge p = 0.041; Hybrid p = 

0.018 

Median lead time (hours) 18.6 31.4 37.9 
Edge p = 0.009; Hybrid p < 

0.001 

Precision variation across regimes 0.16 0.12 0.09 
Hybrid interaction p = 

0.022 
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Table 9 reported the main inferential results for predictive performance and operational burden under 
identical alert-budget constraints. Event detection odds increased significantly for edge-only and even 
more for hybrid fusion, indicating that architecture placement affected verified failure prediction after 
clustering and regime controls were applied. Precision improved while false alarms decreased, 
demonstrating that performance gains did not come from simply generating more alerts. Lead time 
increased substantially for edge and hybrid deployments, showing earlier warning. Regime 
moderation testing indicated that hybrid fusion reduced performance volatility across speed and load 
conditions, supporting stability claims within the evaluated operating diversity and confirming that 
fusion inputs moderated regime effects. 
 

Table 10: Deployment feasibility regression results and system KPI comparisons 

Deployment KPI 
SCADA-

only 
Edge-
only 

Hybrid 
fusion 

Statistical comparison 

Inference latency per window (ms) 18 122 141 
Edge p < 0.001; Hybrid p < 

0.001 

CPU utilization (%) 9.8 27.4 31.8 
Edge p < 0.001; Hybrid p < 

0.001 

Memory footprint (GB) 0.42 1.26 1.44 
Edge p < 0.001; Hybrid p < 

0.001 

Bandwidth reduction vs raw 
streaming (%) 

0.0 96.1 96.8 
Edge p < 0.001; Hybrid p < 

0.001 

Event upload rate (events/hour) 0.9 1.1 1.2 
Edge p = 0.032; Hybrid p = 

0.018 

End-to-end alert delay to SCADA 
UI (s) 

2.8 5.6 6.2 
Edge p < 0.001; Hybrid p < 

0.001 

 
Table 10 summarized deployment feasibility outcomes that were measured under the same windowing 
schedule across architectures. SCADA-only inference delivered the lowest latency and fastest 
dashboard visibility, reflecting centralized supervisory proximity and lighter processing. Edge and 
hybrid architectures required significantly more compute resources, reflected in higher CPU and 
memory use, and they introduced longer end-to-end alert delay due to local feature extraction and 
transmission. At the same time, both architectures achieved very large bandwidth reductions relative 
to raw waveform streaming by uploading compact features and event summaries. Event upload rates 
increased slightly in edge and hybrid designs, consistent with more frequent anomaly evidence 
generation. These feasibility tradeoffs provided quantitative context for interpreting predictive gains. 
DISCUSSION 
Smart manufacturing research has consistently framed predictive maintenance as a data-driven 
pathway for improving equipment availability and reducing unplanned downtime, and the findings 
of this study aligned with that framing by demonstrating measurable differences in predictive 
performance across supervisory, edge, and hybrid architectures. Earlier studies in industrial 
prognostics frequently characterized SCADA and historian streams as valuable for longitudinal 
context, alarm history, and exposure tracking, while also documenting limitations associated with 
sampling granularity, compression, and delayed event signaling (Molęda et al., 2023). The SCADA-
only results in this study followed the same pattern: supervisory variables captured load-linked stress 
signatures and operational disturbance patterns that were correlated with failure proximity, yet those 
variables displayed moderate rather than strong associations with early fault emergence. The 
descriptive and correlation evidence showed that current, temperature, and alarm counts were highly 
interdependent, which echoed prior observations that supervisory telemetry reflected operating 
context and cumulative stress more than distinct fault physics. This study further expanded that view 
by quantifying how SCADA-only models produced acceptable alert responsiveness and low system 



American Journal of Interdisciplinary Studies, April  2025, 394-444 

431 
 

overhead while exhibiting higher nuisance-alert share under fixed alert budgets. Such results mirrored 
earlier industrial deployments that reported SCADA-based risk scoring as operationally feasible and 
scalable but vulnerable to false alarms when process variability and nuisance alarms were prevalent 
(W. Zhang et al., 2019). At the same time, the event-prediction regression outcomes indicated that 
SCADA-only architecture remained statistically informative after regime stratification and clustering 
controls were applied, meaning that supervisory analytics contributed measurable value even when 
high-rate signals were not used. Prior research often treated that value as a function of context rather 
than precision; consistent with that theme, the SCADA-only condition in this study demonstrated 
useful detection behavior closer to event onset and showed stronger relationships with fault 
manifestations that had already become operationally visible in alarms and stops. The combined 
evidence supported a consistent interpretation found across earlier studies: supervisory analytics 
served as a practical monitoring backbone for trend-based risk scoring and operational awareness, 
while its predictive sensitivity depended on event definitions, thresholding discipline, and the extent 
to which regime variability was explicitly controlled (Chen et al., 2023). The results therefore reinforced 
the established understanding that predictive maintenance performance in smart manufacturing 
depended not only on algorithms but also on the architecture that governed signal availability, 
sampling resolution, and contextual interpretability. 
The edge-only findings provided a second, complementary perspective that matched a broad body of 
earlier work emphasizing the diagnostic richness of high-rate electrical and mechanical sensing for 
motor-drive assets. Previous investigations in rotating machinery monitoring frequently reported that 
waveform-level signals preserved transient behaviors and spectral patterns that were essential for 
detecting subtle degradation, particularly for bearing defects, rotor-related anomalies, and converter-
related abnormalities that were not consistently visible at supervisory sampling rates (Serradilla et al., 
2022). The edge telemetry in this study captured higher-resolution evidence and produced anomaly 
and health indicators that correlated more strongly with verified failure proximity than did most 
SCADA-only predictors, even when supervisory alarms had not yet intensified. This pattern aligned 
with earlier findings that high-rate sensing often detected degradation earlier than supervisory alarms, 
thereby increasing actionable lead time. In this study, the median lead time increased substantially in 
the edge-only condition compared with SCADA-only, and alert precision improved under the same 
alert-budget policy, indicating that edge analytics provided both earlier signaling and a lower burden 
of non-actionable alerts. Prior studies also described a persistent challenge of regime dependence in 
edge signals, especially in variable-speed environments where control strategies and load changes 
shifted signal baselines. The regime-stratified correlation and stability results in this study indicated 
that edge indicators became more interpretable when compared within comparable speed and load 
conditions, consistent with earlier recommendations that segmentation and normalization were 
essential for reliable industrial inference (Y. Liu et al., 2023). Reliability and validity checks supported 
that interpretation by showing stronger repeatability of edge feature families when evaluated within 
regime-controlled windows, which matched prior observations that high-rate features were sensitive 
but not inherently unstable when context controls were applied. The deployment feasibility findings 
also reflected the practical constraints discussed in earlier edge analytics deployments: local processing 
increased inference latency and resource usage compared with supervisory analytics, and end-to-end 
alert delays were longer because signals required local feature extraction and transmission. However, 
the observed bandwidth reductions demonstrated that high-rate sensing did not require continuous 
raw streaming to deliver value, which aligned with earlier edge designs that used feature 
summarization and event-driven uploads to reduce network load while preserving diagnostic 
information (Erdemir et al., 2020). Taken together, the edge-only results converged with prior research 
that positioned edge analytics as a higher-fidelity approach capable of earlier detection and improved 
precision, balanced by measurable compute and integration costs that required disciplined lifecycle 
management and robust operational monitoring. 
The hybrid SCADA-to-edge fusion condition produced the strongest overall predictive maintenance 
effectiveness in this study, and that result corresponded with earlier literature that argued for multi-
layer integration as a way to combine context with signal fidelity. Prior work in cyber–physical systems 
and industrial AI frequently described a tradeoff: SCADA systems provided interpretability, 
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governance, and long-horizon operational state, while edge systems provided detailed physical 
signatures and low-level signal evidence (Mohsen et al., 2023). The hybrid models in this study 
demonstrated that combining these two layers reduced redundancy, improved validity, and stabilized 
performance across regimes. Correlation findings showed that hybrid fusion scores preserved strong 
association with failure proximity while reducing excessive overlap among predictors that had been 
present in the SCADA-only feature block. Collinearity diagnostics quantified this benefit by showing 
that fusion designs achieved the lowest final redundancy after supervisory composites were applied, 
resulting in stable coefficient estimates and reduced standard errors in multivariate regression. Earlier 
studies often emphasized that fusion improved performance when the combined data sources were 
complementary rather than duplicative; the results here supported that condition because supervisory 
features reflected exposure and regime context, while edge features reflected degradation-sensitive 
deviations that were less correlated with supervisory magnitudes. The regression outcomes further 
demonstrated that the hybrid configuration improved event detection odds, increased precision under 
fixed alert budgets, reduced false alarm density, and provided the longest median lead time, indicating 
performance improvements on multiple operationally meaningful dimensions rather than only on 
statistical metrics. Earlier industrial predictive maintenance research often highlighted those 
improvements in sensitivity frequently came at the cost of increased alarm burden; the hybrid results 
in this study contradicted that common tradeoff by showing that precision and burden improved 
simultaneously, which suggested that fusion reduced nuisance triggers by contextualizing high-rate 
anomalies within supervisory operating state (Aljohani, 2023). The regime moderation results 
strengthened this interpretation by showing lower precision variation across speed/load strata in the 
hybrid condition, reflecting the value of contextual conditioning in variable-duty manufacturing 
settings. Such stability aligned with earlier findings that models trained on mixed-regime data often 
confused regime differences with health differences unless context variables were integrated explicitly. 
The feasibility results also clarified that hybrid gains were achieved alongside moderate increases in 
compute load and alert delay, consistent with earlier accounts that integration introduced processing 
overhead but remained operationally viable when event-driven communication and feature 
summarization were used (Antwi-Afari et al., 2022). Overall, the hybrid outcomes corresponded to 
earlier arguments that SCADA-to-edge integration improved both the quality and manageability of 
predictive maintenance decisions when data alignment, feature design, and governance controls were 
implemented carefully. 
The evaluation design and credibility controls in this study addressed common methodological 
weaknesses identified in earlier predictive maintenance research, and the findings demonstrated the 
practical consequences of adopting stricter validation protocols. Prior surveys and comparative studies 
frequently critiqued predictive maintenance papers for leakage-prone splitting, insufficient regime 
stratification, and limited uncertainty reporting, especially when windowed time-series samples were 
randomly partitioned and thereby allowed near-duplicate windows to appear in both training and 
testing sets (Van Der Zalm et al., 2022). This study’s time-based splitting, asset-wise holdout logic, and 
regime-aware reporting reduced those risks and yielded performance differences that remained 
statistically meaningful after clustering controls were applied at the motor-drive level. Earlier work 
also described the sensitivity of results to thresholding and windowing choices, and the robustness 
checks in this study confirmed that architecture rankings remained consistent across alternative 
threshold policies and window lengths, indicating that observed differences were not artifacts of a 
single parameter configuration. Reliability and validity findings also aligned with prior methodological 
recommendations that urged explicit measurement checks for constructed features and 
representations, particularly when composite indices were used. The reported internal consistency for 
supervisory composites, repeatability for edge features under regime control, and convergent behavior 
around verified events supported the claim that indicators reflected structured phenomena rather than 
random fluctuation (Giuffrè & Shung, 2023). Earlier studies often treated ground truth as a limiting 
factor due to work-order lag, ambiguous root cause, and nuisance alarms; the multi-tier event 
definitions used in this study reflected that reality by distinguishing confirmed failures, verified 
defects, and operational abnormalities. Correlation results that differentiated relationships with alarm 
recurrence versus failure proximity matched earlier warnings that alarms were imperfect labels and 
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that alarm-based ground truth could exaggerate associations that emerged after a fault became 
operationally visible. The construct validity checks around synchronization further addressed another 
common limitation described in earlier SCADA-to-edge deployments: misalignment between 
supervisory event timestamps and high-rate windowed signals could degrade model performance in 
transient-heavy phases. This study’s quantified alignment error distribution and its observed 
association with performance stability reflected earlier technical discussions that treated time 
synchronization as a core measurement requirement rather than a minor engineering detail. 
Collectively, the findings demonstrated that stronger credibility controls did not eliminate performance 
differences; rather, they clarified which differences remained robust under industrial realism, thereby 
strengthening the interpretability of architecture comparisons in a way that aligned with best-practice 
themes in prior research (Lin & Fang, 2021). 
 

Figure 12: Predictive Maintenance Framework for Manufacturing 

The operational burden outcomes in this study contributed to an ongoing discussion in earlier 
predictive maintenance work concerning the tension between predictive sensitivity and maintainability 
of alert workflows. Prior industrial deployments often reported that models with high recall could 
generate excessive alert volumes, leading to alarm fatigue, low trust, and reduced response rates, which 
in turn undermined measured benefits in downtime reduction and planning effectiveness (Silva et al., 
2023). The fixed alert-budget approach used here provided a consistent operational lens for comparing 
architectures, and the results indicated that edge and hybrid systems improved precision while 
reducing nuisance-alert share relative to SCADA-only, even under comparable alert constraints. This 
result aligned with earlier findings that nuisance alerts could be reduced when models used richer 
features and better contextualization; however, the present findings also suggested that the magnitude 
of burden reduction depended on the architecture’s ability to incorporate both high-rate evidence and 
supervisory context. The false alarm density reductions observed in edge and hybrid conditions 
reinforced prior conclusions that high-resolution signals could increase the discriminative power of 
alerts, but the findings also clarified that discrimination alone did not guarantee operational 
manageability unless thresholds were tuned to workload capacity (Pech et al., 2021). Earlier studies in 
alarm management emphasized metrics such as alerts per operating hour, mean time between false 
alarms, and conversion of alerts into verified findings; the outcomes reported in this study aligned with 
those operational metrics by quantifying false alarms per 100 operating hours and showing 
architecture-level differences that remained significant in hypothesis tests. The lead time distributions 
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also interacted with operational burden: earlier alerts were valuable only when they remained credible 
and interpretable, and the increased lead times achieved in edge and hybrid conditions coincided with 
improved precision, which strengthened the practical interpretation of earlier signaling. Earlier 
research also noted that regime variability could drive spurious alert clusters during specific shifts or 
recipes; the regime moderation findings here indicated that fusion reduced performance volatility 
across speed/load strata, which corresponded to a lower likelihood of regime-driven alert spikes. These 
patterns collectively matched earlier work that treated predictive maintenance as a socio-technical 
decision system: measurable alert quality and alert volume determined whether maintenance teams 
could respond consistently, and improvements were observed when decision outputs aligned with 
operational capacity and when context reduced misinterpretation of normal variability as fault 
behavior (Rajabzadeh & Fatorachian, 2023). 
The deployment feasibility findings offered a quantitative articulation of the tradeoffs between model 
placement and system constraints that earlier SCADA-to-edge studies frequently described 
qualitatively (McKeering & Hwang, 2019). Prior work on edge analytics emphasized that increased 
fidelity and responsiveness were accompanied by constraints related to compute budgets, memory 
limits, deterministic execution requirements, and integration complexity, and this study quantified 
those constraints through latency, CPU utilization, memory footprint, bandwidth reduction, event 
upload rates, and end-to-end alert delay. The measured increases in inference latency and resource 
utilization in edge and hybrid configurations were consistent with earlier accounts of windowed signal 
processing overhead, particularly when high-rate telemetry required filtering, feature extraction, and 
representation computation. At the same time, the observed bandwidth reductions aligned with earlier 
designs that promoted local summarization and event-driven uploads as a means of preventing 
network saturation without sacrificing diagnostic insight. Earlier industrial IoT literature also 
discussed the importance of alert delivery latency to supervisory dashboards, since maintenance 
workflows often depended on SCADA interfaces and historian-integrated alerting; the longer end-to-
end delays in edge and hybrid conditions reflected the additional processing and transmission steps 
required in those architectures (Martyushev et al., 2023). However, the feasibility results also showed 
that these delays remained within operationally manageable seconds-level ranges rather than 
expanding to disruptive scales, which matched earlier deployments that successfully integrated edge 
analytics with SCADA alarm systems when pipelines were engineered for reliability. The slight 
increase in event upload rate in edge and hybrid conditions also corresponded to prior observations 
that higher sensitivity systems created more candidate events; in this study, that increase did not 
translate into higher nuisance-alert share, suggesting that event generation and alerting decisions 
remained distinguishable stages. Earlier governance-oriented studies emphasized that deployment 
success depended on monitoring system health and ensuring consistent model versions across 
distributed nodes; the reliability, validity, and collinearity results here reinforced that importance by 
showing that stable measurement and stable inference depended on controlled feature pipelines and 
reduced redundancy (Alowais et al., 2023). Overall, the feasibility findings were consistent with earlier 
work that treated architecture choice as a multi-objective balance: compute and latency costs increased 
with edge processing, while predictive performance and bandwidth efficiency improved, and the 
hybrid condition achieved the most favorable performance profile while retaining operationally 
acceptable system overhead. 
The integrated interpretation of findings across descriptive, correlational, reliability, collinearity, and 
regression evidence supported an architecture-sensitive understanding of predictive maintenance that 
corresponded closely with earlier conceptual models in industrial analytics (Allioui & Mourdi, 2023). 
Prior research frequently argued that predictive maintenance outcomes depended on the joint 
configuration of sensing, data quality, preprocessing, modeling, thresholding, and operational 
integration, and the present results demonstrated that architecture altered several of these components 
simultaneously. SCADA-only deployment emphasized centralized context and low overhead while 
exhibiting higher redundancy among predictors and weaker early fault sensitivity, a pattern consistent 
with earlier historian-based risk scoring studies. Edge-only deployment improved early detection and 
precision under alert constraints while increasing compute cost and requiring stronger regime control, 
reflecting patterns documented in waveform-driven condition monitoring research. Hybrid 
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deployment combined the strengths of both layers by improving detection odds, increasing lead time, 
reducing nuisance alerts, and stabilizing performance across operating regimes, while introducing 
manageable resource and integration overhead (Gopalakrishnan et al., 2022). Earlier methodological 
critiques of predictive maintenance research emphasized leakage prevention, robust validation, and 
transparency about label quality; the multi-tier event definitions, time-based splitting, regime 
stratification, and alignment validation applied in this study addressed those concerns and yielded 
results that remained significant under credibility controls. Earlier discussions of operational burden 
and alarm fatigue emphasized that alert quality and alert volume determined adoption and 
effectiveness; this study’s fixed-budget comparisons and burden metrics provided quantitative 
evidence that architecture influenced manageability, not only accuracy. Across these dimensions, the 
findings were consistent with the broader research trajectory that treated SCADA-to-edge predictive 
maintenance as a system-level problem rather than a single-model problem, where the measured 
benefits emerged from combining contextual telemetry with high-resolution signal evidence under 
disciplined evaluation and governance controls (Alamer, 2022). The discussion therefore situated the 
study’s results within established evidence patterns in smart manufacturing predictive maintenance 
research by demonstrating quantitatively how placement, data fidelity, and context integration shaped 
predictive performance, stability across regimes, and operational feasibility in motor-drive monitoring 
environments. 
CONCLUSION 
The study titled AI-Driven Predictive Maintenance for Motor Drives in Smart Manufacturing: A 
SCADA-to-Edge Deployment Study was discussed as a quantitative investigation that examined how 
predictive maintenance effectiveness changed when analytics were implemented using supervisory 
telemetry alone, high-rate edge telemetry alone, or a fused SCADA-to-edge architecture that combined 
contextual plant signals with waveform-level evidence. The discussion emphasized that the observed 
performance differences were consistent with widely reported patterns in the predictive maintenance 
literature on smart manufacturing and rotating machinery, where SCADA and historian data were 
frequently described as highly valuable for longitudinal monitoring, alarm context, and exposure 
tracking but structurally constrained by low sampling density, compression, and delayed event 
signaling relative to early fault physics. In this study, SCADA-only models demonstrated measurable 
predictive value near fault manifestation through correlated increases in current, temperature, alarm 
recurrence, and stop indicators, yet they also exhibited higher predictor redundancy and a higher 
nuisance-alert share under fixed alert-budget constraints, which aligned with prior industrial 
deployments reporting that historian-driven risk scoring could be scalable and low overhead while 
remaining sensitive to process variability and alarm noise. The discussion further interpreted the edge-
only results through the lens of earlier high-frequency condition monitoring studies that highlighted 
the diagnostic richness of waveform-level electrical and mechanical signals, showing that edge-derived 
anomaly scores, health indices, and learned representations were more strongly associated with 
verified failure proximity and delivered materially longer actionable lead time than supervisory 
analytics, while requiring greater local compute and introducing modestly longer end-to-end alert 
delay due to feature extraction and transmission. Consistent with earlier work emphasizing regime 
dependence in variable-speed environments, regime stratification and context conditioning were 
discussed as critical elements that increased repeatability and interpretability of edge indicators and 
reduced confounding from normal speed and load changes, with reliability evidence showing stable 
behavior across repeated nominal cycles within comparable regimes. The hybrid fusion outcomes were 
interpreted as a system-level confirmation of earlier arguments that combining supervisory context 
with edge fidelity improved both discrimination and manageability, since the hybrid configuration 
produced the strongest event detection odds, the highest precision under the same alert budget, the 
lowest false alarm density per operating hour, and the most stable performance across speed/load 
strata, while also exhibiting reduced collinearity after supervisory composites were applied and 
yielding stable regression coefficients under clustering controls. The discussion highlighted that these 
gains were not obtained by increasing alert volume, because improvements occurred alongside 
reduced nuisance-alert share, indicating that fusion helped contextualize high-rate deviations and filter 
regime-driven artifacts that often-inflated alarm burden in single-layer systems. The feasibility results 



American Journal of Interdisciplinary Studies, April  2025, 394-444 

436 
 

were discussed in relation to earlier SCADA-to-edge architecture studies that described predictable 
tradeoffs between performance and resource costs, where edge and hybrid inference increased latency 
and compute utilization but achieved substantial bandwidth reduction through feature-level reporting 
rather than raw streaming and maintained operationally acceptable dashboard delivery delays 
measured in seconds rather than disruptive timescales. Finally, the discussion connected these 
outcomes to methodological critiques in earlier predictive maintenance research by noting that leakage 
prevention through time-based evaluation, asset-level clustering, regime stratification, and explicit 
alignment validation strengthened the credibility of architecture comparisons, while multi-tier event 
definitions addressed known limitations in industrial ground truth derived from work orders and fault 
codes. Overall, the discussion treated the findings as consistent with the broader evidence base showing 
that predictive maintenance performance in smart manufacturing motor-drive environments was 
shaped by architecture-level decisions about data fidelity and context integration as much as by model 
choice, and that measurable improvements in detection quality, lead time, and operational burden 
emerged most strongly when SCADA context and edge-level signal evidence were combined under 
disciplined evaluation and governance controls. 
RECOMMENDATIONS 
Recommendations for AI-Driven Predictive Maintenance for Motor Drives in Smart Manufacturing: A 
SCADA-to-Edge Deployment Study were framed as actionable, architecture-specific steps that could 
be implemented to strengthen predictive performance, reduce operational burden, and preserve 
quantitative validity in real plant conditions while maintaining auditability and system reliability. A 
hybrid SCADA-to-edge configuration was recommended as the primary deployment pattern for 
motor-drive predictive maintenance because the comparative results supported those integrated 
designs balanced contextual interpretability with high-rate fault sensitivity, enabling improved alert 
precision under fixed alert budgets, reduced nuisance-alert share, and increased actionable lead time 
while maintaining stable behavior across speed and load regimes. SCADA-only analytics were 
recommended as a baseline layer for coverage and governance, particularly for plants with limited 
edge instrumentation, because historian variables provided robust long-horizon exposure indicators 
and direct integration into existing maintenance workflows; however, supervisory deployments were 
recommended to include stricter alarm hygiene controls such as nuisance-alarm filtering, tag 
normalization within operating regimes, and composite construction for stress and disturbance 
indicators to reduce redundancy and prevent unstable multivariate inference. Edge deployments were 
recommended to prioritize a minimal but high-value sensing set—phase currents and voltages 
complemented by vibration where feasible—paired with deterministic windowing rules and regime-
aware segmentation so that feature stability remained high across repeated cycles and so that transient-
heavy windows did not inflate false alarms; edge pipelines were also recommended to compute 
compact feature summaries and event-triggered waveform captures rather than continuous raw 
streaming in order to preserve bandwidth efficiency and reduce storage pressure. Across all 
architectures, rigorous time synchronization and event anchoring were recommended as mandatory 
measurement controls, with alignment error tracking maintained as a monitored KPI because 
misalignment was associated with degraded predictive performance in transient phases; 
synchronization protocols were recommended to use shared event anchors such as start commands, 
speed threshold crossings, and fault-code onset markers, with periodic clock drift checks at the edge. 
For model governance, strict versioning and rollback controls were recommended so that model and 
preprocessing changes could be traced to alert behavior changes, and operational monitoring was 
recommended to track drift in feature distributions, score distributions, and alert density over time, 
with predefined triggers for investigation when sustained shifts occurred. Data integrity controls were 
recommended to quantify missingness, dropout episodes, and sensor drift at the asset-week level and 
to evaluate model robustness under dropout simulation so that reliability could be maintained even 
when telemetry degraded. For evaluation practice, it was recommended that plants adopt leakage-
resistant validation protocols that matched deployment goals, including time-based splits for forward 
realism, asset-wise holdouts for new-drive generalization, and site-wise holdouts when multi-plant 
deployment was intended; performance reporting was recommended to include regime-stratified 
summaries so that stability across speed/load bands was visible rather than masked by aggregated 
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averages. Finally, it was recommended that maintenance integration emphasize operational 
manageability by adopting fixed alert-budget policies, prioritization queues, and clear escalation 
pathways into SCADA dashboards and work-order systems, ensuring that improved detection 
translated into consistent maintenance action without increasing workload volatility. 
LIMITATION 
Limitations associated with AI-Driven Predictive Maintenance for Motor Drives in Smart 
Manufacturing: A SCADA-to-Edge Deployment Study were interpreted as constraints that shaped the 
scope, generalizability, and measurement certainty of the reported quantitative results, particularly 
because predictive maintenance performance in industrial settings depended heavily on event rarity, 
data quality, and operational heterogeneity. A primary limitation concerned the dependence on field-
available ground truth derived from maintenance work orders, downtime logs, and fault-code 
histories, which were known to contain reporting lag, incomplete root-cause attribution, and 
inconsistent documentation detail, thereby introducing label uncertainty for both failure timing and 
fault categorization. Although multi-tier event definitions reduced this ambiguity by separating 
confirmed failures from verified defects and operational abnormalities, residual label noise may have 
influenced measured detection timing and may have affected classification boundaries between 
degradation and process disturbances. A second limitation was the imbalance structure inherent to 
motor-drive failure data, where long periods of nominal operation were paired with relatively few Tier-
1 events, making performance estimates sensitive to event distribution across time and regimes and 
increasing uncertainty around rare fault modes that occurred only a small number of times. Even when 
alert-budget evaluation reduced the risk of overly optimistic accuracy reporting, event scarcity 
constrained the precision of effect estimates for certain subgroups and limited the depth of fault-type 
comparisons. A third limitation involved instrumentation and telemetry constraints: SCADA tags were 
subject to compression, polling jitter, and occasional missingness, while edge telemetry depended on 
local device uptime, sensor mounting stability, and high-rate sampling consistency, all of which could 
introduce drift or dropout patterns that were not uniform across assets. Although alignment error was 
quantified and used to evaluate construct validity, synchronization imperfections could still have 
introduced mislabeling of windowed data around transient events, especially in operating phases 
where informative signatures were concentrated in short intervals. A fourth limitation concerned 
operating regime heterogeneity and process variability, because motor drives experienced different 
speed/load distributions, recipe changes, and environmental conditions across shifts, and not all 
contextual covariates may have been captured explicitly in the available SCADA tags. Regime 
stratification reduced confounding, yet residual unmeasured process factors could have influenced 
both predictor behavior and failure likelihood, which could have affected estimated architecture effects 
in regression models. Another limitation related to architectural comparability: SCADA-only, edge-
only, and hybrid pipelines differed not only in predictive inputs but also in processing latency, compute 
environment, and data reduction strategies, meaning that performance comparisons reflected 
combined system behavior rather than a purely algorithmic contrast, and this system-level nature 
limited direct attribution of gains to any single modeling element. Finally, feasibility metrics such as 
CPU utilization, memory footprint, and alert delay were measured under specific windowing 
schedules and hardware configurations, and these values could vary under different edge platforms, 
sampling rates, or integration designs, which constrained the transferability of specific feasibility 
figures even when relative tradeoff patterns remained consistent. 
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