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Abstract

This quantitative study evaluated Al-driven predictive maintenance for motor drives in smart manufacturing
by comparing three deployment architectures: SCADA-only, edge-only, and hybrid SCADA-to-edge fusion. A
longitudinal multi-asset dataset was analyzed from 48 motor drives monitored over 16 weeks, representing
18,720 operating hours, 12,614,380 SCADA tag records, and 3,456,000 edge analysis windows. Outcomes were
defined using tiered event labels, including 37 Tier-1 confirmed failures, 64 Tier-2 verified defect findings, and
142 Tier-3 operational abnormality episodes. Time-based evaluation and motor-drive clustering controls were
applied, and performance was assessed under a fixed alert-budget policy using event detection, precision, false
alarm density, and lead time outcomes, alongside deployment feasibility metrics. Compared with SCADA-only,
edge-only deployment improved event detection (odds ratio = 1.62, p = .014) and increased precision from 0.41
to 0.53 (p = .006), while reducing false alarms from 1.48 to 1.31 per 100 operating hours (p = .041). Hybrid
fusion produced the strongest predictive outcomes, increasing event detection (odds ratio = 2.08, p < .001),
raising precision to 0.58 (p < .001), and lowering false alarms to 1.27 per 100 operating hours (p = .018).
Median lead time increased from 18.6 hours (SCADA-only) to 31.4 hours (edge-only) and 37.9 hours (hybrid)
(v <.01). Deployment tradeoffs were quantified: inference latency increased from 18 ms per window (SCADA-
only) to 122 ms (edge-only) and 141 ms (hybrid), while bandwidth use was reduced by 96.1%-96.8% in edge
and hybrid configurations through feature-level reporting. Overall, SCADA-to-edge fusion yielded the most
stable and effective predictive maintenance performance across operating regimes with manageable system
overhead.
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INTRODUCTION

Smart manufacturing is defined as an integrated production paradigm in which physical assets, control
systems, and information systems operate as a coordinated cyber-physical environment to maintain
stable output, traceable quality, and measurable efficiency under variable demand. In this
environment, motor drives are defined as the combined electromechanical and power-electronic
subsystems that convert electrical power into regulated mechanical motion, typically including an
inverter or converter stage, an electric motor, sensors, and embedded control logic for speed, torque,
and position regulation (Yao et al., 2019). Motor drives function as the actuation backbone of automated
manufacturing because they power conveyors, pumps, compressors, fans, robotic joints, spindle
motors, packaging lines, and material-handling equipment, placing them directly on the critical path
of throughput and equipment availability. Smart manufacturing is internationally significant because
it shapes cost, energy intensity, product conformity, and delivery reliability across global value chains,
and motor-drive reliability becomes a measurable contributor to these outcomes through downtime
minutes, scrapped output, rework rates, and energy losses. Industrial maintenance is defined as the
structured set of technical and organizational activities intended to sustain or restore an asset to a state
where it can perform its required function, and it is commonly organized into reactive actions following
failure, preventive actions scheduled by time or usage, and condition-based actions triggered by
measured condition. Predictive maintenance is defined as a data-driven maintenance approach that
estimates the likelihood, timing, or trajectory of failure so maintenance actions can be scheduled
according to predicted degradation rather than fixed intervals. Across many empirical investigations
of industrial maintenance programs, condition-informed and prediction-informed interventions are
repeatedly associated with measurable reductions in unplanned downtime, improved planning
accuracy for maintenance windows, and better alignment between spare-parts availability and actual
need (Chen et al, 2020). Multiple comparative analyses across process plants and discrete
manufacturing lines report that unplanned stops linked to rotating equipment and power-electronic
failures contribute disproportionately to production losses because they interrupt synchronized
operations and trigger cascading stops. Numerous operational studies that analyze event logs and
work orders find that time-based schedules frequently replace parts that still have usable life while also
missing failures driven by usage intensity, thermal overload, contamination, or vibration, producing a
measurable mismatch between calendar schedules and true degradation. Several investigations of asset
fleets in high-uptime industries indicate that motor-driven systems account for a substantial share of
maintenance labor and energy cost, so improving drive health assessment is not limited to equipment
reliability but extends to measurable energy performance under load. In the smart manufacturing
context, predictive maintenance for motor drives becomes an architectural and analytical problem
shaped by data availability, signal fidelity, and where computation occurs across the control-to-
supervisory stack, which motivates a SCADA-to-edge deployment framing that connects supervisory
monitoring with asset-proximate analytics (Qu et al., 2019).

Predictive maintenance, when treated as a quantitative discipline, can be decomposed into measurable
stages that transform raw operational signals into decision variables suitable for maintenance planning.
Data acquisition establishes which variables are observed, at what sampling rates, under what
synchronization rules, and with what instrumentation uncertainty (Andronie et al.,, 2021). Data
preparation then addresses filtering, resampling, missing values, time alignment across sensors and
controllers, and segmentation into analysis windows aligned with operating states such as start-up,
steady-state, transients, and shutdown. Feature construction or representation learning translates raw
measurements into health-relevant descriptors, including time-domain statistics, frequency-domain
indicators, time-frequency patterns, multivariate correlations, and learned embeddings that preserve
discriminative structure. Modeling maps those descriptors to outcomes such as fault class, anomaly
score, degradation index, or remaining useful life, and decision logic converts model outputs into
maintenance triggers, alerts, or prioritized work orders. Across a broad set of industrial case studies,
predictive maintenance performance is commonly evaluated using metrics that include detection rate,
false alarm rate, precision and recall under class imbalance, time-to-detection, lead time before
functional failure, and stability across changing operating regimes. Many investigations emphasize that
rare failure events create an imbalanced learning problem in which naive accuracy measures can be
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misleading, and they recommend evaluation designs that report error distributions, confusion
matrices, and lead-time statistics rather than only overall accuracy. Multiple studies comparing
classical machine-learning models and deep learning models indicate that model choice interacts with
data volume, signal quality, and regime variability; feature-based models may perform strongly on
stable operating regimes with engineered indicators, while representation-learning approaches often
gain advantage when raw signals contain complex nonlinear patterns and sufficient data exists to learn
them reliably (Abikoye et al., 2021). Several investigations show that maintenance labels derived from
work orders and alarms contain noise and inconsistency, which introduces measurement error into
supervised learning and motivates approaches that combine anomaly detection with weak supervision
or semi-supervision. Many empirical deployments report that operational context variables such as
load, duty cycle, ambient temperature, product recipe, and operator actions explain a large portion of
variance in sensor signals, so models that incorporate context often achieve more stable performance
than models trained on signals alone. Numerous comparative studies show that model drift occurs
when equipment is repaired, retuned, reconfigured, or moved into different operating schedules,
producing shifts in baseline behavior that must be managed through monitoring, recalibration, or
retraining cycles governed by measurable drift indicators (Kalsoom et al., 2020). In motor-drive
applications specifically, predictive maintenance is strongly influenced by the fact that electrical,
mechanical, and thermal processes interact through control logic, inverter switching, and load
dynamics, creating multivariate dependencies that can be exploited for prediction when data is
synchronized and captured with sufficient resolution.

Figure 1: Smart Manufacturing Predictive Maintenance Framework
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Motor drives present a rich set of observable phenomena for predictive maintenance because their
dominant failure mechanisms generate signatures across currents, voltages, vibration, acoustic signals,
speed, torque estimates, temperature, and internal diagnostic flags. Mechanical degradation pathways
such as bearing wear, lubrication breakdown, misalignment, shaft imbalance, and coupling defects
often manifest as changes in vibration spectra, increases in broadband noise, shifts in harmonics tied to
rotational speed, and correlated changes in current due to load modulation (Huang et al., 2023).
Electrical degradation pathways such as insulation aging, winding shorting, phase imbalance, rotor bar
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defects, and eccentricity can appear as characteristic spectral components in stator current, abnormal
thermal rise patterns, and changes in control effort required to maintain speed or torque. Power-
electronic degradation pathways such as capacitor aging, gate-driver anomalies, solder fatigue, and
semiconductor wear can influence DC-link ripple, switching behavior, thermal profiles, and fault-code
frequency, and these effects can propagate into motor current and torque ripple patterns observed by
the controller. Across many laboratory and industrial investigations, current-based monitoring
repeatedly appears as a practical approach because current sensors are commonly present in drives
and can capture both electrical and mechanically induced modulation, while vibration sensing is often
used as a complementary channel that increases sensitivity to mechanical defects. Numerous
comparative studies report that combining electrical and mechanical sensing improves fault
discrimination and reduces ambiguous alarms, particularly when operating speed varies and fault
signatures shift with speed. Many studies examining variable-frequency drive environments find that
switching harmonics and control strategies add structured components to signals, so preprocessing
that accounts for operating frequency and control state improves feature stability. Several
investigations highlight that start-up and transient periods can be highly informative for early fault
detection because they excite dynamic responses that remain muted during steady-state operation, and
segmentation by operating state can yield measurable gains in detection performance (Tambare et al.,
2021). Multiple industrial evaluations show that drive health assessment benefits from incorporating
operational context such as commanded speed, load estimate, torque reference, and temperature,
because these variables help distinguish genuine degradation from benign changes caused by
production scheduling. Many studies that evaluate remaining useful life estimation for rotating
equipment indicate that uncertainty grows when degradation signals are weak or intermittently visible,
so probabilistic outputs or calibrated confidence measures improve decision utility by quantifying the
risk of acting too early or too late. Several investigations that analyze maintenance economics for
rotating assets report that predictive models deliver the most operational value when they provide
sufficient lead time for planned interventions without inflating false alarms that disrupt production,
which motivates designs that optimize for lead-time distributions and alarm rates per operating hour
rather than only classification scores (Sobb et al., 2020). In this quantitative framing, motor-drive
predictive maintenance becomes a multivariate inference problem that benefits from high-resolution
sensing, careful synchronization, and models that can separate operating-regime effects from
degradation-induced changes.

SCADA is defined as the supervisory layer that collects operational measurements from industrial
equipment, provides operator visualization, manages alarms, and records historical data for reporting
and analysis, typically sitting above programmable controllers and drive-level control loops. In many
manufacturing plants, SCADA aggregates tag-based measurements such as motor speed, current,
temperature, run status, fault codes, and setpoints, and it stores those values in historians that support
trend analysis, compliance reporting, and operational dashboards (Mostaani et al., 2022; Mohiul, 2020).
From a predictive maintenance perspective, SCADA-level data offers essential longitudinal context: it
includes timestamps for alarms, operational modes, batch identifiers, production schedules, operator
acknowledgments, and maintenance-related events recorded as downtimes or status changes. Across
numerous investigations of industrial analytics programs, SCADA and historian data are frequently
the first available data sources used to establish baseline performance and to build early predictive
maintenance models because they are centralized, standardized within a plant, and linked to
operational events. At the same time, SCADA architectures impose measurable constraints that affect
predictive maintenance fidelity. Polling intervals, historian compression, and network prioritization
commonly reduce sampling resolution, which can blur transient signatures that precede failure and
can merge distinct events into a single trend point. Tag semantics may differ across vendors and
projects, creating inconsistencies in units, scaling, and naming conventions that can introduce
systematic errors into feature computation and model training. Many studies of industrial time-series
data quality show that missing values, time skews, sensor replacements, and tag re-mapping are
common in long-running SCADA systems, requiring explicit data validation rules and audit trails for
reliable quantitative analysis (Felsberger et al., 2022). Several investigations report that alarm logs
reflect both genuine faults and nuisance alarms triggered by process variability, manual resets, or
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threshold misconfiguration, so models that treat alarms as labels without verification can inherit bias
and noise. Multiple studies comparing historian-derived features with high-frequency waveform
features find that coarse supervisory data can capture macro-level degradation patterns and
operational stress exposure, while finer signatures linked to incipient faults are often absent or
attenuated at SCADA sampling rates. Many plant analytics assessments indicate that SCADA-level
predictive maintenance improves when it includes contextual covariates such as production mode,
duty cycle, environmental conditions, and uptime segments, and when the modeling objective aligns
with the granularity of available data, such as predicting fault occurrence within broader time windows
rather than instant detection. In motor-drive applications, SCADA data can capture repeated fault-code
occurrences, rising temperature trends under similar loads, increases in current draw, and changes in
start frequency, all of which are useful for trend-based risk scoring (Butt, 2020; Jinnat & Kamrul, 2021).
The SCADA-to-edge perspective arises when the supervisory layer provides governance and context
while asset-proximate computation supplies the signal detail needed for more sensitive detection and
robust inference.

Figure 2: Smart Manufacturing Technology Driver Framework
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Edge computing is defined as the placement of computation near the data source, enabling localized
processing, reduced network load, and faster inference relative to centralized-only architectures. In
industrial settings, edge platforms can take the form of embedded modules within drives, industrial
PCs installed in control cabinets, gateway devices bridging field networks, or dedicated accelerators
connected to sensors and controllers (Huang et al., 2021; Rabiul & Samia, 2021; Mohiul & Rahman,
2021). For motor-drive predictive maintenance, edge placement is technically meaningful because it
can capture higher-rate electrical and mechanical signals that are not routinely transmitted to SCADA,
enabling feature extraction and inference closer to the physical phenomena of degradation (Rahman &
Abdul, 2021; Haider & Shahrin, 2021). Across many empirical evaluations of industrial IoT
architectures, edge processing is repeatedly associated with measurable reductions in bandwidth
consumption because raw waveforms are transformed into compact health indicators, summary
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statistics, or anomaly flags before transmission. Multiple studies of latency-sensitive industrial
applications report that edge inference improves responsiveness for detection tasks by avoiding round
trips to centralized servers and by maintaining local operation when network connectivity is degraded
(Uddin etal., 2022; Zulgarnain & Subrato, 2021). Several investigations highlight that edge deployment
introduces constraints that shape model design: compute budgets, memory limits, real-time
scheduling, deterministic execution requirements, and the need for robust error handling to avoid
interfering with control operations (Akbar & Sharmin, 2022; Foysal & Subrato, 2022). Many studies that
examine deployment reliability emphasize that edge nodes require standardized lifecycle
management, including secure software distribution, version control for models, integrity checks, and
logging to support auditability and troubleshooting (Rahman, 2022; Zulgarnain, 2022). Edge-based
predictive maintenance also changes data governance patterns by creating a layered telemetry
approach in which only selected features and events are forwarded to SCADA or centralized platforms,
while raw data segments are retained locally or transmitted only when anomalies occur (Habibullah &
Mohiul, 2023; Hasan & Waladur, 2023; Jiang et al., 2020). Numerous industrial case analyses show that
this selective approach improves scalability when monitoring large fleets of similar assets, because
centralized storage and processing are reserved for high-value data rather than continuous raw streams
(Rabiul & Mushfequr, 2023; Shahrin & Samia, 2023). In motor-drive contexts, edge analytics can
compute spectral indicators, time-frequency representations, and health indices aligned with control
states, such as computing features only during specific speed ranges or transient phases, which
improves comparability across cycles and reduces confounding from operating variability (Rakibul &
Alam, 2023; Kumar, 2023). Many studies focusing on model robustness indicate that combining local
preprocessing with centralized training can improve generalization because the edge layer enforces
consistent feature computation across sites and devices, reducing the variability introduced by
differing data pipelines (Rifat & Rebeka, 2023; Saikat & Aditya, 2023). Edge deployment therefore
becomes part of the scientific question in a deployment study, because predictive performance can be
evaluated alongside operational metrics such as inference time per window, CPU utilization, memory
footprint, packet loss sensitivity, and the rate of actionable alerts per operating hour (Hu et al., 2023;
Masud & Hossain, 2024; Zulgarnain & Subrato, 2023). In a SCADA-to-edge architecture, the edge layer
functions as an analytic microscope for motor-drive behavior, while the supervisory layer retains
oversight, traceability, and integration with maintenance workflows.

A SCADA-to-edge deployment framework can be defined as an integrated architecture in which
supervisory monitoring and localized analytics are coordinated so that maintenance-relevant
intelligence is produced at the appropriate level of the automation hierarchy (Md & Praveen, 2024; Md
Nahid & Bhuya, 2024; Sundmaeker et al., 2022). In this framework, SCADA contributes plant-wide
visibility, historical continuity, operational context, and governance for alarms and work processes,
while edge systems deliver high-resolution signal processing and Al inference close to motor drives
(Akbar, 2024; Foysal & Abdulla, 2024). The analytical value of this integration can be expressed
quantitatively as the combination of context completeness and signal fidelity: supervisory data supplies
operating-mode labels, setpoints, sequence information, and maintenance event markers, while edge
data supplies detailed electrical and mechanical signatures that strengthen early fault detection and
stable classification (Ibne & Aditya, 2024; Mosheur & Arman, 2024). Across many investigations
comparing centralized-only and hybrid architectures, improvements are frequently observed when
context variables are fused with high-frequency features, because operating conditions such as speed,
load, and thermal state strongly modulate signal distributions (Rabiul & Alam, 2024; Saba & Hasan,
2024). Multiple studies of rotating equipment analytics report that model error increases when
operating regimes shift, and that explicit conditioning on regime indicators reduces false alarms caused
by benign process variability (Filip & Leiviskd, 2023; Kumar, 2024; Praveen, 2024). Several empirical
comparisons indicate that hybrid architectures can improve detection lead time by enabling edge
models to trigger alerts at finer temporal resolution while SCADA aggregates those alerts into
structured alarm management and maintenance planning tools (Jinnat, 2025; Shaikat & Aditya, 2024).
Many deployment reports emphasize that integration requires disciplined time synchronization and
event correlation; the same physical phenomenon must be traceable across edge feature windows, drive
diagnostics, controller states, and supervisory timestamps so that model outputs can be validated
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against ground truth (Arman, 2025; Rashid, 2025b). Numerous investigations identify data semantics
as a key integration challenge, because tags, scaling, and naming conventions differ across SCADA
projects, while edge pipelines may use signal channels with different units and sampling bases;
consistent schemas and transformation rules improve reproducibility of quantitative results. Several
studies of industrial analytics governance note that model outputs become operationally usable when
they are mapped into maintenance language: severity scoring, confidence levels, asset identifiers, and
recommended inspection categories aligned with existing work-order systems (Rashid, 2025a; Nahid,
2025). Many analyses show that alarm fatigue reduces trust in predictive maintenance, so architectures
that control alert rates and provide interpretable supporting evidence, such as feature trends or
anomaly explanations, improve operational acceptance as a measurable outcome reflected in reduced
alarm acknowledgments without action (Kuo & Kusiak, 2019; Mosheur, 2025; Rabiul, 2025). In motor-
drive predictive maintenance, SCADA-to-edge integration can support multi-level health assessment:
edge models identify subtle degradations, supervisory models track long-term stress exposure and
recurring fault-code patterns, and a combined decision layer prioritizes interventions based on risk
scores and production constraints. The deployment study lens treats architecture as part of the
experimental design, enabling quantitative comparison of performance across placements and data
resolutions, and enabling assessment of how computation locality influences prediction stability, alert
timeliness, and overall maintenance decision quality (Shahrin, 2025; Rakibul, 2025).

A quantitative paper on Al-driven predictive maintenance for motor drives in a SCADA-to-edge
deployment is anchored in measurement structure, validation discipline, and architecture-aware
evaluation, with the primary aim of characterizing how predictive performance and operational utility
vary with data resolution and computational placement (Raj & Surianarayanan, 2020; Kumar, 2025; Sai
Praveen & Md, 2025). The research object is not only an algorithm but also a deployed pipeline that
includes sensing, synchronization, preprocessing, model inference, communication, supervisory
integration, and maintenance decision signaling. Quantitative design begins with defining measurable
targets such as fault occurrence within a time horizon, anomaly scores aligned to operational windows,
or degradation indices that correlate with maintenance findings, then selecting evaluation metrics
appropriate to those targets. For detection and classification tasks, quantitative evaluation commonly
includes sensitivity, specificity, precision, recall, and false alarm rates normalized by operating hours,
along with detection lead time and stability across operating regimes. For degradation estimation tasks,
evaluation can include error distributions, calibration of uncertainty intervals, and consistency across
assets with different duty cycles. Across many studies of industrial predictive maintenance evaluation,
leakage control is repeatedly emphasized: data splits must respect time order and asset identity so that
training windows do not overlap with test windows in ways that inflate measured performance. Many
analyses of industrial datasets show that maintenance actions change baseline behavior, so validation
designs that include pre- and post-maintenance segments help quantify how models behave across
system resets (Li et al., 2021). Several investigations highlight that ground truth in industrial
maintenance is imperfect; work-order records may lag physical degradation, and alarm logs may reflect
control thresholds rather than physical failure, so quantitative studies often use layered ground truth
definitions that combine maintenance records, fault codes, operator notes, and inspection findings. In
SCADA-to-edge deployments, additional measurable dimensions arise, including inference latency
from signal capture to alert creation, communication delay to supervisory displays, packet loss impacts,
and computational resource usage, all of which influence operational feasibility. Many case analyses
report that the same model can produce different alert rates when deployed with different
preprocessing windows or sampling rates, so pipeline standardization becomes part of quantitative
reproducibility (Gan et al., 2023). Motor-drive predictive maintenance also requires explicit accounting
for operating context, including load, speed, temperature, and process mode, because these variables
explain structured variance that can be mistaken for degradation. A deployment-oriented quantitative
introduction therefore frames the study around how supervisory context and edge signal fidelity
combine to produce reliable predictions, how measurable system constraints shape model behavior,
and how architecture choices influence the statistical properties of predictions in real industrial
operation, while keeping the narrative focused on definitions, measurement, and evaluable system
characteristics without adding a concluding synthesis or implication statements (Vermesan et al., 2022).
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The objective of this quantitative study titled “Al-Driven Predictive Maintenance for Motor Drives in
Smart Manufacturing: A SCADA-to-Edge Deployment Study” is to design, implement, and evaluate
an end-to-end predictive maintenance pipeline that operates across supervisory and edge layers while
producing measurable, reproducible performance outcomes for motor-drive health monitoring in
smart manufacturing environments. The study aims to establish a clear architectural and analytical
linkage between SCADA-based supervisory data streams and edge-level high-resolution signals so that
predictive models can be assessed under realistic data constraints and operational variability. A core
objective is to quantify how predictive performance changes when maintenance intelligence is
generated from (a) supervisory SCADA tags and historian records, (b) edge-extracted signal features
derived from motor-drive electrical and condition channels, and (c) integrated fusion inputs combining
supervisory context with edge representations. The study also seeks to define and compute
standardized evaluation metrics suitable for motor-drive predictive maintenance, including detection
sensitivity and specificity, false alarm rate normalized by operating hours, lead time before confirmed
failure events, robustness across operating regimes, and stability over extended observation periods.
Another objective is to formalize the data preparation and synchronization workflow required to align
SCADA timestamps, controller states, and edge-sampled windows so that model inputs and labels can
be consistently generated without leakage across time or assets. The study further aims to compare
multiple AI model families under identical data partitions and operational constraints, enabling a
quantitative examination of how feature-based machine learning and representation-learning
approaches behave when deployed close to the asset versus centrally within supervisory
infrastructures. An additional objective is to measure deployment feasibility indicators associated with
edge inference, such as inference latency per window, compute utilization, memory footprint, data
transmission volume reduction relative to raw streaming, and reliability of alert delivery into
supervisory dashboards or maintenance workflows. The research also targets the creation of an
interpretable health-scoring and alerting scheme that can be mapped to asset identifiers and
operational context so that the resulting outputs support auditability and systematic comparison across
machines. Collectively, these objectives define a measurable framework for assessing how SCADA-to-
edge deployment influences predictive maintenance effectiveness for motor drives, emphasizing
quantification of performance, data integrity, and deployment characteristics within smart
manufacturing systems.

LITERATURE REVIEW

The literature review for Al-Driven Predictive Maintenance for Motor Drives in Smart Manufacturing:
A SCADA-to-Edge Deployment Study synthesizes research that quantifies how predictive
maintenance outcomes for motor drives depend on signal physics, supervisory data constraints, and
analytics placement across SCADA and edge layers. Motor drives operate under variable speed,
variable load, and inverter-mediated switching dynamics, which generate measurable electrical,
thermal, and mechanical signatures of degradation (Bokrantz et al., 2020). Predictive maintenance
research in this domain therefore spans condition indicator design, time-series learning, failure
labeling, and evaluation protocols that translate sensor streams into health scores, fault probabilities,
or remaining useful life estimates. At the same time, smart manufacturing plants commonly rely on
SCADA and historian infrastructures as the primary sources of operational telemetry, which introduces
quantifiable limitations in sampling rate, compression, tag semantics, and event timestamp quality.
Edge deployment addresses these limitations by enabling higher-rate sensing and localized inference,
and it adds a second set of measurable outcomes tied to latency, compute utilization, data transmission
volume, and alert delivery reliability (Bokrantz & Skoogh, 2023). This literature review is organized to
connect these streams into a single quantitative framing: (1) what signals and fault mechanisms are
measurable in motor-drive systems, (2) what predictive models and representations are most effective
under industrial constraints, (3) how validation protocols and metrics determine credible performance
claims, and (4) how SCADA-only, edge-only, and fused SCADA-to-edge architectures compare when
performance and deployment overhead are measured with the same experimental rules. The section
therefore emphasizes studies that report operationally meaningful metrics such as false alarms per
operating hour, detection lead time distributions, robustness across speed/load regimes, and
computational feasibility indicators, because these measures directly determine whether predictive
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maintenance outputs can be trusted and integrated into manufacturing maintenance workflows (Kim
et al., 2023).

Smart Manufacturing and Maintenance Performance Constructs

Smart manufacturing provides the operational setting in which predictive maintenance is framed as a
measurable, data-governed function rather than a reactive repair activity. In the literature, smart
manufacturing is consistently described as an integrated cyber-physical production environment
where sensing, automation, and information systems are orchestrated to stabilize throughput, quality,
and resource efficiency under changing demand and operating conditions (Parhi et al., 2021). Within
this environment, quantitative maintenance performance constructs act as the shared language for
comparing plants, lines, and assets. Asset availability and uptime ratio are commonly used to
summarize how consistently equipment remains operational over a defined period, while downtime
minutes per month and stop frequency provide more granular views of how disruptions accumulate
and how often production is interrupted. Reliability-oriented measures such as mean time between
failures and mean time to repair are repeatedly used to separate failure propensity from repair
responsiveness, making it possible to distinguish chronic reliability problems from operational or
staffing constraints that slow recovery. The literature also treats overall equipment effectiveness as a
composite indicator that partitions performance loss into availability loss, speed loss, and quality loss,
enabling researchers to examine how motor-drive stops can translate into availability reductions, cycle-
time instability, and downstream scrap or rework when drives power conveyors, pumps, robots, or
spindles that synchronize multiple process steps (Mittal et al., 2020). Maintenance execution metrics
extend the measurement system beyond technical failure events by capturing the organizational load
created by maintenance decisions. Work-order volume reflects the intensity of maintenance demand,
the emergency-to-planned ratio signals the degree to which maintenance is proactive versus crisis-
driven, and spare-parts stockouts quantify a logistics constraint that can convert a short repair into
prolonged downtime. Across many empirical studies of industrial maintenance programs—well
exceeding ten across sectors such as discrete manufacturing, process plants, logistics automation, and
energy-intensive operations—these constructs are used together to connect asset-level behavior to
plant-level outcomes, allowing predictive maintenance approaches to be judged not only by model
accuracy but also by whether they reduce stoppage frequency, compress downtime duration, improve
schedule adherence, and stabilize OEE availability components (Y. Liu et al., 2023). In motor-drive
contexts, these metrics are particularly emphasized because drive failures often generate immediate
line stops, propagate through interlocked systems, and trigger alarms that require coordinated
troubleshooting across electrical, mechanical, and controls teams, which then appears quantitatively as
elevated MTTR, increased emergency work orders, and repeated downtime clusters within monthly
reporting windows.

Predictive maintenance is treated in the research literature as a measurable decision system that
converts observed signals into standardized outputs that can be acted on under operational constraints.
Studies commonly organize predictive maintenance outputs into discrete event indicators and
continuous risk indicators, reflecting different decision styles used by maintenance organizations.
Discrete outputs include binary fault flags that indicate whether a monitored state is abnormal and
multi-class fault labels that identify likely fault types for targeted troubleshooting (Bustinza et al., 2022).
Continuous outputs include anomaly scores that quantify deviation from baseline patterns, health
indices that summarize condition on a normalized scale, failure probability curves that express risk
intensity across time horizons, and remaining useful life estimates that approximate the time window
before functional failure under current operating conditions. These outputs are not treated as purely
technical artifacts; they are evaluated as decision variables that must align with maintenance
workflows, alarm management practices, and resource constraints. A recurring quantitative theme is
thresholding: researchers examine how alarm thresholds are selected to control false alarm frequency,
often in terms of alarms per operating hours or alerts per asset per week, because nuisance alerts
increase inspection burden, degrade trust, and inflate the emergency-to-planned ratio when teams
respond reactively to low-quality signals. In parallel, missed detections are examined as risk exposures
that can increase unplanned downtime and amplify availability loss, especially for motor-drive assets
that sit on production bottlenecks (Pech et al.,, 2021). The literature therefore frames predictive
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maintenance as a cost-balanced decision system where the trade-off between missed detection and
unnecessary intervention is quantified through operational outcomes such as downtime minutes
avoided, work-order load created, inspection time consumed, spare-part usage variance, and
maintenance scheduling disruption. Multiple industrial case studies and cross-case syntheses —again
exceeding ten across published applications —report that decision-system performance depends on
how predictive outputs are calibrated to operational realities: the same model can be considered
successful or unsuccessful depending on whether its threshold policy matches the plant’s tolerance for
inspection volume, the criticality of the motor-driven process, and the lead time required to mobilize
parts and labor. For motor drives, this decision framing is strengthened because failure precursors can
emerge gradually as drift in current, temperature, or vibration patterns, and maintenance teams require
sufficient lead time to schedule planned stops without escalating emergency interventions. As a result,
studies repeatedly evaluate predictive maintenance systems not only by technical detection quality but
also by whether alert timing and alert frequency produce manageable, measurable changes in work-
order distribution and downtime patterns (Qu et al., 2019).

Figure 3: Predictive Maintenance Decision Framework
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Quantitative maintenance constructs and predictive outputs are closely linked in smart manufacturing
because measurement systems define what “success” means for predictive maintenance and how it is
reported. The literature frequently emphasizes that availability, downtime minutes, stop frequency,
and repair responsiveness form the baseline against which predictive maintenance claims are
interpreted (Zhou et al.,, 2022). When predictive maintenance outputs are introduced, researchers
examine whether the system changes the distribution of maintenance actions, shifting work orders
from emergency to planned categories and reducing repeated failure clusters that inflate monthly
downtime. This link is often analyzed through before-and-after comparisons or matched-period
analyses that track changes in MTTR, the number of unplanned stops, the frequency of alarms requiring
manual intervention, and the rate at which maintenance actions are initiated from predictive alerts
rather than from failures. In addition to operational measures, many studies incorporate production
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metrics that are sensitive to motor-drive disruptions, including micro-stoppages that reduce speed
performance and quality-related losses that arise when synchronization breaks down in automated
lines. The literature also discusses how spare-parts stockouts can distort evaluation: a predictive system
may correctly identify risk, yet downtime remains high if parts cannot be sourced, which shifts the
measurable benefit from downtime reduction to improved planning accuracy and reduced diagnostic
time. Several studies across industries use work-order volume and backlog measures to quantify
whether predictive maintenance reduces the maintenance burden or simply redistributes it,
recognizing that an increase in planned work orders may be acceptable if it reduces emergency work
and stabilizes production schedules (Lu et al., 2020). Predictive maintenance outputs such as anomaly
scores and health indices are frequently mapped into prioritized lists that align with limited
maintenance capacity, enabling a quantified triage process where high-risk assets receive attention first.
This prioritization is often evaluated using measurable indicators such as the percentage of alerts that
lead to verified findings, the average lead time between alert issuance and corrective action, and the
rate of repeated alerts for the same asset, which can signal threshold misalignment or unresolved
underlying causes. Across a broad collection of empirical studies —well beyond ten—the consistent
pattern is that predictive maintenance effectiveness in smart manufacturing is inseparable from how
performance constructs are chosen, how they are measured, and how decisions are operationalized.
Motor-drive assets intensify this dependency because they are simultaneously high-frequency signal
sources and high-impact actuators; disruptions in drives show up quickly in availability metrics and in
the emergency-to-planned ratio when failures occur unexpectedly. The literature therefore treats
quantitative constructs not as secondary reporting tools but as core elements that shape the design of
predictive maintenance outputs, threshold policies, and maintenance response rules (Wang et al., 2019).
A final theme in the literature is the importance of aligning predictive maintenance as a measurable
decision system with the realities of plant operations, where metrics capture both technical reliability
and organizational behavior. Studies repeatedly show that measurement definitions influence
deployment choices: if the primary target is reducing downtime minutes per month, systems may focus
on high-criticality drives and tune thresholds to minimize missed detections. If the primary target is
reducing alarm fatigue and inspection waste, systems may tune thresholds to limit false alarms per
operating hour, even if that reduces sensitivity to early weak signals (Huang et al., 2021). This
measurement dependence encourages multi-metric reporting frameworks that include both risk-
related and workload-related indicators, such as alert precision, alert volume, work-order conversion
rate, emergency-to-planned ratio changes, and MTTR changes following alert-guided interventions.
The literature also emphasizes that predictive maintenance outputs become operationally meaningful
when they support consistent action pathways: a binary flag may be appropriate for safety-critical
shutdown decisions, whereas a health index may be more suitable for maintenance planning and
scheduling. Multi-class fault labels are often evaluated in terms of whether they reduce troubleshooting
time and improve first-time fix rates, which then appears as shorter repair durations and reduced
repeat downtime events. Remaining useful life estimates are evaluated by whether they provide
actionable lead time consistent with procurement and staffing cycles, which can reduce stockouts and
enable planned maintenance windows (Wang & Gao, 2022). Many studies also recognize that the
reliability of maintenance records affects evaluation; work orders and failure logs can be inconsistent,
which can complicate the measurement of missed detections and verified detections, leading
researchers to emphasize process-aligned verification practices and consistent event definitions. Across
more than ten empirical investigations in industrial contexts, the recurring quantitative insight is that
predictive maintenance systems must be evaluated as socio-technical decision systems: their
measurable effect emerges through how outputs trigger actions, how actions change work-order
patterns, and how those changes translate into availability and OEE outcomes. In smart manufacturing
environments dominated by motor-driven automation, these linkages are particularly visible because
motor-drive disruptions create immediate stops and measurable losses, while predictive signals can be
translated into maintenance actions that shift the balance from emergency work to planned work
(Rahman et al., 2022). The literature therefore frames predictive maintenance not merely as a model
that predicts failures, but as a structured decision process governed by thresholds, workload capacity,
and performance constructs that define, measure, and validate maintenance improvement.
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Motor-Drive Failure Mechanisms

Motor-drive predictive maintenance research consistently treats electrical machine degradation as a set
of progressive physical processes that leave measurable traces in thermal, electrical, and vibro-acoustic
signals. Within this body of work, stator insulation aging is commonly framed as a thermally
accelerated deterioration mechanism that changes how winding systems respond to load, ambient
conditions, and repeated thermal cycling (Gultekin & Bazzi, 2023). Studies focusing on insulation
health frequently report that insulation degradation is reflected in temperature rise patterns under
comparable operating points, including steeper thermal gradients, higher steady-state temperatures at
similar loads, and slower cooling responses after load reduction. Across experimental and field-
oriented investigations, researchers also describe how insulation deterioration can correlate with
current imbalance and changes in phase relationships, particularly in multi-phase systems where
asymmetry increases as insulation weakens or partial defects accumulate. A recurring observation in
the literature is that insulation-related changes often appear as gradual drifts rather than abrupt events,
which encourages trend-based analysis and condition indices that summarize deviations relative to
asset baselines. In parallel, rotor defects and eccentricity are discussed as faults that alter
electromagnetic symmetry, yielding repeatable spectral and sideband patterns in both electrical and
mechanical domains. Multiple investigations show that eccentricity and rotor anomalies can introduce
characteristic components in motor current as well as in vibration signatures, and that these
components often scale with rotational speed and load conditions, which makes context-aware
interpretation important (Wen et al.,, 2023). In the mechanical domain, bearing wear is repeatedly
identified as a dominant contributor to rotating machinery failures and a strong target for quantified
symptom formation. Studies in this area frequently report that bearing defects manifest in vibration
RMS increases, changes in impulsiveness captured through kurtosis-like measures, and structured
patterns in envelope-based representations that highlight repetitive impact behavior. Acoustic
monitoring studies similarly describe shifts in broadband noise and the emergence of tonal elements
associated with mechanical impacts, particularly when lubrication degrades and contact conditions
worsen. Across a wide range of published investigations —well beyond ten —these electrical machine
mechanisms are treated as complementary rather than isolated: insulation changes can co-occur with
mechanical imbalance effects, and bearing degradation can modulate load, which then alters current
signatures. Consequently, a common synthesis across the literature is that measurable indicators must
be interpreted within the operating regime and in relation to other channels, because the same
observable trend can be produced by different underlying mechanisms if context and multi-sensor
evidence are not incorporated into analysis (Xia et al., 2021).

Variable-frequency drives and power-electronic subsystems introduce additional aging pathways and
symptom structures that are central to motor-drive predictive maintenance, especially in smart
manufacturing environments where variable speed operation is the norm. Across many studies of
inverter-fed systems, researchers emphasize that power-electronic degradation produces measurable
effects both in the converter’s internal electrical behavior and in the motor’s observed signals, since the
inverter is the interface that shapes the voltage and current waveforms delivered to the machine
(Khaneghah et al., 2023). A widely discussed mechanism is DC-link capacitor degradation, often
characterized in empirical reports by increases in ripple-related behavior, altered response under load
transients, and correlations between ripple behavior and thermal stress exposure. Investigations
frequently connect capacitor aging to operating stressors such as elevated temperature, high ripple
currents, and cycling intensity, with measurement strategies focusing on ripple-related features and
thermal patterns observed during stable and transient operation. Another common focus is
semiconductor switching degradation, described in the literature through symptom sets that include
increasing thermal strain signatures, irregularities in switching-related behavior, and elevated fault-
code recurrence or protective trips under comparable production conditions. In applied studies, fault-
code histories are often treated as weak but useful indicators when combined with contextual variables,
because fault codes alone may reflect protective thresholds, process disturbances, or operator
interventions. Across a broad set of investigations, researchers also address quantitative symptom
reliability across operating regimes, noting that symptom detectability changes when speed and load
bands shift (Teler et al., 2023). Many studies report that indicators derived from current or vibration
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can appear stable in one speed band and become less discriminative in another, because baseline
spectral content, mechanical resonance, and control behavior change with operating point. This has led
to repeated emphasis on stratified analysis, where model performance and symptom strength are
evaluated separately across speed/load bands rather than reported as a single aggregated metric. A
synthesis that emerges across more than ten studies is that inverter-fed environments create structured
signal components that can mask or mimic fault signatures if not accounted for, and that robust
symptom formation requires combining electrical indicators, thermal behavior, and event history
rather than relying on a single signal family. The literature also repeatedly highlights that power-
electronic aging is operationally significant because it can produce intermittent, hard-to-reproduce
events that elevate nuisance alarms and maintenance uncertainty, which increases the importance of
quantified reliability of symptoms under realistic production variability (Hashemi et al., 2023).

Figure 4: Motor-Drive Predictive Maintenance Framework
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The literature on regime dependence consistently explains that motor-drive symptoms are not
stationary, and that signal distributions shift systematically across operational phases such as start-up,
steady-state running, transients, and braking. Many investigations treat this as a primary reason why
predictive maintenance models that ignore regime structure show inflated false alarms or unstable
performance when moved from controlled datasets to industrial production (Lang et al., 2021). A
recurring practice across studies is separate modeling or segmentation by operating phase, where data
is partitioned into start-up segments, steady-state windows, transient ramps, and braking intervals,
and features are computed within those partitions to reduce confounding from normal control-driven
changes. Start-up behavior is often described as information-rich because electromechanical dynamics
are strongly excited during acceleration, allowing certain defects to surface as measurable deviations
relative to baseline start profiles. Steady-state windows are treated as suitable for monitoring slow
drifts, such as gradual increases in current draw, temperature rise, or vibration energy under
comparable load. Transients and braking are discussed as phases where control actions and torque
changes can introduce high variability that may overwhelm weak fault signatures unless models
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explicitly incorporate control state indicators. Another consistent theme is normalization by speed and
load to prevent confounding, since many indicators scale naturally with speed and load even in healthy
machines (Jin, Mao, et al., 2023). Studies describe normalization strategies that condition features on
speed bands, load categories, or operating modes, allowing comparisons to be made within comparable
contexts and reducing the risk that normal production variability is misinterpreted as degradation.
Across multiple empirical evaluations, segmentation is reported to produce measurable changes in
detection performance, often described as improvements in precision and recall for fault detection,
reductions in nuisance alarm density, and greater stability of health indices across shifts. Many studies
further report that segmentation improves interpretability by linking anomalies to a specific phase of
operation, which helps maintenance teams validate whether a detected deviation is plausible and
actionable (Liang et al., 2020). A synthesized conclusion across the reviewed body of work is that
regime-aware modeling is a methodological requirement in inverter-driven motor systems, not a minor
optimization, because phase-dependent control behavior and operating-point dependence
fundamentally shape how symptoms appear in data.

Across the broader motor-drive predictive maintenance literature, the combined view of failure
mechanisms, symptom formation, and regime dependence produces a consistent methodological
pattern: robust maintenance analytics require multi-domain indicators, context conditioning, and
careful evaluation of how symptoms persist across operational variability (Sun et al., 2022). Studies
examining bearing wear, rotor eccentricity, insulation aging, capacitor degradation, and switching
device stress consistently emphasize that each mechanism has signal manifestations that can overlap,
especially when operating conditions shift and when inverter control introduces structured waveform
components. As a result, many investigations promote multi-sensor strategies that fuse current,
vibration, temperature, and event logs to improve diagnostic separability and reduce ambiguous
alarms. A frequently reported operational issue is that symptom reliability changes not only with
speed/load but also with production schedules, ambient temperature, lubrication intervals, and
maintenance interventions that reset baselines. This motivates evaluation practices that report
performance across stratified regimes and across time, rather than providing a single performance
figure that hides regime-specific instability (Jin, Wang, et al., 2023). In the literature, the measurable
impact of segmentation is often discussed in terms of changes in alert density, improvements in
actionable alert proportions, and reductions in repeated alerts for the same asset that can occur when
models repeatedly trigger under one phase due to a confounded baseline. Researchers also emphasize
that inverter-fed systems can produce non-fault-related harmonics and switching artifacts that create
false positives if models treat spectral components as fault signatures without accounting for operating
point and control mode. Consequently, regime-aware normalization and phase-aware feature
extraction are repeatedly linked to improved precision, more stable health indices, and lower false
alarm rates under industrial variability (Swanke et al., 2023). The literature also recognizes that power-
electronic aging can produce intermittent symptom patterns and fault-code bursts that require
temporal aggregation logic and contextual filtering to be operationally meaningful. Across more than
ten studies spanning laboratory experiments, case studies, and industrial deployments, the most
consistent synthesis is that quantified symptom formation is inseparable from the deployment context:
the same physical fault can look different across regimes, and the same indicator can reflect normal
operation in one mode and degradation in another. For motor-drive predictive maintenance, this has
led to a dominant emphasis on context-aware pipelines that treat operating regimes as first-class
variables, integrate multi-domain measurements, and evaluate performance using regime-stratified
reporting and alarm-density measures tied to operating hours and production cycles (Sun et al., 2022).
Data Sources Across the SCADA-to-Edge Spectrum

SCADA and historian telemetry are repeatedly described in the literature as the most accessible and
operationally embedded data sources for motor-drive monitoring in smart manufacturing, largely
because they are already integrated into plant supervision, alarm management, and reporting
workflows. Studies that examine SCADA-centered predictive maintenance commonly note that the
SCADA layer captures a stable set of “tag” variables that can be trended across long horizons, including
drive current (often aggregated or scaled), commanded and measured speed, run/stop status, fault and
warning codes, temperature readings (motor or drive cabinet), and accumulated run hours (Samuelsen
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et al., 2019). Researchers frequently emphasize that these tags provide strong contextual value: they
encode operating mode, duty-cycle exposure, stop-start patterns, and alarm histories that help explain
why a motor drive experiences stress during certain production schedules. Across numerous empirical
analyses, historian records are used to reconstruct sequences of events, such as repeated overload
alarms or thermal warnings, which are then linked to maintenance actions documented in logs or work
orders. At the same time, the literature also highlights data quality variables that consistently influence
quantitative outcomes. Missingness is a recurring issue in long-horizon historian data due to sensor
dropouts, network disruptions, tag decommissioning, and maintenance-driven instrumentation
changes; many studies report that even moderate missingness can distort trend features and create
spurious anomalies if gaps are not handled with explicit rules. Timestamp jitter and time-skew
problems are also widely discussed because SCADA systems often collect tags through polling and
buffering mechanisms that introduce variable delays; small time errors can be inconsequential for slow
temperature trends but become important when aligning faults to control events or when comparing
multi-tag relationships (Martin-Martin et al., 2021). Historian compression intervals are repeatedly
identified as another limiting factor because compression algorithms preserve broad trends while
discarding local fluctuations; this leads to quantifiable losses in transient information that can contain
early fault signatures. Tag mapping errors and scaling inconsistencies appear frequently in multi-
vendor environments, where the same physical measurement can be represented differently across
lines or after upgrades. A consistent conclusion across well over ten studies is that SCADA /historian
telemetry is strong for macro-level condition tracking, exposure modeling, and event context, yet it is
structurally limited for fine-grained fault physics because typical supervisory sampling and
compression reduce the visibility of fast transients and weaken spectral detail that is central to
diagnosing many motor-drive degradation mechanisms (Cai et al., 2019).

Figure 5: SCADA-Edge Telemetry Synchronization Framework
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Edge telemetry is described in the literature as complementary to SCADA because it enables direct
access to higher-rate signals that preserve the physical structure of motor-drive behavior. Studies across
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rotating equipment and inverter-fed systems repeatedly report that high-rate sampling of phase
currents and voltages, combined with vibration, acoustic, and high-resolution thermal channels,
reveals symptom patterns that are not visible at supervisory resolution (Fritz et al., 2019). In motor-
drive predictive maintenance research, edge data is commonly organized into windowed segments,
where signals are sampled at high frequency and analyzed in short time windows aligned to operating
states. A large body of work focuses on the practical choices that define edge telemetry: window length
in seconds, overlap rate between windows, sampling rate selection, and feature update rate, all of
which determine how quickly changes can be detected and how stable extracted indicators remain
under variable speed and load. Many investigations describe the trade-off between very short windows
that react quickly and longer windows that provide more stable representations, especially for
vibration and current signals whose fault-related structure can vary across cycles. Overlap is frequently
used to smooth decision outputs and reduce “flicker” in anomaly scores, though the literature also
notes that overlap increases computational load and creates dependence between adjacent windows,
which must be considered in evaluation designs (Wei et al.,, 2021). Sampling rate choices are
emphasized because the detectability of subtle motor-drive faults often depends on preserving
frequency content and transient behaviors; higher sampling supports finer frequency resolution and
better capture of switching-related artifacts and bearing-related impulsive events. Across more than
ten applied and experimental studies, a consistent finding is that edge telemetry improves early
detection of subtle faults by preserving small deviations that are washed out by SCADA aggregation,
particularly in variable-frequency drive environments where symptoms can appear as modest
sideband changes or localized impacts rather than large steady shifts. Researchers also emphasize that
edge systems can compute health indicators locally and transmit compact summaries rather than raw
waveforms, reducing bandwidth load while retaining diagnostic value (Ranftl et al., 2020). In the
literature, the edge layer is therefore characterized as an instrumentation and analytics viewpoint that
increases sensitivity and supports richer feature formation, while introducing practical constraints tied
to compute limits, storage management, and the need for consistent, repeatable windowing rules that
remain stable across assets and sites.

The integration of SCADA and edge telemetry introduces a synchronization problem that is treated in
the literature as a primary determinant of whether SCADA-to-edge predictive maintenance is
quantitatively credible (Griffiths et al., 2019). Across many studies, SCADA systems and edge devices
are shown to operate on different clocks, with different buffering and transport delays, which creates
clock drift and alignment errors ranging from milliseconds to seconds depending on network
architecture, device configuration, and load conditions. Researchers consistently argue that this
misalignment matters because predictive maintenance models often depend on the relationship
between drive commands, observed signals, and event markers such as alarms or fault codes. When
the same physical event is recorded at slightly different times across layers, the labeling of windows
and the computation of context-conditioned features can be biased, producing measurable changes in
model performance that appear as reduced precision, increased false alarms, or unstable lead time
estimates. The literature describes several practical “event anchoring” strategies used to align SCADA
and edge streams without relying exclusively on absolute timestamps. Common anchors include fault-
code onset timestamps, start commands issued by controllers, speed threshold crossings that indicate
a known phase transition, and status transitions such as run-to-stop edges. Many investigations use
these anchors to define alignment points and then measure residual alignment error as a distribution
rather than a single value, because jitter and buffering create variability even within the same system
(Furman et al., 2019). Quantitative validation is repeatedly emphasized: studies often report alignment
error statistics and then examine how model error shifts under different alignment tolerances,
demonstrating that small timing mismatches can disproportionately affect detection of transient faults
or phase-dependent symptoms. In motor-drive contexts, this is especially relevant because symptom
visibility can be concentrated in short intervals such as acceleration or braking, where a window shift
of even a fraction of a second can move the analysis away from the most informative signal portion. A
recurring synthesis across well over ten studies is that SCADA -edge synchronization should be treated
as part of the measurement system rather than a minor engineering detail; the literature frames
alignment as a necessary step to ensure that SCADA context (mode, alarms, setpoints) is correctly
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paired with edge signal windows, allowing model evaluation to reflect true predictive capability rather
than artifacts of misaligned data (Farquhar et al., 2020).

Feature Engineering for Motor-Drive PdM

Feature engineering in motor-drive predictive maintenance is treated in the literature as the disciplined
transformation of raw electrical, mechanical, and thermal signals into indicators that remain
interpretable and measurably stable under realistic operating variability (Sardashti & Nazari, 2023).
Across well over ten studies spanning rotating machinery monitoring, inverter-fed motor diagnostics,
and industrial condition monitoring case analyses, researchers repeatedly organize engineered features
into three broad families: time-domain, frequency-domain, and time-frequency descriptors. Time-
domain features are often selected because they are computationally light, easy to compute at the edge,
and directly connected to intuitive notions of signal magnitude and impulsiveness. Common examples
include root-mean-square magnitude as a proxy for energy content, crest-like measures that contrast
peaks with average levels, impulsiveness-related measures such as kurtosis-style statistics, asymmetry-
oriented measures akin to skewness, and peak-to-peak amplitude to capture excursion range within a
window. The literature consistently notes that time-domain features can provide early warning for
faults that increase vibration intensity or current draw, yet their stability depends strongly on speed
and load; a rise in magnitude can reflect normal production changes as readily as degradation, making
contextualization essential. Frequency-domain features are heavily used because many motor-drive
faults generate repeatable spectral structures, such as harmonics, sidebands, and energy concentration
in characteristic bands (Ferraz Junior et al., 2023). Studies frequently describe the use of band-energy
summaries, harmonic tracking, and envelope-derived indicators that isolate repetitive impact behavior
associated with mechanical wear. In inverter-fed systems, frequency features are also discussed as a
way to separate control-related components from fault-related components, while acknowledging that
switching and modulation artifacts can complicate interpretation if baselines are not well defined.
Time-frequency representations, often built from windowed spectral transforms or wavelet-like
decompositions, appear in many investigations because motor-drive signals are frequently
nonstationary. These representations allow features to capture how spectral content evolves during
start-up, transients, or speed ramps. A recurring conclusion across the reviewed studies is that the
“best” feature family depends on the measurement channel and the operating regime: vibration may
yield strong envelope-based indicators for bearing wear, current may yield discriminative sideband
patterns for certain electrical and mechanical anomalies, and time-frequency maps may better capture
transient symptom emergence (Gupta et al., 2023). In synthesis, feature engineering is portrayed as a
stability problem as much as a discrimination problem, where the aim is to build features that retain
fault sensitivity while resisting routine variability from load, speed, and process mode.

Alongside engineered features, a substantial body of predictive maintenance research emphasizes
representation learning, where models learn signal representations directly from raw or minimally
processed measurements rather than relying on hand-crafted descriptors. Across more than ten studies
that evaluate deep learning approaches for industrial time-series and rotating machinery,
convolutional encoders are repeatedly presented as effective for learning localized waveform patterns
in current, voltage, vibration, or acoustic signals (Souza et al.,, 2021). The literature describes
convolutional encoders as capturing repeating motifs, transient bursts, and characteristic modulations
that may be difficult to summarize with a small set of engineered features, particularly when fault
signatures are subtle or distributed across multiple frequencies. Many investigations also describe
sequence encoders designed to capture temporal dynamics, including persistence, progression, and
regime-dependent behavior across time. These sequence models are often discussed in terms of their
ability to learn how signals change across operating phases, such as acceleration, steady-state
operation, or braking, and how that change differs between healthy and degraded conditions. A
recurring theme is that learned representations can outperform engineered features in complex, multi-
regime environments when sufficient data diversity is available, because the model can internalize
nonlinear interactions among control behavior, load conditions, and degradation mechanisms. At the
same time, multiple studies caution that representation learning can amplify data-quality problems,
including label noise, sensor drift, and unobserved confounders, because the learned representation
may capture plant-specific artifacts rather than generalizable fault structure. For SCADA-to-edge
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settings, the literature increasingly frames representation learning as a fusion task, where learned
embeddings from high-rate edge signals are conditioned or augmented by supervisory context
variables (Chandran et al., 2022). Context-conditioned representations are frequently described as
using SCADA tags such as speed, load proxies, operating mode, alarms, and run status to interpret
whether observed patterns are expected for a given regime. Studies repeatedly show that the same raw
waveform pattern can be normal at one speed band and abnormal at another, so conditioning
representations on regime variables improves stability and reduces nuisance alarms. In addition,
several investigations discuss hierarchical representation structures where edge-level encoders
generate compact embeddings, while supervisory context provides long-horizon state information that
stabilizes interpretation across shifts and production recipes. Across the reviewed body of work, the
synthesis is that representation learning is not a replacement for feature engineering so much as an
alternative pathway to achieve stable discrimination, with the strongest empirical results often
occurring when representations are trained and evaluated with explicit regime awareness and with
careful alignment between edge windows and SCADA context (Manjare & Patil, 2021).

Figure 6: Motor-Drive Predictive Feature Engineering
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The literature also treats feature robustness as a central requirement for industrial deployment, because
motor-drive signals vary substantially across load changes, speed ramps, environmental conditions,
and production schedules. Across many empirical studies in plant settings, researchers report that
features that appear highly discriminative in controlled datasets become unstable when transferred to
production environments where operating points shift frequently (S. Liu et al., 2023). Sensitivity to load
changes is repeatedly emphasized: current magnitude, vibration intensity, and thermal behavior
naturally scale with torque demand, so time-domain features can drift upward or downward with
normal production changes, creating false positives when thresholds are static. Frequency-domain
features are also shown to be regime-sensitive because characteristic components often scale with
speed, and resonances can amplify different bands at different operating points. Time-frequency
features can reduce some of this sensitivity by explicitly encoding temporal evolution, yet they still
reflect the underlying regime structure and can vary strongly across start-up profiles or recipe changes.
A consistent set of mitigation strategies appears across more than ten studies: normalization within
speed/load bands, segmentation by operating phase, and the incorporation of contextual covariates
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that explain expected variance (Yakkati et al., 2023). The literature describes robustness not only as
“insensitivity” but as controlled sensitivity, meaning features should respond strongly to degradation
while responding predictably to known operating changes. Many investigations examine variance of
feature distributions across shifts and recipes as a practical robustness test, because industrial
operations often involve different products, different duty cycles, and different operator practices
across shifts. When features change more across recipes than across health states, multiple studies note
that models will prioritize production differences rather than fault differences, leading to unstable
performance. Consequently, researchers frequently evaluate feature families by measuring their
dispersion under nominal operation across regimes, then comparing that dispersion to the separation
observed between nominal and faulted conditions. Another repeated finding is that robustness
improves when features are computed from windows selected to be comparable across time, such as
steady-state periods within specific speed bands, rather than from arbitrary windows that mix multiple
phases. In motor-drive contexts, where transients can be informative but also highly variable, studies
often report that phase-aware feature computation yields more reliable alert behavior (Ibrahim et al.,
2022). Synthesizing the reviewed work, robust feature design is repeatedly shown to be a prerequisite
for meaningful model evaluation, because without robustness controls, measured accuracy can be
driven by regime artifacts rather than genuine fault sensitivity.

Quantitative comparisons of feature drift over time appear throughout the predictive maintenance
literature as a way to assess whether features remain stable for healthy assets and change meaningfully
when degradation occurs (Kanna et al., 2020). Across more than ten studies that analyze long-horizon
industrial datasets, researchers describe drift as a gradual change in feature baselines caused by sensor
aging, calibration changes, maintenance interventions, environmental shifts, and evolving production
patterns. Drift is particularly important for SCADA-to-edge motor-drive monitoring because edge
devices may compute features at high frequency while SCADA records slower context variables, and
the combined system must remain coherent over months of operation. Many investigations report that
feature drift is not inherently negative; some drift reflects legitimate long-term process changes or
equipment upgrades. The concern emphasized in the literature is uncontrolled drift that increases false
alarm density or reduces sensitivity by shifting feature distributions away from the model’s learned
decision boundaries. Researchers therefore discuss drift monitoring in practical terms, such as tracking
how feature distributions shift across weeks, how often thresholds would be exceeded under nominal
conditions, and whether model outputs become biased toward elevated risk scores without
corresponding maintenance findings (Ramya & Sivaprakasam, 2020). The literature also highlights that
drift can be regime-dependent: changes in production scheduling can alter how often certain speed
bands occur, which changes the distribution of features even if within-band behavior remains stable.
As a result, many studies advocate separating drift measurement by operating context rather than
aggregating across all data. Another recurring point is that drift metrics can reveal pipeline issues, such
as changes in windowing parameters, sampling rates, or preprocessing filters that inadvertently alter
feature computation. In SCADA-integrated settings, researchers describe the importance of tag
consistency and context stability, because changes in tag scaling or mapping can produce artificial drift
that mimics degradation. Across the reviewed evidence, feature families show different drift behavior:
simple magnitude features may drift with process intensity and ambient conditions, frequency-band
features may drift with mechanical alignment changes and resonance shifts, and learned
representations may drift if the input distribution shifts in ways the encoder was not trained to handle
(Bonci et al., 2021). The synthesis across the literature is that feature engineering and representation
learning are evaluated not only by immediate discriminative power but also by long-run stability under
industrial variability, and that drift-aware analysis is a core part of credible motor-drive predictive
maintenance research because it ties feature behavior to operational realities rather than to short,
curated datasets.

AI Modeling Approaches for Predictive Maintenance Outcomes

Al modeling for predictive maintenance is presented in the literature as a set of outcome-oriented
approaches that map industrial time-series data into decisions that are measurable, comparable, and
operationally interpretable (Keleko et al., 2022). Across well over ten studies spanning rotating
machinery diagnostics, industrial prognostics, and data-driven maintenance systems, classification-
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based fault detection and diagnosis remains a dominant modeling category because it aligns with how
maintenance teams often conceptualize events: a system is either normal or abnormal, or it belongs to
a known fault class that suggests a troubleshooting pathway. Research repeatedly distinguishes
between binary settings, where the objective is to separate normal from faulted behavior, and multi-
class settings, where the objective is to identify specific fault types such as bearing-related defects,
insulation-related anomalies, rotor-related eccentricity patterns, or converter-related faults. Binary
formulations are frequently described as easier to train and deploy because labels are less granular and
class boundaries can be defined around “healthy” versus “not healthy,” while multi-class formulations
are described as more operationally informative when they accurately guide maintenance action
selection (Serradilla et al., 2022). Across many studies, model families include traditional machine
learning models trained on engineered features as well as deep learning models trained on raw or
transformed signals, with comparative reporting that emphasizes how model performance changes
across operating regimes and across different sensing channels. A consistent theme is that industrial
predictive maintenance data is imbalanced, with far fewer fault examples than normal operation, so
modeling studies devote substantial effort to imbalance handling. Cost-sensitive learning is frequently
used to assign higher penalty to missed fault detections, while resampling strategies are used to
increase representation of minority fault classes or reduce dominance of normal samples. Several
studies also discuss focal-like loss approaches in deep learning settings as a way to emphasize hard-to-
classify examples, especially when fault signatures are subtle (Lee et al., 2019). Evaluation in this
literature repeatedly stresses that overall accuracy is insufficient for imbalanced problems; instead,
studies report measures that emphasize minority-class performance and decision usefulness, including
precision-recall tradeoffs, per-class recall for fault categories, macro-averaged summary scores that
weight classes more evenly, and alarm-related measures such as false alarm rate normalized by
operating hours. In motor-drive contexts, these choices are particularly important because nuisance
alarms impose direct operational costs, and missed detections can lead to unplanned downtime. Across
the reviewed evidence, a strong synthesis emerges that classification models are evaluated not merely
by their ability to detect faults but by how their output patterns translate into manageable alert volumes
and stable diagnosis behavior under realistic industrial variability (Achouch et al., 2022).

Anomaly detection approaches are widely discussed in predictive maintenance literature as a response
to the practical reality that many fault modes are rare, poorly labeled, or unknown at the time of model
development (Cinar et al., 2020). Across more than ten studies in industrial monitoring and prognostics,
anomaly detection is repeatedly described as learning a baseline representation of normal operation
and then flagging deviations as potential faults. This baseline learning is often implemented using
statistical models, reconstruction-based approaches, density estimation, or one-class classification
strategies, with the common goal of producing an anomaly score that increases when behavior departs
from expected patterns. In motor-drive predictive maintenance, anomaly detection is frequently
positioned as useful when failure classes are numerous, when labeling is uncertain, or when equipment
changes and new fault types can appear without prior examples in training data. The literature
emphasizes that anomaly detection is not defined by the absence of supervision alone but by the
decision logic that treats “normal” as the main modeled state and regards deviations as potentially
actionable. A recurring challenge is that industrial systems exhibit legitimate variability driven by load
changes, speed ramps, process recipes, and environmental conditions, all of which can appear
“anomalous” to a model that does not incorporate operating context (Ayvaz & Alpay, 2021).
Consequently, many studies report that anomaly detectors require regime-aware baselines or context
conditioning to avoid excessive nuisance alarms. Thresholding becomes central in this literature
because anomaly scores must be converted into alerts, and alert policies must align with alarm budgets
and maintenance capacity. Studies commonly report tuning thresholds to achieve a desired false alarm
density, such as limiting the number of alerts per operating hour, and then evaluating how detection
delay changes as thresholds tighten or relax (W. Zhang et al., 2019).
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Figure 7: Al Modeling for Predictive Maintenance
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Evaluation metrics in anomaly detection studies often focus on operational behavior over time,
including the average time between false alarms, detection delay relative to known failure events, and
stability under drift. Drift sensitivity is repeatedly highlighted because baseline patterns evolve with
maintenance interventions, sensor aging, production changes, and seasonal effects; models trained on
a static baseline can gradually increase alert rates even without true degradation. Across the reviewed
studies, a consistent synthesis is that anomaly detection offers broad fault coverage and reduced
dependence on labeled fault classes, yet its success depends heavily on calibration to operating regimes
and on sustained control of false alarms, because the operational cost of investigating anomalies can
quickly exceed the value of early detection if alert policies are not disciplined (Dalzochio et al., 2020).
Design and Credibility Controls

Evaluation design in predictive maintenance research is treated in the literature as the primary
safeguard against inflated performance claims, particularly for motor-drive applications where data is
temporally dense, operating conditions shift, and repeated cycles can cause unintentional information
leakage (Olsen & Raunak, 2019). Across well over ten methodological and applied studies in
prognostics, industrial time-series learning, and rotating machinery diagnostics, researchers repeatedly
show that the way data is split into training and testing sets can determine whether reported
performance reflects genuine predictive capability or artifacts of overlap and redundancy. Time-based
splits are frequently recommended because predictive maintenance is inherently temporal: models are
expected to learn patterns from earlier periods and perform on later periods without seeing future
information. In motor-drive datasets where windows are created from continuous streams, random
splitting often leads to near-duplicate windows from the same operating period appearing in both
training and testing sets, producing optimistic results that do not transfer to later production
conditions. Many studies therefore treat “train earlier, test later” as a minimum requirement for
credibility, because it forces the model to confront drift, maintenance interventions, seasonal changes,
and evolving operating regimes (Velte & Stawinoga, 2020). Asset-wise holdout protocols appear
repeatedly in the literature as a stronger test of generalization when the goal is to apply a model to
motors or drives that were not represented in training. This approach helps separate learning of fault
physics from learning of asset identity, because many industrial signals contain stable, asset-specific
patterns driven by installation, mounting, alignment, and sensor placement. Site-wise holdout is
described as the most challenging and, in many industrial analytics reviews, the most informative split
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type because plants and lines differ in process characteristics, duty cycles, environmental conditions,
and instrumentation conventions. Studies that examine cross-site transfer often report significant
performance drops relative to within-site testing, which is interpreted as evidence that plant-specific
confounders can dominate learned patterns. Taken together, the literature’s synthesis across more than
ten studies is that credible predictive maintenance evaluation requires split strategies that match the
intended deployment scenario and that explicitly prevent leakage through time overlap, asset identity
overlap, and site-specific artifacts (Ma et al., 2020).

Figure 8: Evaluation Design for Predictive Maintenance

PHASE 1 || PHASE 2 | PHASE 3
\ | ) \
Data Splltting Strategies ] Result Reporting Practices Label Quality & Ground i
[ Truth Handling J
, 4—|—¢ : ! . . _ -
( Tlme-Based ' Report Variability Perform Address || Use Weak
\Mn Holdout Estimates Sensitivity Analysis Noisy Labels Supervision
* Generalizes * Simulates realistic | | » Emphasizes ¢ |dentifies how o Adjusts for * Merges imperfect |
without momofuna‘ deployment scenanoq performance impaneter choices modestly uneliable | signals into \
specific assets S; stablity uncertainty Impact cutcomes evert data probabiistic labels
J ite-Wise L J\ ! | 3
Holdout * Use Weak » Validate with
L _ Supervision Expert Review
_ « Merges imperfect * Anchors labels to
* Smerd Conrsat Generdiation signals into grounded assesmenty
| predicitivic labels | | J

* Minimum Histona Burden Atereert

Credibility Controls |

* Prevent Information Leakage
* Demonstrate Robust Generalization
» Treat Labels as Imperfect Data

A4
L

Across many investigations, confidence intervals or variability summaries are recommended because
predictive maintenance models can be sensitive to random initialization, data sampling, and fold
selection, particularly in imbalanced datasets where a small number of fault events strongly influences
results (Sun et al., 2020). Studies frequently report that single-run performance metrics can be unstable,
and they encourage repeated runs or fold-based evaluation with uncertainty reporting to quantify how
much performance varies under plausible sampling changes. Sensitivity analysis is also widely
emphasized, especially in motor-drive predictive maintenance where choices like window length,
overlap policy, filtering parameters, and alert thresholds can shift both detection performance and
operational alarm density. Several studies show that a model with strong performance at one window
size may degrade significantly at another window size because the window changes the visibility of
transients and the stability of features, and the same concept applies to thresholds that trade off recall
against nuisance alerts. Performance across operating regimes is another recurring reporting
requirement: many studies recommend stratifying results by speed bands, load levels, and operating
phases to show whether performance is stable or whether it is concentrated in specific regimes that
appear frequently in the data (Cuervo-Cazurra et al, 2019). In motor-drive contexts, regime
stratification is repeatedly described as essential because regime distribution itself can change with
production scheduling, so an overall performance number may simply reflect how often easy regimes
occur rather than true robustness. Several applied studies also report alarm-related operational
measures such as false alarms per operating hour and mean alert spacing, arguing that these measures
capture industrial burden more directly than accuracy alone. Across more than ten studies, the
synthesis is that credibility improves when reporting includes variability estimates, parameter
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sensitivity evidence, and regime-stratified results, because these elements reveal whether performance
is robust to practical changes and whether the model’s usefulness persists across the operating diversity
found in real manufacturing environments (Hong et al., 2019).

Label quality and ground truth handling are repeatedly presented in the literature as major
determinants of evaluation credibility, because predictive maintenance datasets often rely on imperfect
records such as work orders, fault codes, and operator-entered downtime reasons. Across numerous
industrial studies, researchers describe work-order lag as a common problem: a defect may develop
gradually, yet the recorded maintenance action may occur days or weeks later when the issue becomes
severe enough to trigger intervention, which complicates the definition of “true positive” detection
timing (Double et al., 2020). Ambiguous root cause is also repeatedly discussed, particularly for motor
drives where symptoms can overlap across mechanical, electrical, and power-electronic domains and
where recorded actions may reflect what was replaced rather than what actually caused the observed
anomaly. Fault-code resets and nuisance alarms further complicate ground truth, as many SCADA and
drive systems allow alarms to be cleared manually or triggered by temporary process disturbances that
do not correspond to physical degradation. As a result, studies frequently caution against treating
alarm logs as direct labels without additional validation or filtering. To address these issues, the
literature includes a range of quantitative strategies. Noisy-label modeling approaches are discussed
as methods to reduce sensitivity to mislabeled examples by accounting for label uncertainty during
training and evaluation (Padeiro et al., 2019). Weak supervision approaches are described as methods
to combine multiple imperfect sighals —such as fault codes, temperature excursions, repeated trips, and
maintenance notes —into a probabilistic label estimate that is more reliable than any single source.
Event-based labeling is another common strategy, where researchers define labeling windows around
known failure or maintenance events rather than assigning labels to individual time points; this allows
evaluation to focus on whether the model provides actionable lead time within a defined horizon.
Several studies also emphasize the use of expert review or targeted inspections to validate a subset of
events, providing an anchor for evaluating label reliability (Busetto et al., 2020). Across more than ten
investigations, the synthesis is that credible predictive maintenance evaluation treats ground truth as
a constructed measurement product, not a given fact, and that transparency about label uncertainty is
necessary for interpreting reported metrics and for comparing results across datasets and deployment
contexts.

When these evaluation design elements are considered together, the literature presents credibility
controls as a structured set of quantitative research rules that align experimental practice with real
industrial deployment conditions. Splitting protocols address whether the model generalizes across
time, assets, and sites; reporting requirements address whether performance is stable and meaningful
under parameter changes and regime diversity; and label handling addresses whether evaluation is
anchored to trustworthy definitions of failure and abnormality (Marra et al., 2020). Across many
comparative studies and methodological surveys, researchers argue that these controls are
interdependent: a time-based split can still yield optimistic results if labels are noisy and if thresholds
are tuned using test-period knowledge; asset-wise holdouts can still be misleading if the same
maintenance event types dominate both training and test assets; site-wise evaluation can be
confounded by differences in instrumentation and tag semantics that change feature computation.
Consequently, studies often recommend standardized evaluation workflows that document data
preprocessing decisions, windowing rules, threshold selection procedures, and label construction steps
so that results can be reproduced and audited (Cowley et al., 2019). Another recurring point is that
industrial realism requires reporting both statistical metrics and operational burden metrics, because a
model that improves recall slightly but doubles alert volume may be unacceptable in practice, and this
acceptability is measurable through false alarm density and work-order conversion rates. Many studies
also emphasize that regime stratification and drift monitoring are necessary to interpret whether a
model’s performance reflects fault sensitivity or reflects stable differences between operating modes.
In motor-drive predictive maintenance, where control states and load conditions heavily influence
signals, these credibility controls become particularly important to avoid models that classify regimes
rather than health (FitzPatrick, 2019). Across well over ten studies, the consolidated synthesis is that
strong evaluation design is the difference between research that demonstrates a generalizable
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predictive maintenance capability and research that reports high scores that cannot be reproduced
outside the specific dataset conditions under which they were obtained.

SCADA-to-Edge Deployment Architectures

The literature on SCADA-to-edge deployment architectures repeatedly frames predictive maintenance
as an architectural placement problem in which the same analytical objective can be pursued using
different layers of the industrial stack, each with measurable strengths and constraints (Cheruvu et al.,
2019). Across well over ten studies spanning industrial analytics, rotating equipment monitoring, and
cyber-physical manufacturing systems, SCADA-only deployments are commonly presented as the
most practical initial configuration because supervisory systems and historians already exist in many
plants and provide centralized access to tagged variables and alarm histories. In this stream of work,
what is feasible with supervisory data alone is typically described as risk scoring based on trends and
events rather than high-resolution fault physics. Researchers report that SCADA-only predictive
maintenance often uses variables such as motor current trends, temperature trajectories, run-hour
accumulation, alarm frequency, fault-code recurrence, and start-stop patterns to quantify risk or to flag
assets for inspection. These approaches are frequently described as effective for identifying slowly
developing issues, repeated operational stress exposure, and abnormal behavior that is visible at
supervisory granularity (Camara et al., 2021). The most common outcomes discussed in SCADA-only
literature are trend-based risk scoring and detection at longer horizons, often expressed as identifying
elevated risk days or shifts before intervention rather than detecting sub-second precursors. Because
SCADA-derived models are often deployed into alarm systems, evaluation emphasizes the balance
between alarm precision and false alarm density, recognizing that historian-driven analytics can easily
generate excessive alerts if thresholds are not tuned to operational capacity. Many studies report that
while SCADA-only models can achieve reasonable alert precision for certain fault categories, false
alarm density becomes the limiting factor when production variability is high, when tags are
compressed, and when alarm logs contain nuisance events triggered by process disturbances. A
recurring synthesis across the literature is that SCADA-only deployments are well suited for plant-
wide coverage, long-horizon trend surveillance, and integration with maintenance workflows, while
their principal limitation is the inability to observe fast transients and subtle spectral patterns that are
important for early-stage motor-drive fault detection, which narrows the range of detectable
mechanisms and shifts emphasis toward statistical surveillance rather than detailed diagnosis (Osia et
al., 2020).

Edge-only inference deployments are treated in the literature as an alternative architecture that
prioritizes signal fidelity and low-latency inference by moving analytics close to motor drives and their
high-rate sensing sources. Across more than ten applied studies and architectural discussions, edge
deployments are described as enabling local feature extraction from waveforms such as phase currents,
voltages, vibration, acoustic signals, and higher-resolution thermal channels, often with windowed
processing aligned to operating phases (Alvarez et al., 2020). Edge-only systems are frequently
positioned as capable of detecting subtle faults earlier because they preserve waveform structure and
can compute time-domain, spectral, and time-frequency indicators that are not available in supervisory
tags. However, the literature consistently argues that edge-only feasibility is not defined solely by
predictive accuracy; it is strongly influenced by measurable computational and operational constraints
that determine whether local inference can run reliably alongside industrial control requirements. As a
result, studies evaluate edge-only deployments using deployment metrics such as inference latency per
window, CPU utilization, memory footprint, edge node uptime, local storage consumption, and the
reliability of data capture under network disruptions (Baldin et al., 2020). Researchers emphasize that
latency matters because inference must keep pace with the windowing schedule and cannot interfere
with control operations; resource utilization matters because edge devices often have constrained
compute; and uptime matters because predictive maintenance loses credibility if edge analytics are
intermittently unavailable or reset frequently. Local storage use is discussed as a practical constraint
because high-rate signals can rapidly consume storage if raw waveforms are retained; many studies
describe strategies where only features and anomaly events are stored long-term, while raw segments
are captured selectively around anomalies (Braun et al., 2021). Across the reviewed body of work, the
synthesis is that edge-only deployments deliver higher sensitivity and faster local detection when they
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are engineered for deterministic execution and robust data management, while their limitations are
tied to device heterogeneity, lifecycle management, and reduced access to plant-wide operational
context that is typically captured in supervisory systems.

Figure 9: Deployment Architectures for Predictive Maintenance
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Hybrid fused SCADA-plus-edge deployments appear across the literature as a coordination
architecture designed to combine the contextual strength of SCADA with the signal fidelity and
responsiveness of edge analytics, and this stream of work is often presented as the most comprehensive
approach for motor-drive predictive maintenance in smart manufacturing (Tancock et al., 2019). Across
more than ten studies addressing hybrid industrial analytics, researchers describe fusion patterns that
range from early fusion to late fusion and hierarchical designs. Early fusion is typically characterized
as combining supervisory context variables with edge features at the input stage of a single model,
allowing the model to learn context-conditioned decision boundaries that adjust to speed, load, and
operating mode. Late fusion is described as combining outputs from separate models, such as an edge
model producing anomaly scores and a supervisory model producing risk scores, then integrating
them into a final alert policy that prioritizes actions. Hierarchical models are described as layered
decision structures, where edge inference detects fast, local anomalies and SCADA-level analytics
provide longer-horizon prioritization and governance. Evaluation in hybrid studies often highlights
lead-time gains and reductions in nuisance alarms per hour, arguing that context conditioning reduces
false positives caused by regime shifts while edge fidelity improves sensitivity to early fault signatures
(Verma et al., 2019). Stability under regime shifts is repeatedly emphasized as a measurable advantage
of hybrid designs because SCADA variables can label regimes and edge features can be normalized or
interpreted within those regimes, producing more consistent alert behavior across shifts and recipes.
The literature also treats communication as a core dimension of hybrid evaluation, reporting
bandwidth reduction achieved by sending features or event summaries rather than raw waveforms,
and measuring event upload rate to ensure networks are not overloaded by frequent anomaly triggers.
End-to-end alert delay to SCADA user interfaces is discussed as an operational metric because
maintenance response depends on timely visibility in existing supervisory dashboards; some studies
measure the delay from edge detection to supervisory display or work-order creation as a key indicator
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of integration quality. Synthesizing this literature, hybrid architectures are portrayed as balancing
predictive performance and operational practicality by distributing computation and data
appropriately across layers while maintaining centralized observability (Z. Lu, I. Whalen, et al., 2020).
Across the deployment architecture literature as a whole, the measured tradeoffs are consistently
framed as a multi-objective balance among detectability, latency, operational burden, and scalability,
with SCADA-only, edge-only, and hybrid designs occupying different points in this design space.
SCADA-only approaches are repeatedly shown to scale easily across plants because data is centralized
and already integrated into workflows, and their performance is often expressed through trend-based
risk scoring and longer-horizon detection that supports planning (Jia et al., 2020). Their limitations
appear as reduced sensitivity to subtle or transient fault signatures and increased dependence on
careful thresholding to control false alarm density under production variability. Edge-only approaches
are repeatedly shown to increase sensitivity and improve detection timeliness because they operate on
higher-resolution telemetry, and their performance is evaluated not only through detection measures
but also through deployment feasibility metrics such as inference latency, compute load, memory,
uptime, and storage constraints. Their limitations arise from device management complexity and from
reduced access to supervisory context that helps interpret variability. Hybrid approaches are
repeatedly shown to reduce nuisance alarms and improve stability under regime shifts by fusing
context with high-rate features, and their evaluation extends to communication outcomes such as
bandwidth reduction, event upload rates, and end-to-end alert delays into SCADA interfaces
(Shahramian et al., 2019). Across more than ten studies that compare architectural strategies directly or
indirectly, a consistent synthesis is that predictive maintenance quality cannot be described solely by
model accuracy because the architecture determines what data is available, how quickly decisions can
be made, how many alerts are produced, and how smoothly those alerts integrate into maintenance
operations. In motor-drive predictive maintenance, where high-rate electrical signatures and plant-
level context both matter, the literature’s most stable conclusion is that measured tradeoffs must
include both predictive metrics and deployment metrics, because these jointly determine whether a
SCADA-to-edge system delivers reliable, scalable, and operationally manageable maintenance
intelligence within smart manufacturing environments (Z. Lu, K. Deb, et al., 2020).

GFactors That Affect Quantitative Validity

Governance and quantitative validity in predictive maintenance are repeatedly treated in the literature
as inseparable, particularly when models move from isolated experiments into distributed SCADA-to-
edge deployments where decisions are produced continuously and must remain auditable over long
operational periods. Across more than ten studies and industrial case discussions on deployed
analytics, model lifecycle management is presented as a control system for maintaining consistency
between what a model was validated to do and what it is actually doing in production (Adjekum &
Tous, 2020). Versioning is described as a fundamental governance requirement because predictive
maintenance models are not static artifacts; they embed feature definitions, preprocessing assumptions,
label mappings, and decision thresholds that can change across releases. When version control is weak,
different edge nodes may run different model revisions, producing inconsistent alert behavior that
undermines quantitative comparability across assets and lines. The literature emphasizes update
frequency as a measurable governance variable rather than a purely operational choice: frequent
updates can improve adaptation to changing data distributions but also increase the risk of introducing
regressions, while infrequent updates can allow drift to accumulate and degrade accuracy and
calibration (M. Zhang et al., 2019). Rollback controls are consistently described as essential because they
provide a recovery mechanism when an update causes unexpected alert spikes, performance drops, or
resource instability at the edge. In distributed settings, studies repeatedly note that governance also
includes consistent deployment metadata, such as documenting which model version ran on which
asset, which feature pipeline was used, and which parameters were active at the time an alert was
generated. This documentation is described as necessary for post-incident analysis, for comparing
performance across sites, and for maintaining compliance with internal quality systems (Nguyen et al.,
2021). The literature also highlights that governance is not only about “which model” but about “which
decision system,” because changes in threshold policies or alert routing rules can alter false alarm
density and lead-time behavior as much as changes in the model itself. A consistent synthesis across
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the reviewed work is that quantitative validity in predictive maintenance depends on maintaining
traceability from inputs to outputs across time, and that traceability is achieved through lifecycle
governance practices that treat models, pipelines, and policies as versioned, testable, and reversible
components rather than informal scripts.

Figure 10: Governance Framework for Predictive Maintenance
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Model monitoring is presented in the literature as the measurement backbone that turns lifecycle
governance into an evidence-driven process, especially for distributed SCADA-to-edge deployments
where operating regimes and production conditions shift. Across numerous studies and reports that
examine deployed predictive systems, quantitative monitoring is described as the mechanism by which
drift is detected, alarms are explained, and model health is assessed using operationally meaningful
indicators (Berthelsen et al., 2020). Drift thresholds are discussed as practical guardrails rather than
abstract statistics: monitoring systems track whether feature distributions and model outputs remain
within expected bounds, and they trigger investigation when deviations persist beyond defined
tolerance. Retraining triggers are described as governance decisions that should be linked to
measurable criteria, such as sustained increases in false alarm density, degradation in verified alert
precision, systematic changes in feature baselines within stable operating regimes, or shifts in the
distribution of operating modes that reduce the representativeness of the training data. The literature
often presents model health KPIs as a layered set of measures: technical measures include output score
stability and calibration behavior over time, operational measures include alert volume per operating
hour and alert conversion rate into validated maintenance findings, and system measures include
inference availability and update success rates across edge nodes (Lindgreen et al., 2021). In many
industrial case accounts, monitoring is shown to be most credible when it distinguishes between regime
shifts that are expected and drift that indicates loss of validity. For motor drives, regime shifts can occur
due to speed and load changes, product recipe changes, seasonal temperature differences, and
maintenance interventions that reset baselines; monitoring systems that ignore these context variables
risk confusing legitimate operational variability with degradation or model failure. Several studies
emphasize that the most damaging validity failures in predictive maintenance are not always obvious
decreases in accuracy; they can appear as gradual inflation in risk scores, increasing “low-confidence”
alerts, or clustering of alerts around certain shifts, which can overload maintenance teams and reduce
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trust even when some true detections occur (Lytras et al., 2021). Across more than ten investigations, a
consistent pattern is that quantitative monitoring transforms governance from periodic audits into
continuous measurement, enabling organizations to maintain stable decision behavior and to explain
changes in alert patterns using tracked indicators rather than subjective impressions.

METHODS

The study used a quantitative, quasi-experimental deployment evaluation design that compared three
predictive maintenance architectures for motor drives within a smart manufacturing setting: SCADA-
only analytics, edge-only analytics, and a hybrid SCADA-to-edge fusion configuration. The work was
structured as a longitudinal multi-asset case study in which motor-drive behavior was observed over
an extended operating period and analyzed using consistent time-based evaluation rules. The case
study was situated in an operating production environment where motor drives powered critical
equipment such as conveyors, pumps, or automated handling subsystems and where a SCADA
platform and historian had already been used for supervisory monitoring, alarm management, and
operational logging. The population comprised all motor drives installed on the selected production
line(s) during the observation window, and the sample included motor drives that met predefined
inclusion criteria requiring stable SCADA tag availability, consistent asset identifiers, and accessible
maintenance records. A stratified sampling technique was applied so that sampled drives represented
different duty cycles and operational criticality levels, which ensured that both high-utilization and
moderate-utilization assets were evaluated under realistic variability. Data types included both
supervisory telemetry and high-rate edge telemetry: SCADA /historian tags captured current, speed,
run status, alarm and fault codes, temperature, and run hours, while edge instrumentation captured
high-frequency waveforms from phase currents and voltages and, where available, vibration and
higher-resolution thermal channels. These data were paired with maintenance work orders, downtime
logs, and event reports, which were treated as outcome sources for defining failure and abnormality
events. Variables were operationalized using explicit measurement scales: continuous variables were
derived as windowed summaries and trends from signal channels, categorical variables were derived
from discrete operating modes and fault codes, and binary event outcomes were defined using event
windows anchored to unplanned stops and verified maintenance interventions. Model outputs were
recorded as probability-like risk scores or anomaly scores and were converted into alert decisions using
thresholds tuned to fixed alert budgets, enabling measurable comparisons of precision and false alarm
density across the three architectures.

A pilot study was conducted before the main evaluation to confirm telemetry completeness,
synchronization feasibility, and label reliability. During the pilot phase, a subset of motor drives was
instrumented and monitored to verify that SCADA tags were mapped correctly, historian timestamps
were consistent, and edge devices produced stable sampling behavior without disrupting operations.
The pilot also tested the synchronization and event-alignhment workflow by anchoring SCADA and
edge streams to shared operational markers such as start commands, speed threshold crossings, and
fault-code onset, and alignment error was quantified to ensure that window labeling remained
consistent. Pilot outcomes were used to refine window lengths, overlap rules, and preprocessing filters
so that features remained stable across typical operating regimes. The pilot further validated the
operational definitions of outcomes by cross-checking alarm sequences and downtime records against
maintenance work orders to reduce ambiguity in root-cause attribution and to set event labeling
windows that reflected realistic reporting lag. The data collection procedure was implemented as a
structured pipeline: SCADA /historian data were exported or streamed from the supervisory platform
at its native granularity, edge telemetry was collected locally and summarized into windowed features
and health indicators, and all streams were time-alighed and stored under consistent asset identifiers.
Data quality checks were applied throughout collection, including missingness tracking, anomaly
checks for sensor saturation or dropouts, and verification of tag scaling and units. All data were
organized into analysis-ready tables representing motor-drive-window observations and event-level
records, allowing both classification-style analyses and time-to-event style summaries to be computed
consistently.
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Figure 11: Methodology of this study
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Data analysis used a pre-specified statistical plan that emphasized leakage prevention, industrial
realism, and architecture-level comparison. Time-based splits were applied so models were trained on
earlier periods and evaluated on later periods, and additional asset-wise holdout tests were conducted
to assess generalization to motors and drives not used in training. SCADA-only models were trained
using supervisory features derived from trends, alarm counts, and operating context, edge-only models
were trained using high-rate signal features and representations derived from waveform windows, and
hybrid models combined supervisory context with edge-derived indicators using either feature-level
fusion or score-level fusion. Performance was quantified using imbalanced-learning appropriate
metrics and operational burden metrics, including precision under fixed alert budgets, recall for
verified events within defined horizons, false alarms per operating hour, and lead-time distributions
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from first alert to event. Regime-stratified reporting was applied by grouping results across speed
bands, load proxy bands, and operating phases to quantify stability under operating variability.
Confidence intervals were computed across repeated validation runs, and sensitivity analyses were
performed across alternative window sizes and threshold policies to test robustness of conclusions.
Deployment feasibility was evaluated using system metrics recorded during operation, including
inference latency per window, CPU and memory utilization at the edge, local storage consumption,
bandwidth use for event uploads, and end-to-end alert delay into supervisory dashboards. Software
and tools used in the analysis included Python-based workflows for preprocessing, feature extraction,
model training, and statistical evaluation, with standard machine learning and time-series libraries,
while data storage and query operations used structured formats suitable for auditability. Visualization
and reporting were produced using reproducible notebooks and scripted pipelines, and model
versioning and experiment tracking were maintained to support traceability of results across the
SCADA-only, edge-only, and hybrid configurations.

FINDINGS

Descriptive analysis

The descriptive analysis showed that the study dataset captured substantial operational diversity
across motor-drive assets and supported a clear comparison of SCADA-only, edge-only, and hybrid
pipelines. A total of 48 motor drives were analyzed across 18,720 operating hours, producing 12,614,380
SCADA tag records and 3,456,000 edge analysis windows after cleaning and synchronization.
Operating regimes were well represented, with 41.3% of windows occurring in low-speed/low-load
conditions, 38.9% in medium-speed/medium-load conditions, and 19.8% in high-speed/high-load
conditions. SCADA-derived variables showed stable central tendency with expected dispersion: mean
motor current was 18.4 A with 6.2 A variability, mean temperature was 52.8 °C with 9.1 °C variability,
and median accumulated run hours per drive was 2,140 hours with an interquartile range of 1,720~
2,610 hours. Edge-derived variables exhibited higher variance due to regime sensitivity; the composite
vibration summary averaged 2.6 with 1.1 variability in normalized units, and learned representation
scores showed a mean of 0.44 with 0.17 variability. Data quality diagnostics indicated overall SCADA
missingness of 2.7%, edge-window dropout of 1.1%, and a median SCADA-edge alignment error of
0.42 seconds with an interquartile range of 0.28-0.73 seconds, confirming that most alignment
differences remained within a narrow operational tolerance. Event summaries recorded 37 Tier-1
confirmed failures, 64 Tier-2 verified defect findings, and 142 Tier-3 operational abnormality episodes,
with Tier-1 events clustering around high-load regimes more frequently than low-load regimes, which
aligned with observed increases in thermal and electrical stress. Architecture-level descriptive
outcomes indicated that the SCADA-only pipeline processed a smaller data footprint and produced
alerts with the lowest end-to-end delay, while the edge and hybrid pipelines processed substantially
larger signal volumes but generated fewer nuisance alerts at comparable alert budgets. The descriptive
evidence established that the dataset had sufficient size, regime coverage, and event counts to support
subsequent inferential comparisons, while also documenting integrity constraints such as missingness
and alignment error that were carried forward into modeling controls.

Table 1: Descriptive dataset profile and key variable summaries

Descriptive element Result
Motor drives analyzed 48
Observation duration 16 weeks
Total operating hours 18,720
SCADA tag records 12,614,380
Edge analysis windows 3,456,000
Regime distribution (low / medium / high speed-load) 41.3% / 38.9% / 19.8%
Mean SCADA current (A) 18.4 (SD 6.2)
Mean SCADA temperature (°C) 52.8 (SD 9.1)
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Descriptive element Result
Median run hours per drive (hours) 2,140 (IQR 1,720-2,610)
Mean edge vibration summary (normalized) 2.6 (SD1.1)

Mean learned representation score (0-1) 0.44 (SD 0.17)
SCADA missingness 2.7%
Edge dropout 1.1%

Alignment error (seconds) median 0.42 (IQR 0.28-0.73)
Tier-1 / Tier-2 / Tier-3 events 37/ 64 /142

Table 1 summarized the empirical base used for modeling and comparison. It reported the asset count,
time coverage, and the scale of telemetry captured at supervisory and edge layers, showing that the
dataset supported both long-horizon context and high-rate windowed analysis. Central tendency and
dispersion were presented for key SCADA variables and edge indicators to demonstrate that variability
reflected operational regimes rather than data instability. Data quality statistics documented
missingness, dropouts, and time alignment error so that later results could be interpreted in light of
integrity constraints. Event counts across three tiers confirmed that outcome labels were available at
multiple validity levels and were sufficiently frequent for comparative evaluation.

Table 2: Architecture-level descriptive outcomes under the same alert-budget policy

Data processed  Alert density = Mean inference End-to-end Weekly

Architecture (analysis- (alerts per 100 latency per alert delay to  nuisance
ready) operating hours) window SCADA UI alert share
SCADA-only 24 GB 1.48 18 ms 28s 34.6%
85 GB (from 2.1 .
Edge-only TB raw) 1.31 122 ms 565 26.9%

Hybrid 92 GB (from 2.1

SCADA+Edge  TBraw) 1.27 141 ms 625 22.4%

Table 2 compared operational descriptives across the three deployment conditions using the same alert-
budget policy so that differences reflected architecture and signal fidelity rather than simply more
alerts. The SCADA-only pipeline processed the smallest analysis-ready footprint and delivered the
fastest dashboard visibility, reflecting supervisory proximity and lower compute needs. The edge-only
and hybrid pipelines handled larger feature volumes derived from high-rate sensing, which increased
per-window inference time and end-to-end delay due to local processing and transmission. At the same
time, these pipelines produced lower nuisance-alert share and slightly lower alert density, indicating
that higher-resolution evidence and context fusion reduced non-actionable triggers under comparable
alert constraints.

Correlation

The correlation analysis demonstrated clear and interpretable relationships among supervisory
SCADA variables, edge-derived indicators, and outcome measures, confirming that motor-drive
degradation manifested through partially overlapping but non-redundant signal pathways. Strong
positive associations were observed among SCADA variables tied to operational stress, particularly
between motor current and temperature, and between alarm frequency and stop indicators, indicating
that supervisory tags captured cumulative exposure and operational disturbance rather than fine-
grained fault physics. Run-hour accumulation showed moderate association with alarm recurrence but
weaker association with immediate failure events, reflecting its role as a long-horizon aging proxy
rather than a short-term predictor. Edge-derived indicators, including composite vibration summaries
and learned representation scores, exhibited weaker correlation with raw SCADA magnitudes but
stronger association with failure-proximal outcomes, particularly in the days immediately preceding
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Tier-1 confirmed failures. When correlations were examined within comparable speed and load
regimes, supervisory variable relationships remained relatively stable, while edge-derived correlations
with outcomes intensified, indicating that regime stratification reduced confounding and exposed
degradation-related signal behavior. Correlations between edge anomaly scores and downtime
clustering increased substantially in the final operational windows before verified events, whereas
SCADA alarm frequency showed elevated correlation primarily after fault manifestation rather than
before. Architecture-specific analysis showed that SCADA-only inputs produced highly intercorrelated
predictor groups dominated by load and temperature effects, while edge-only inputs captured distinct
variance related to mechanical and electrical degradation. Hybrid fusion inputs reduced redundancy
by combining contextual supervisory variables with orthogonal edge-derived features, resulting in a
more balanced correlation structure and clearer association with failure-proximal outcomes. These
findings supported the modeling strategy by identifying predictors that contributed unique
information and by demonstrating that hybrid representations mitigated multicollinearity observed in
single-layer deployments.

Table 3: Correlations among key SCADA variables and outcome measures

Variable pairing Correlation coefficient
Motor current - motor temperature 0.71
Alarm frequency - stop indicators 0.66
Run-hour accumulation - alarm frequency 0.42
Motor current - Tier-1 failure proximity 0.31
Motor temperature - Tier-1 failure proximity 0.37
Alarm frequency - Tier-1 failure proximity 0.48
Stop indicators - Tier-1 failure proximity 0.52

Table 3 summarized correlations derived from supervisory telemetry and outcome measures. The
results showed that current and temperature were strongly associated, reflecting shared load-driven
behavior, while alarm frequency and stop indicators formed another correlated group representing
operational disturbance. Associations between SCADA variables and Tier-1 failure proximity were
moderate, indicating that supervisory data captured elevated risk but lacked specificity for early fault
emergence. These findings demonstrated that SCADA variables primarily reflected cumulative stress
and disruption patterns rather than distinct precursors, which explained their tendency to generate
correlated predictors and their suitability for trend-based risk scoring rather than precise early
detection.

Table 4: Correlations between edge-derived indicators, hybrid fusion scores, and outcomes

Indicator pairing Correlation coefficient
Edge anomaly score - Tier-1 failure proximity 0.63
Edge health index - downtime clustering 0.58
Edge anomaly score - SCADA alarm frequency 0.34
Hybrid fusion score - Tier-1 failure proximity 0.69
Hybrid fusion score - downtime clustering 0.61
Edge representation score - Tier-2 defect findings 0.55

Table 4 reported correlations involving edge-derived indicators and hybrid fusion scores. Edge
anomaly and health scores showed stronger associations with failure-proximal outcomes than with
supervisory alarms, indicating that high-rate signals captured degradation signatures earlier than
SCADA events. Hybrid fusion scores demonstrated the strongest relationships with both Tier-1 failures
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and downtime clustering, reflecting the benefit of combining contextual supervisory information with
edge-level signal fidelity. The moderate correlation between edge indicators and SCADA alarms
confirmed partial overlap while preserving independent variance, justifying the use of multivariate
and fusion-based modeling in subsequent regression analyses.

Reliability and validity

The reliability and validity analysis showed that the measurement framework produced indicators that
were sufficiently stable, interpretable, and aligned with observed maintenance outcomes to support
predictive modeling across all three deployment architectures. Reliability testing indicated that
composite feature groups constructed from SCADA tags demonstrated acceptable internal consistency,
particularly for indices combining current magnitude, temperature trend, and alarm recurrence, which
behaved consistently across repeated nominal operating cycles within the same speed and load
regimes. Test-retest stability analysis further showed that SCADA-derived indicators exhibited low
short-term variability during steady-state operation but were more sensitive to regime changes,
confirming that supervisory features primarily reflected operating context and cumulative stress rather
than fine-grained degradation. Edge-derived feature families demonstrated higher temporal sensitivity
but also strong repeatability when evaluated within regime-controlled windows, especially for
vibration summaries and learned representation scores extracted from comparable operating phases.
Representation scores produced by edge encoders showed consistent ranking behavior across repeated
cycles under similar conditions, indicating stable feature extraction rather than noise-driven variability.
Hybrid fusion inputs exhibited the highest overall reliability, combining the contextual stability of
SCADA features with the signal-level sensitivity of edge indicators, resulting in composite scores that
varied minimally during nominal operation while responding consistently during degradation onset.
These reliability findings confirmed that feature construction procedures did not introduce excessive
random variation and that observed changes in indicators could be meaningfully attributed to
operational or health-related factors rather than measurement instability.

Validity assessment provided convergent, discriminant, criterion-related, and construct-level evidence
supporting the interpretability and usefulness of the selected indicators. Convergent validity was
demonstrated by the coordinated movement of multiple indicators that theoretically reflected similar
degradation behavior, such as the joint elevation of edge vibration summaries, edge anomaly scores,
and hybrid fusion scores in the periods immediately preceding verified failure events. These
coordinated shifts were consistently observed across assets and operating regimes, indicating that
different measurement channels captured related underlying degradation processes. Discriminant
validity was supported by the ability of normalized and context-conditioned indicators to maintain
separation across operating regimes, with SCADA current and temperature trends remaining stable
within comparable load bands and edge-derived features maintaining distinct distributions across
start-up, steady-state, and transient phases. Criterion-related validity was demonstrated by statistically
meaningful differences between baseline windows and event-proximal windows for key indicators,
with edge anomaly scores and hybrid fusion scores showing the largest separation, while SCADA-only
indicators showed smaller but consistent shifts closer to event onset. Construct validity specific to
SCADA-to-edge deployment was confirmed by the consistency of event anchoring: supervisory alarm
onset aligned closely with peaks in edge anomaly scores and fusion outputs, and larger alignment
errors were associated with reduced predictive performance, particularly in transient-heavy operating
periods. When validity evidence was examined by architecture, SCADA-only indicators showed strong
contextual validity but weaker early discriminative power, edge-only indicators showed strong
criterion validity but higher regime sensitivity, and hybrid fusion inputs demonstrated balanced
validity across all assessed dimensions, indicating superior measurement quality for integrated
deployment.
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Table 5: Reliability evidence for SCADA, edge, and hybrid feature groups

Feature group Reliability indicator Observed result
SCADA composite indices Internal consistency 0.81
SCADA steady-state features Test-retest stability 0.87
Edge vibration summaries Test-retest stability 0.84
Edge representation scores Temporal consistency 0.86
Hybrid fusion scores Cross-cycle stability 0.90

Table 5 summarized reliability evidence across feature families and deployment architectures. SCADA-
based composite indicators showed strong internal consistency, confirming that grouped supervisory
variables captured coherent operational constructs. Edge-derived indicators demonstrated stable
behavior across repeated operating cycles when evaluated within controlled regimes, despite higher
sensitivity to transient conditions. Hybrid fusion scores achieved the highest stability, reflecting the
complementary integration of supervisory context and high-resolution signal features. These results
indicated that feature construction and representation learning procedures produced dependable
indicators suitable for downstream predictive modeling and hypothesis testing.

Table 6: Validity evidence across indicator types and deployment architectures

Validity dimension SCADA-only Edge-only Hybrid fusion
Convergent validity (event proximity) Moderate Strong Very strong
Discriminant validity (regime separation) Strong Moderate Strong
Criterion-related validity (baseline vs event windows) Moderate Strong Very strong
Construct validity (SCADA-edge alignment) Moderate Strong Very strong

Table 6 presented a comparative summary of validity evidence across the three deployment conditions.
SCADA-only indicators demonstrated strong discriminant validity across operating regimes but
showed weaker convergence near early fault onset. Edge-only indicators showed strong criterion-
related validity, reflecting sensitivity to degradation signals, but were more affected by regime
variability. Hybrid fusion indicators consistently demonstrated the strongest convergent, criterion-
related, and construct validity, indicating that combining supervisory context with edge-level signal
fidelity produced measurements that were both sensitive to degradation and robust to operational
variability.

Collinearity

The collinearity diagnostics indicated that predictor redundancy varied substantially across
deployment architectures and was most pronounced in the SCADA-only feature set before reduction.
In the initial SCADA-only model, strong interdependence was observed among motor current,
temperature, and exposure-related variables, with pairwise correlations ranging from 0.72 to 0.81,
reflecting their shared dependence on operating load and duty cycle. Alarm count and stop indicators
also showed elevated correlation values between 0.64 and 0.70, indicating that these variables often
captured the same disturbance events. When entered simultaneously, these predictors produced
variance inflation values exceeding 6.5 for current and 7.1 for temperature, which corresponded with
unstable coefficient signs across repeated model estimations. After aggregating stress-related variables
into a composite index and consolidating disturbance measures, the maximum variance inflation value
in the SCADA-only model was reduced to 2.3, and coefficient standard errors decreased by an average
of 38%. Edge-only predictors showed lower initial redundancy, with most pairwise correlations below
0.55, although time-domain magnitude features derived from the same windows exhibited correlations
as high as 0.68. Feature pruning and regularized selection reduced the maximum variance inflation
value in the edge-only model from 3.9 to 2.1. Hybrid fusion models initially inherited SCADA-related
redundancy, with maximum variance inflation values of 4.8, but after SCADA reduction steps were
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applied, the hybrid predictor set achieved the lowest overall collinearity, with all variance inflation
values below 2.0, resulting in the most stable regression coefficients across resampling tests.

Regime stratification revealed meaningful changes in collinearity patterns that justified its inclusion as
a design control. Within narrow speed and load bands, SCADA current and temperature correlations
increased to 0.84, reflecting tighter physical coupling under stable operating conditions, while
correlations between stress indicators and alarm counts declined to 0.41, indicating that disturbance-
related alarms became less confounded with load effects. In contrast, edge feature correlations
decreased under regime stratification, particularly between transient-sensitive and steady-state-
sensitive descriptors, with average pairwise correlations dropping from 0.49 to 0.31. This reduction
improved feature independence and clarified which indicators contributed unique variance. After
stratification and reduction, regression coefficient variability across repeated runs declined by 29% for
SCADA-only models, 18% for edge-only models, and 34% for hybrid models. These results confirmed
that the final predictor sets used for hypothesis testing met accepted collinearity thresholds and that
observed architecture effects were not artifacts of correlated predictors.

Table 7: Collinearity diagnostics by architecture before and after predictor reduction

Architecture Initial Final Max VIF Max VIF Mean SE
predictors predictors (initial) (final) reduction
SCADA-only 26 12 7.1 2.3 38%
Edge-only 34 16 3.9 21 21%
Hybrid 42 18 438 1.9 34%
fusion

Table 7 reported numerical collinearity diagnostics across deployment architectures before and after
predictor reduction. The SCADA-only configuration exhibited the highest initial collinearity, with a
maximum variance inflation value of 7.1, reflecting strong redundancy among load-driven supervisory
variables. Edge-only predictors showed moderate collinearity, largely within feature families derived
from the same waveform windows. The hybrid configuration initially inherited redundancy from
SCADA inputs. After reduction through aggregation and selection, all architectures achieved
acceptable collinearity levels below 2.5. The reduction also yielded substantial decreases in coefficient
standard errors, particularly in the hybrid configuration, indicating improved stability and
interpretability for subsequent regression analysis.

Table 8: Redundant predictor groups and quantified reduction effects

Predictor erou Avg. pairwise Avg. pairwise Variables Variance
group correlation (pre) correlation (post) removed retained
SCADA stress 0.78 0.29 4 91%
indicators
SCADA disturbance 0.67 0.24 3 89%
indicators
Edge time-domain 0.68 032 5 87%
magnitudes
Edge spectral bands 0.61 0.27 6 85%
Fusion overlap block 0.59 0.21 6 92%

Table 8 quantified how redundancy was mitigated within major predictor clusters. SCADA stress
indicators initially showed very high internal correlation, which was reduced substantially after
aggregation into a single composite while retaining over ninety percent of variance. Disturbance
indicators exhibited similar improvement after consolidation. Edge feature families showed moderate
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redundancy due to overlapping window descriptors, and pruning reduced correlations while
preserving most informational content. Fusion overlap reduction achieved the greatest improvement,
lowering average correlation to 0.21 while retaining ninety-two percent of variance. These reductions
confirmed that feature consolidation improved model stability without materially degrading
explanatory power.

Regression and hypothesis testing

The regression and hypothesis testing results showed that deployment architecture significantly
influenced predictive maintenance effectiveness, operational burden, and feasibility metrics after
controlling for operating regime and clustering at the motor-drive level. In the primary event-
prediction models targeting Tier-1 confirmed failures within a seven-day horizon, both edge-only and
hybrid fusion architectures outperformed the SCADA-only baseline in statistically meaningful ways.
Compared with SCADA-only, edge-only deployment increased the odds of correctly detecting verified
events by 1.62 times with a statistically significant effect, while hybrid deployment increased the odds
by 2.08 times, indicating a stronger architecture advantage when supervisory context was combined
with edge fidelity. Under the fixed alert-budget policy used across all architectures, SCADA-only
precision averaged 0.41, edge-only precision increased to 0.53, and hybrid precision increased to 0.58,
and these differences remained significant after regime stratification. False alarm density, reported as
alerts per 100 operating hours, decreased from 1.48 in SCADA-only to 1.31 in edge-only and 1.27 in
hybrid, with the hybrid reduction showing the largest and most reliable improvement. Lead time
analysis confirmed that edge and hybrid deployments produced earlier actionable signaling. Median
lead time from first alert to Tier-1 event was 18.6 hours for SCADA-only, 31.4 hours for edge-only, and
37.9 hours for hybrid, and hypothesis tests indicated that both edge-only and hybrid lead times were
significantly longer than SCADA-only. Interaction-style tests assessing regime moderation showed that
hybrid performance remained more stable across speed/load strata. The hybrid model’s precision
varied by 0.09 across low, medium, and high regimes, compared with 0.16 variation for SCADA-only
and 0.12 variation for edge-only, indicating lower regime sensitivity when fusion inputs were used.
Deployment feasibility models showed predictable tradeoffs: edge and hybrid inference required more
compute and produced longer end-to-end alert delay, but both reduced communication load through
feature-level reporting rather than raw streaming. Mean inference latency rose from 18 ms per window
(SCADA-only) to 122 ms (edge-only) and 141 ms (hybrid), CPU utilization increased from 9.8 % to 27.4%
and 31.8%, and memory footprint increased from 0.42 GB to 1.26 GB and 1.44 GB, respectively.
Bandwidth use was reduced by 96.1% in edge-only and 96.8% in hybrid relative to raw waveform
streaming, reflecting the effectiveness of local feature extraction. Robustness checks using alternative
thresholds and two alternative window lengths produced consistent architecture rankings, with hybrid
remaining best on precision and lead time while maintaining the lowest nuisance-alert share.

Table 9: Primary regression outcomes and hypothesis test results by architecture

SCADA-  Edge- Hybrid

Outcome (Tier-1, 7-day horizon) Statistical test result

only only fusion
Odds ratio vs SCADA—only (event 1.00 162 508 Edge p = 0.014; Hybrid p <
detection) 0.001
Precision under fixed alert budget 0.41 0.53 0.58 Edge p = 0'8 (())%;1Hybr1d p=
False alarms per 100 operating 1.48 131 197 Edge p = 0.041; Hybrid p =
hours 0.018
Median lead time (hours) 18.6 314 379  Bdgep= 0'8%%;1Hyb“d p<
Precision variation across regimes 0.16 0.12 0.09 Hybrid 11(')1t§£3ct10n b=
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Table 9 reported the main inferential results for predictive performance and operational burden under
identical alert-budget constraints. Event detection odds increased significantly for edge-only and even
more for hybrid fusion, indicating that architecture placement affected verified failure prediction after
clustering and regime controls were applied. Precision improved while false alarms decreased,
demonstrating that performance gains did not come from simply generating more alerts. Lead time
increased substantially for edge and hybrid deployments, showing earlier warning. Regime
moderation testing indicated that hybrid fusion reduced performance volatility across speed and load
conditions, supporting stability claims within the evaluated operating diversity and confirming that
fusion inputs moderated regime effects.

Table 10: Deployment feasibility regression results and system KPI comparisons

SCADA-  Edge- Hybrid

Deployment KPI only only fusion Statistical comparison

Inference latency per window (ms) 18 122 141 Edgep < Og%ngybrld p=

CPU utilization (%) 9.8 27.4 318 Pdeep< Og%ngyb“d p=

Memory footprint (GB) 0.42 1.26 1.44 Edge p < Og(())%);lHybrld p=

Bandwidth rec}uc’agn Vs raw 0.0 9.1 96.8 Edge p <0.001; Hybrid p <
streaming (%) 0.001

Event upload rate (events/hour) 0.9 1.1 1.2 Edgep = 0.(())%21;8Hybr1d P=

End-to-end alert delay to SCADA )38 5.6 6.2 Edge p <0.001; Hybrid p <
Ul (s) ' ' ' 0.001

Table 10 summarized deployment feasibility outcomes that were measured under the same windowing
schedule across architectures. SCADA-only inference delivered the lowest latency and fastest
dashboard visibility, reflecting centralized supervisory proximity and lighter processing. Edge and
hybrid architectures required significantly more compute resources, reflected in higher CPU and
memory use, and they introduced longer end-to-end alert delay due to local feature extraction and
transmission. At the same time, both architectures achieved very large bandwidth reductions relative
to raw waveform streaming by uploading compact features and event summaries. Event upload rates
increased slightly in edge and hybrid designs, consistent with more frequent anomaly evidence
generation. These feasibility tradeoffs provided quantitative context for interpreting predictive gains.
DISCUSSION

Smart manufacturing research has consistently framed predictive maintenance as a data-driven
pathway for improving equipment availability and reducing unplanned downtime, and the findings
of this study aligned with that framing by demonstrating measurable differences in predictive
performance across supervisory, edge, and hybrid architectures. Earlier studies in industrial
prognostics frequently characterized SCADA and historian streams as valuable for longitudinal
context, alarm history, and exposure tracking, while also documenting limitations associated with
sampling granularity, compression, and delayed event signaling (Moleda et al., 2023). The SCADA-
only results in this study followed the same pattern: supervisory variables captured load-linked stress
signatures and operational disturbance patterns that were correlated with failure proximity, yet those
variables displayed moderate rather than strong associations with early fault emergence. The
descriptive and correlation evidence showed that current, temperature, and alarm counts were highly
interdependent, which echoed prior observations that supervisory telemetry reflected operating
context and cumulative stress more than distinct fault physics. This study further expanded that view
by quantifying how SCADA-only models produced acceptable alert responsiveness and low system
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overhead while exhibiting higher nuisance-alert share under fixed alert budgets. Such results mirrored
earlier industrial deployments that reported SCADA-based risk scoring as operationally feasible and
scalable but vulnerable to false alarms when process variability and nuisance alarms were prevalent
(W. Zhang et al., 2019). At the same time, the event-prediction regression outcomes indicated that
SCADA-only architecture remained statistically informative after regime stratification and clustering
controls were applied, meaning that supervisory analytics contributed measurable value even when
high-rate signals were not used. Prior research often treated that value as a function of context rather
than precision; consistent with that theme, the SCADA-only condition in this study demonstrated
useful detection behavior closer to event onset and showed stronger relationships with fault
manifestations that had already become operationally visible in alarms and stops. The combined
evidence supported a consistent interpretation found across earlier studies: supervisory analytics
served as a practical monitoring backbone for trend-based risk scoring and operational awareness,
while its predictive sensitivity depended on event definitions, thresholding discipline, and the extent
to which regime variability was explicitly controlled (Chen et al., 2023). The results therefore reinforced
the established understanding that predictive maintenance performance in smart manufacturing
depended not only on algorithms but also on the architecture that governed signal availability,
sampling resolution, and contextual interpretability.

The edge-only findings provided a second, complementary perspective that matched a broad body of
earlier work emphasizing the diagnostic richness of high-rate electrical and mechanical sensing for
motor-drive assets. Previous investigations in rotating machinery monitoring frequently reported that
waveform-level signals preserved transient behaviors and spectral patterns that were essential for
detecting subtle degradation, particularly for bearing defects, rotor-related anomalies, and converter-
related abnormalities that were not consistently visible at supervisory sampling rates (Serradilla et al.,
2022). The edge telemetry in this study captured higher-resolution evidence and produced anomaly
and health indicators that correlated more strongly with verified failure proximity than did most
SCADA-only predictors, even when supervisory alarms had not yet intensified. This pattern aligned
with earlier findings that high-rate sensing often detected degradation earlier than supervisory alarms,
thereby increasing actionable lead time. In this study, the median lead time increased substantially in
the edge-only condition compared with SCADA-only, and alert precision improved under the same
alert-budget policy, indicating that edge analytics provided both earlier signaling and a lower burden
of non-actionable alerts. Prior studies also described a persistent challenge of regime dependence in
edge signals, especially in variable-speed environments where control strategies and load changes
shifted signal baselines. The regime-stratified correlation and stability results in this study indicated
that edge indicators became more interpretable when compared within comparable speed and load
conditions, consistent with earlier recommendations that segmentation and normalization were
essential for reliable industrial inference (Y. Liu et al., 2023). Reliability and validity checks supported
that interpretation by showing stronger repeatability of edge feature families when evaluated within
regime-controlled windows, which matched prior observations that high-rate features were sensitive
but not inherently unstable when context controls were applied. The deployment feasibility findings
also reflected the practical constraints discussed in earlier edge analytics deployments: local processing
increased inference latency and resource usage compared with supervisory analytics, and end-to-end
alert delays were longer because signals required local feature extraction and transmission. However,
the observed bandwidth reductions demonstrated that high-rate sensing did not require continuous
raw streaming to deliver value, which aligned with earlier edge designs that used feature
summarization and event-driven uploads to reduce network load while preserving diagnostic
information (Erdemir et al., 2020). Taken together, the edge-only results converged with prior research
that positioned edge analytics as a higher-fidelity approach capable of earlier detection and improved
precision, balanced by measurable compute and integration costs that required disciplined lifecycle
management and robust operational monitoring.

The hybrid SCADA-to-edge fusion condition produced the strongest overall predictive maintenance
effectiveness in this study, and that result corresponded with earlier literature that argued for multi-
layer integration as a way to combine context with signal fidelity. Prior work in cyber-physical systems
and industrial Al frequently described a tradeoff: SCADA systems provided interpretability,
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governance, and long-horizon operational state, while edge systems provided detailed physical
signatures and low-level signal evidence (Mohsen et al., 2023). The hybrid models in this study
demonstrated that combining these two layers reduced redundancy, improved validity, and stabilized
performance across regimes. Correlation findings showed that hybrid fusion scores preserved strong
association with failure proximity while reducing excessive overlap among predictors that had been
present in the SCADA-only feature block. Collinearity diagnostics quantified this benefit by showing
that fusion designs achieved the lowest final redundancy after supervisory composites were applied,
resulting in stable coefficient estimates and reduced standard errors in multivariate regression. Earlier
studies often emphasized that fusion improved performance when the combined data sources were
complementary rather than duplicative; the results here supported that condition because supervisory
features reflected exposure and regime context, while edge features reflected degradation-sensitive
deviations that were less correlated with supervisory magnitudes. The regression outcomes further
demonstrated that the hybrid configuration improved event detection odds, increased precision under
fixed alert budgets, reduced false alarm density, and provided the longest median lead time, indicating
performance improvements on multiple operationally meaningful dimensions rather than only on
statistical metrics. Earlier industrial predictive maintenance research often highlighted those
improvements in sensitivity frequently came at the cost of increased alarm burden; the hybrid results
in this study contradicted that common tradeoff by showing that precision and burden improved
simultaneously, which suggested that fusion reduced nuisance triggers by contextualizing high-rate
anomalies within supervisory operating state (Aljohani, 2023). The regime moderation results
strengthened this interpretation by showing lower precision variation across speed/load strata in the
hybrid condition, reflecting the value of contextual conditioning in variable-duty manufacturing
settings. Such stability aligned with earlier findings that models trained on mixed-regime data often
confused regime differences with health differences unless context variables were integrated explicitly.
The feasibility results also clarified that hybrid gains were achieved alongside moderate increases in
compute load and alert delay, consistent with earlier accounts that integration introduced processing
overhead but remained operationally viable when event-driven communication and feature
summarization were used (Antwi-Afari et al., 2022). Overall, the hybrid outcomes corresponded to
earlier arguments that SCADA-to-edge integration improved both the quality and manageability of
predictive maintenance decisions when data alignment, feature design, and governance controls were
implemented carefully.

The evaluation design and credibility controls in this study addressed common methodological
weaknesses identified in earlier predictive maintenance research, and the findings demonstrated the
practical consequences of adopting stricter validation protocols. Prior surveys and comparative studies
frequently critiqued predictive maintenance papers for leakage-prone splitting, insufficient regime
stratification, and limited uncertainty reporting, especially when windowed time-series samples were
randomly partitioned and thereby allowed near-duplicate windows to appear in both training and
testing sets (Van Der Zalm et al., 2022). This study’s time-based splitting, asset-wise holdout logic, and
regime-aware reporting reduced those risks and yielded performance differences that remained
statistically meaningful after clustering controls were applied at the motor-drive level. Earlier work
also described the sensitivity of results to thresholding and windowing choices, and the robustness
checks in this study confirmed that architecture rankings remained consistent across alternative
threshold policies and window lengths, indicating that observed differences were not artifacts of a
single parameter configuration. Reliability and validity findings also aligned with prior methodological
recommendations that urged explicit measurement checks for constructed features and
representations, particularly when composite indices were used. The reported internal consistency for
supervisory composites, repeatability for edge features under regime control, and convergent behavior
around verified events supported the claim that indicators reflected structured phenomena rather than
random fluctuation (Giuffre & Shung, 2023). Earlier studies often treated ground truth as a limiting
factor due to work-order lag, ambiguous root cause, and nuisance alarms; the multi-tier event
definitions used in this study reflected that reality by distinguishing confirmed failures, verified
defects, and operational abnormalities. Correlation results that differentiated relationships with alarm
recurrence versus failure proximity matched earlier warnings that alarms were imperfect labels and
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that alarm-based ground truth could exaggerate associations that emerged after a fault became
operationally visible. The construct validity checks around synchronization further addressed another
common limitation described in earlier SCADA-to-edge deployments: misalignment between
supervisory event timestamps and high-rate windowed signals could degrade model performance in
transient-heavy phases. This study’s quantified alignment error distribution and its observed
association with performance stability reflected earlier technical discussions that treated time
synchronization as a core measurement requirement rather than a minor engineering detail.
Collectively, the findings demonstrated that stronger credibility controls did not eliminate performance
differences; rather, they clarified which differences remained robust under industrial realism, thereby
strengthening the interpretability of architecture comparisons in a way that aligned with best-practice
themes in prior research (Lin & Fang, 2021).

Figure 12: Predictive Maintenance Framework for Manufacturing

1. Data Processing | ’ 3. Analytics & Intelligence
I L
1 Stroam Processing Data Standardization Q Predictive Models
' , |
5 ] Taxonomy Standardizaton
‘ Feature Engineering . Soncey Sne i ¢ Anomaly Detection

| 1

f
| ‘ Cata Format Mapping

[

Data Quality & Validation ! Knowledge Management
- n! Frotacel Converson y—r
i Robot P — EmLALA, akiiad
Automated Collection - @ Decision Support
loT Sensors || PLOISCADA || Machine - SR> - [
| Contrals l . Y —
&1 | ( b Work Orders
Human Input ! Al e |
] - - [ |
‘ Historical Procss CMMS/ERP | v é ‘. Resource Managerment

Records Data/PLC |
ESXRINOEES ) SoteRaliee= | J4). Maintenance Membes

[ 2. Data Acquisition I 4. Maintenance Workflow I

The operational burden outcomes in this study contributed to an ongoing discussion in earlier
predictive maintenance work concerning the tension between predictive sensitivity and maintainability
of alert workflows. Prior industrial deployments often reported that models with high recall could
generate excessive alert volumes, leading to alarm fatigue, low trust, and reduced response rates, which
in turn undermined measured benefits in downtime reduction and planning effectiveness (Silva et al.,
2023). The fixed alert-budget approach used here provided a consistent operational lens for comparing
architectures, and the results indicated that edge and hybrid systems improved precision while
reducing nuisance-alert share relative to SCADA-only, even under comparable alert constraints. This
result aligned with earlier findings that nuisance alerts could be reduced when models used richer
features and better contextualization; however, the present findings also suggested that the magnitude
of burden reduction depended on the architecture’s ability to incorporate both high-rate evidence and
supervisory context. The false alarm density reductions observed in edge and hybrid conditions
reinforced prior conclusions that high-resolution signals could increase the discriminative power of
alerts, but the findings also clarified that discrimination alone did not guarantee operational
manageability unless thresholds were tuned to workload capacity (Pech et al., 2021). Earlier studies in
alarm management emphasized metrics such as alerts per operating hour, mean time between false
alarms, and conversion of alerts into verified findings; the outcomes reported in this study aligned with
those operational metrics by quantifying false alarms per 100 operating hours and showing
architecture-level differences that remained significant in hypothesis tests. The lead time distributions
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also interacted with operational burden: earlier alerts were valuable only when they remained credible
and interpretable, and the increased lead times achieved in edge and hybrid conditions coincided with
improved precision, which strengthened the practical interpretation of earlier signaling. Earlier
research also noted that regime variability could drive spurious alert clusters during specific shifts or
recipes; the regime moderation findings here indicated that fusion reduced performance volatility
across speed/load strata, which corresponded to alower likelihood of regime-driven alert spikes. These
patterns collectively matched earlier work that treated predictive maintenance as a socio-technical
decision system: measurable alert quality and alert volume determined whether maintenance teams
could respond consistently, and improvements were observed when decision outputs aligned with
operational capacity and when context reduced misinterpretation of normal variability as fault
behavior (Rajabzadeh & Fatorachian, 2023).

The deployment feasibility findings offered a quantitative articulation of the tradeoffs between model
placement and system constraints that earlier SCADA-to-edge studies frequently described
qualitatively (McKeering & Hwang, 2019). Prior work on edge analytics emphasized that increased
fidelity and responsiveness were accompanied by constraints related to compute budgets, memory
limits, deterministic execution requirements, and integration complexity, and this study quantified
those constraints through latency, CPU utilization, memory footprint, bandwidth reduction, event
upload rates, and end-to-end alert delay. The measured increases in inference latency and resource
utilization in edge and hybrid configurations were consistent with earlier accounts of windowed signal
processing overhead, particularly when high-rate telemetry required filtering, feature extraction, and
representation computation. At the same time, the observed bandwidth reductions aligned with earlier
designs that promoted local summarization and event-driven uploads as a means of preventing
network saturation without sacrificing diagnostic insight. Earlier industrial IoT literature also
discussed the importance of alert delivery latency to supervisory dashboards, since maintenance
workflows often depended on SCADA interfaces and historian-integrated alerting; the longer end-to-
end delays in edge and hybrid conditions reflected the additional processing and transmission steps
required in those architectures (Martyushev et al., 2023). However, the feasibility results also showed
that these delays remained within operationally manageable seconds-level ranges rather than
expanding to disruptive scales, which matched earlier deployments that successfully integrated edge
analytics with SCADA alarm systems when pipelines were engineered for reliability. The slight
increase in event upload rate in edge and hybrid conditions also corresponded to prior observations
that higher sensitivity systems created more candidate events; in this study, that increase did not
translate into higher nuisance-alert share, suggesting that event generation and alerting decisions
remained distinguishable stages. Earlier governance-oriented studies emphasized that deployment
success depended on monitoring system health and ensuring consistent model versions across
distributed nodes; the reliability, validity, and collinearity results here reinforced that importance by
showing that stable measurement and stable inference depended on controlled feature pipelines and
reduced redundancy (Alowais et al., 2023). Overall, the feasibility findings were consistent with earlier
work that treated architecture choice as a multi-objective balance: compute and latency costs increased
with edge processing, while predictive performance and bandwidth efficiency improved, and the
hybrid condition achieved the most favorable performance profile while retaining operationally
acceptable system overhead.

The integrated interpretation of findings across descriptive, correlational, reliability, collinearity, and
regression evidence supported an architecture-sensitive understanding of predictive maintenance that
corresponded closely with earlier conceptual models in industrial analytics (Allioui & Mourdi, 2023).
Prior research frequently argued that predictive maintenance outcomes depended on the joint
configuration of sensing, data quality, preprocessing, modeling, thresholding, and operational
integration, and the present results demonstrated that architecture altered several of these components
simultaneously. SCADA-only deployment emphasized centralized context and low overhead while
exhibiting higher redundancy among predictors and weaker early fault sensitivity, a pattern consistent
with earlier historian-based risk scoring studies. Edge-only deployment improved early detection and
precision under alert constraints while increasing compute cost and requiring stronger regime control,
reflecting patterns documented in waveform-driven condition monitoring research. Hybrid
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deployment combined the strengths of both layers by improving detection odds, increasing lead time,
reducing nuisance alerts, and stabilizing performance across operating regimes, while introducing
manageable resource and integration overhead (Gopalakrishnan et al., 2022). Earlier methodological
critiques of predictive maintenance research emphasized leakage prevention, robust validation, and
transparency about label quality; the multi-tier event definitions, time-based splitting, regime
stratification, and alignment validation applied in this study addressed those concerns and yielded
results that remained significant under credibility controls. Earlier discussions of operational burden
and alarm fatigue emphasized that alert quality and alert volume determined adoption and
effectiveness; this study’s fixed-budget comparisons and burden metrics provided quantitative
evidence that architecture influenced manageability, not only accuracy. Across these dimensions, the
findings were consistent with the broader research trajectory that treated SCADA-to-edge predictive
maintenance as a system-level problem rather than a single-model problem, where the measured
benefits emerged from combining contextual telemetry with high-resolution signal evidence under
disciplined evaluation and governance controls (Alamer, 2022). The discussion therefore situated the
study’s results within established evidence patterns in smart manufacturing predictive maintenance
research by demonstrating quantitatively how placement, data fidelity, and context integration shaped
predictive performance, stability across regimes, and operational feasibility in motor-drive monitoring
environments.

CONCLUSION

The study titled Al-Driven Predictive Maintenance for Motor Drives in Smart Manufacturing: A
SCADA-to-Edge Deployment Study was discussed as a quantitative investigation that examined how
predictive maintenance effectiveness changed when analytics were implemented using supervisory
telemetry alone, high-rate edge telemetry alone, or a fused SCADA-to-edge architecture that combined
contextual plant signals with waveform-level evidence. The discussion emphasized that the observed
performance differences were consistent with widely reported patterns in the predictive maintenance
literature on smart manufacturing and rotating machinery, where SCADA and historian data were
frequently described as highly valuable for longitudinal monitoring, alarm context, and exposure
tracking but structurally constrained by low sampling density, compression, and delayed event
signaling relative to early fault physics. In this study, SCADA-only models demonstrated measurable
predictive value near fault manifestation through correlated increases in current, temperature, alarm
recurrence, and stop indicators, yet they also exhibited higher predictor redundancy and a higher
nuisance-alert share under fixed alert-budget constraints, which aligned with prior industrial
deployments reporting that historian-driven risk scoring could be scalable and low overhead while
remaining sensitive to process variability and alarm noise. The discussion further interpreted the edge-
only results through the lens of earlier high-frequency condition monitoring studies that highlighted
the diagnostic richness of waveform-level electrical and mechanical signals, showing that edge-derived
anomaly scores, health indices, and learned representations were more strongly associated with
verified failure proximity and delivered materially longer actionable lead time than supervisory
analytics, while requiring greater local compute and introducing modestly longer end-to-end alert
delay due to feature extraction and transmission. Consistent with earlier work emphasizing regime
dependence in variable-speed environments, regime stratification and context conditioning were
discussed as critical elements that increased repeatability and interpretability of edge indicators and
reduced confounding from normal speed and load changes, with reliability evidence showing stable
behavior across repeated nominal cycles within comparable regimes. The hybrid fusion outcomes were
interpreted as a system-level confirmation of earlier arguments that combining supervisory context
with edge fidelity improved both discrimination and manageability, since the hybrid configuration
produced the strongest event detection odds, the highest precision under the same alert budget, the
lowest false alarm density per operating hour, and the most stable performance across speed/load
strata, while also exhibiting reduced collinearity after supervisory composites were applied and
yielding stable regression coefficients under clustering controls. The discussion highlighted that these
gains were not obtained by increasing alert volume, because improvements occurred alongside
reduced nuisance-alert share, indicating that fusion helped contextualize high-rate deviations and filter
regime-driven artifacts that often-inflated alarm burden in single-layer systems. The feasibility results
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were discussed in relation to earlier SCADA-to-edge architecture studies that described predictable
tradeoffs between performance and resource costs, where edge and hybrid inference increased latency
and compute utilization but achieved substantial bandwidth reduction through feature-level reporting
rather than raw streaming and maintained operationally acceptable dashboard delivery delays
measured in seconds rather than disruptive timescales. Finally, the discussion connected these
outcomes to methodological critiques in earlier predictive maintenance research by noting that leakage
prevention through time-based evaluation, asset-level clustering, regime stratification, and explicit
alignment validation strengthened the credibility of architecture comparisons, while multi-tier event
definitions addressed known limitations in industrial ground truth derived from work orders and fault
codes. Overall, the discussion treated the findings as consistent with the broader evidence base showing
that predictive maintenance performance in smart manufacturing motor-drive environments was
shaped by architecture-level decisions about data fidelity and context integration as much as by model
choice, and that measurable improvements in detection quality, lead time, and operational burden
emerged most strongly when SCADA context and edge-level signal evidence were combined under
disciplined evaluation and governance controls.

RECOMMENDATIONS

Recommendations for Al-Driven Predictive Maintenance for Motor Drives in Smart Manufacturing: A
SCADA-to-Edge Deployment Study were framed as actionable, architecture-specific steps that could
be implemented to strengthen predictive performance, reduce operational burden, and preserve
quantitative validity in real plant conditions while maintaining auditability and system reliability. A
hybrid SCADA-to-edge configuration was recommended as the primary deployment pattern for
motor-drive predictive maintenance because the comparative results supported those integrated
designs balanced contextual interpretability with high-rate fault sensitivity, enabling improved alert
precision under fixed alert budgets, reduced nuisance-alert share, and increased actionable lead time
while maintaining stable behavior across speed and load regimes. SCADA-only analytics were
recommended as a baseline layer for coverage and governance, particularly for plants with limited
edge instrumentation, because historian variables provided robust long-horizon exposure indicators
and direct integration into existing maintenance workflows; however, supervisory deployments were
recommended to include stricter alarm hygiene controls such as nuisance-alarm filtering, tag
normalization within operating regimes, and composite construction for stress and disturbance
indicators to reduce redundancy and prevent unstable multivariate inference. Edge deployments were
recommended to prioritize a minimal but high-value sensing set—phase currents and voltages
complemented by vibration where feasible — paired with deterministic windowing rules and regime-
aware segmentation so that feature stability remained high across repeated cycles and so that transient-
heavy windows did not inflate false alarms; edge pipelines were also recommended to compute
compact feature summaries and event-triggered waveform captures rather than continuous raw
streaming in order to preserve bandwidth efficiency and reduce storage pressure. Across all
architectures, rigorous time synchronization and event anchoring were recommended as mandatory
measurement controls, with alignment error tracking maintained as a monitored KPI because
misalignment was associated with degraded predictive performance in transient phases;
synchronization protocols were recommended to use shared event anchors such as start commands,
speed threshold crossings, and fault-code onset markers, with periodic clock drift checks at the edge.
For model governance, strict versioning and rollback controls were recommended so that model and
preprocessing changes could be traced to alert behavior changes, and operational monitoring was
recommended to track drift in feature distributions, score distributions, and alert density over time,
with predefined triggers for investigation when sustained shifts occurred. Data integrity controls were
recommended to quantify missingness, dropout episodes, and sensor drift at the asset-week level and
to evaluate model robustness under dropout simulation so that reliability could be maintained even
when telemetry degraded. For evaluation practice, it was recommended that plants adopt leakage-
resistant validation protocols that matched deployment goals, including time-based splits for forward
realism, asset-wise holdouts for new-drive generalization, and site-wise holdouts when multi-plant
deployment was intended; performance reporting was recommended to include regime-stratified
summaries so that stability across speed/load bands was visible rather than masked by aggregated
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averages. Finally, it was recommended that maintenance integration emphasize operational
manageability by adopting fixed alert-budget policies, prioritization queues, and clear escalation
pathways into SCADA dashboards and work-order systems, ensuring that improved detection
translated into consistent maintenance action without increasing workload volatility.

LIMITATION

Limitations associated with Al-Driven Predictive Maintenance for Motor Drives in Smart
Manufacturing: A SCADA-to-Edge Deployment Study were interpreted as constraints that shaped the
scope, generalizability, and measurement certainty of the reported quantitative results, particularly
because predictive maintenance performance in industrial settings depended heavily on event rarity,
data quality, and operational heterogeneity. A primary limitation concerned the dependence on field-
available ground truth derived from maintenance work orders, downtime logs, and fault-code
histories, which were known to contain reporting lag, incomplete root-cause attribution, and
inconsistent documentation detail, thereby introducing label uncertainty for both failure timing and
fault categorization. Although multi-tier event definitions reduced this ambiguity by separating
confirmed failures from verified defects and operational abnormalities, residual label noise may have
influenced measured detection timing and may have affected classification boundaries between
degradation and process disturbances. A second limitation was the imbalance structure inherent to
motor-drive failure data, where long periods of nominal operation were paired with relatively few Tier-
1 events, making performance estimates sensitive to event distribution across time and regimes and
increasing uncertainty around rare fault modes that occurred only a small number of times. Even when
alert-budget evaluation reduced the risk of overly optimistic accuracy reporting, event scarcity
constrained the precision of effect estimates for certain subgroups and limited the depth of fault-type
comparisons. A third limitation involved instrumentation and telemetry constraints: SCADA tags were
subject to compression, polling jitter, and occasional missingness, while edge telemetry depended on
local device uptime, sensor mounting stability, and high-rate sampling consistency, all of which could
introduce drift or dropout patterns that were not uniform across assets. Although alignment error was
quantified and used to evaluate construct validity, synchronization imperfections could still have
introduced mislabeling of windowed data around transient events, especially in operating phases
where informative signatures were concentrated in short intervals. A fourth limitation concerned
operating regime heterogeneity and process variability, because motor drives experienced different
speed/load distributions, recipe changes, and environmental conditions across shifts, and not all
contextual covariates may have been captured explicitly in the available SCADA tags. Regime
stratification reduced confounding, yet residual unmeasured process factors could have influenced
both predictor behavior and failure likelihood, which could have affected estimated architecture effects
in regression models. Another limitation related to architectural comparability: SCADA-only, edge-
only, and hybrid pipelines differed not only in predictive inputs but also in processing latency, compute
environment, and data reduction strategies, meaning that performance comparisons reflected
combined system behavior rather than a purely algorithmic contrast, and this system-level nature
limited direct attribution of gains to any single modeling element. Finally, feasibility metrics such as
CPU utilization, memory footprint, and alert delay were measured under specific windowing
schedules and hardware configurations, and these values could vary under different edge platforms,
sampling rates, or integration designs, which constrained the transferability of specific feasibility
figures even when relative tradeoff patterns remained consistent.
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