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Abstract 
Additive manufacturing, particularly fused deposition modeling (FDM), enables the fabrication of complex 
polymer components; however, achieving simultaneous optimization of mechanical and thermal performance 
remains challenging due to the nonlinear and interdependent nature of process parameters. This study presents 
an empirical hybrid optimization framework integrating an Artificial Neural Network (ANN) with a Genetic 
Algorithm (GA) to optimize the mechanical and thermal properties of FDM-fabricated components. A 
quantitative experimental design was employed, generating an empirical dataset from 120 printed specimens 
produced across 40 experimental runs with systematic variation of layer thickness (0.12–0.28 mm), raster angle 
(0–90°), infill density (25–100%), print speed (35–75 mm/s), and extrusion temperature (195–235 °C). 
Mechanical testing results showed tensile strength values ranging from 43.7 ± 2.9 MPa to 52.8 ± 3.1 MPa 
across build orientations, flexural strength from 76.8 ± 4.7 MPa to 88.2 ± 4.5 MPa, and elastic modulus from 
2.05 ± 0.07 GPa to 2.42 ± 0.08 GPa. Thermal measurements indicated thermal conductivity values between 
0.26 ± 0.02 W/m·K and 0.31 ± 0.02 W/m·K, with warpage ranging from 0.42 ± 0.06 mm to 0.61 ± 0.07 mm. 
The ANN achieved high predictive accuracy, with R² values of 0.94 for mechanical properties and 0.92 for 
thermal properties. GA-based optimization identified parameter configurations that improved tensile strength 
by 8.4 MPa, flexural strength by 11.2 MPa, elastic modulus by 0.29 GPa, and thermal conductivity by 0.06 
W/m·K, while reducing warpage by 0.17 mm and dimensional change by 0.28% relative to baseline conditions. 
Empirical validation confirmed close agreement between predicted and measured results, demonstrating the 
effectiveness of the hybrid GA–ANN framework for data-driven optimization of FDM process parameters. 
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INTRODUCTION 
Additive manufacturing (AM), commonly referred to as three-dimensional (3D) printing, is defined as 
a layer-wise fabrication process in which digital models are translated into physical objects through 
material deposition or solidification (Ahlfeld et al., 2016). Among various AM techniques, fused 
deposition modeling (FDM) has emerged as one of the most widely adopted methods due to its cost 
efficiency, material versatility, and accessibility across industrial and research domains (Atzeni & 
Salmi, 2012). FDM operates by extruding thermoplastic filaments through a heated nozzle, depositing 
material in successive layers to form a final component (Cantrell et al., 2017). The mechanical and 
thermal properties of FDM-fabricated parts are inherently dependent on a complex interaction of 
process parameters, including layer thickness, raster angle, infill density, print speed, and extrusion 
temperature (Zadpoor & Malda, 2016). Mechanical properties typically refer to tensile strength, elastic 
modulus, impact resistance, and fatigue behavior, whereas thermal properties encompass thermal 
conductivity, heat resistance, and dimensional stability under temperature variations (Faria, 2017). 
These properties are critical for applications in aerospace, automotive, biomedical, and energy systems, 
where functional performance is closely tied to structural integrity and thermal management (Kundu 
et al., 2013). At the international level, AM has been recognized by organizations such as the World 
Economic Forum and the International Energy Agency as a transformative manufacturing paradigm 
influencing global supply chains and sustainable production practices (Weisman et al., 2015). As AM 
adoption expands across developed and developing economies, optimizing the performance 
characteristics of printed components becomes a global engineering priority. 
 

Figure 1: Additive manufacturing (AM) and Fused Deposition Modelling 

 
 
The optimization of thermal and mechanical properties in FDM-printed components presents a 
significant scientific challenge due to the anisotropic and heterogeneous nature of layer-wise 
fabrication. Unlike conventionally manufactured parts, FDM components exhibit direction-dependent 
strength resulting from interlayer bonding quality and thermal history during printing. Thermal 
conductivity in polymer-based FDM parts is influenced by porosity, raster orientation, and air gaps 
between deposited filaments, leading to reduced heat transfer efficiency compared to bulk materials 
(Jinnat & Kamrul, 2021; Visser et al., 2013). Mechanical strength is similarly affected by insufficient 
polymer diffusion across layers, residual stresses, and non-uniform cooling rates (Zadpoor, 2014; 
Zulqarnain & Subrato, 2021). These issues are observed across international manufacturing contexts, 
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from high-precision aerospace prototyping in the United States to low-cost functional manufacturing 
in emerging economies. Empirical studies consistently demonstrate that adjusting a single process 
parameter rarely leads to uniform improvements across multiple performance metrics (Ahlfeld et al., 
2016; Akbar & Sharmin, 2022). For instance, increasing extrusion temperature may enhance interlayer 
adhesion and tensile strength while simultaneously degrading dimensional accuracy and thermal 
stability. Similarly, higher infill densities improve load-bearing capacity but alter heat dissipation 
behavior and material consumption rates (Foysal & Subrato, 2022; Melchels et al., 2014).  
Traditional approaches for optimizing FDM process parameters have largely relied on experimental 
design methods such as Taguchi techniques, response surface methodology (RSM), and factorial 
analysis (Vanaei, Deligant, et al., 2020) While these methods provide structured experimentation 
frameworks, they often assume linear or weakly nonlinear relationships among variables and are 
limited in handling high-dimensional design spaces (Melchels et al., 2014). In the context of 3D printing, 
the interactions among thermal, mechanical, and geometric factors exhibit strong nonlinearity, 
rendering conventional statistical models insufficient for accurate prediction and optimization 
(Wieding et al., 2012). Moreover, experimental trial-based optimization is resource-intensive, requiring 
substantial material usage, machine time, and labor, which constrains scalability in industrial 
environments (Abdul, 2023; Yu & Ozbolat, 2014; Zulqarnain, 2022). International manufacturing sectors 
increasingly demand data-driven and adaptive optimization strategies to reduce costs and enhance 
reproducibility across geographically distributed production facilities. Studies have shown that single-
objective optimization frameworks fail to capture trade-offs between thermal and mechanical 
performance, often prioritizing one property at the expense of another (Hammad & Muhammad 
Mohiul, 2023; Hasan & Waladur, 2023; Melchels et al., 2014). These constraints underscore the need for 
computational intelligence techniques capable of learning complex mappings from process parameters 
to multiple performance metrics simultaneously (Demir, 2021). 
The primary objective of this study is to develop and empirically validate a robust hybrid optimization 
framework that integrates a Genetic Algorithm with an Artificial Neural Network to enhance the 
thermal and mechanical properties of 3D-printed components fabricated using fused deposition 
modeling. This objective is grounded in the need to systematically address the complex, nonlinear, and 
interdependent relationships among key process parameters and multiple performance outcomes 
within additive manufacturing environments. The study aims to construct a reliable predictive model 
capable of accurately mapping critical printing parameters such as layer thickness, infill density, print 
speed, raster orientation, and extrusion temperature to mechanical properties including tensile 
strength, elastic modulus, and structural integrity, alongside thermal characteristics such as heat 
transfer behavior, temperature resistance, and thermal stability. Another central objective is to enable 
simultaneous multi-objective optimization rather than isolated single-property enhancement, ensuring 
balanced improvement across both thermal and mechanical domains. The research further seeks to 
reduce dependence on trial-and-error experimentation by establishing a data-driven optimization 
process that minimizes material waste, experimental time, and operational cost while maintaining high 
prediction accuracy. An additional objective is to evaluate the effectiveness of the hybrid framework 
under empirically derived conditions, ensuring that optimization outcomes are validated through 
controlled experimental measurements rather than purely simulated results. The study also aims to 
explore the scalability and adaptability of the proposed framework across different operational settings 
and material configurations within polymer-based additive manufacturing. By integrating 
evolutionary search capabilities with learning-based predictive modeling, the research objective 
extends to demonstrating the feasibility of intelligent decision-support systems for process parameter 
selection in complex manufacturing scenarios. Collectively, these objectives are structured to advance 
systematic optimization practices in additive manufacturing by enabling accurate prediction, efficient 
optimization, and empirical validation of thermal–mechanical performance in 3D-printed components. 
LITERATURE REVIEW 
The literature review section establishes a structured and critical foundation for examining existing 
scholarly work related to additive manufacturing process optimization, with particular emphasis on 
thermal and mechanical property enhancement in fused deposition modeling. This section synthesizes 
prior research across multiple disciplinary streams, including material science, manufacturing 
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engineering, computational intelligence, and data-driven optimization. The review is organized to 
progressively examine foundational studies on 3D printing process parameters, followed by empirical 
investigations into thermal and mechanical performance characteristics of printed components. It 
further explores the evolution of optimization methodologies, transitioning from traditional 
experimental and statistical approaches to advanced artificial intelligence–based techniques. Special 
attention is given to the independent and combined applications of Artificial Neural Networks and 
Genetic Algorithms within manufacturing optimization contexts. By systematically organizing the 
literature into thematically coherent subsections, this review identifies methodological patterns, 
empirical consistencies, and conceptual gaps that inform the necessity of hybrid optimization 
frameworks. The section also contextualizes global research contributions, highlighting international 
perspectives and cross-sectoral applications that underscore the widespread relevance of intelligent 
optimization in additive manufacturing systems. This structured examination provides the analytical 
basis for positioning the present study within the existing body of knowledge and for justifying the 
proposed hybrid GA–ANN framework as a methodologically rigorous extension of prior work. 
Additive Manufacturing and Fused Deposition Modeling 
Additive manufacturing is broadly defined in the literature as a group of manufacturing technologies 
that fabricate physical objects through the sequential addition of material based on digital design data, 
distinguishing it fundamentally from subtractive and formative manufacturing processes (Telfer et al., 
2012). Scholarly classifications commonly categorize additive manufacturing technologies into material 
extrusion, material jetting, binder jetting, powder bed fusion, directed energy deposition, vat 
photopolymerization, and sheet lamination, each differing in material state, energy source, and 
consolidation mechanism (Yavari et al., 2016). Among these classifications, material extrusion 
processes—particularly fused deposition modeling—are consistently identified as the most accessible 
and widely implemented due to their relative simplicity, cost-effectiveness, and adaptability to 
polymer-based materials. Academic studies emphasize that additive manufacturing enables 
unprecedented geometric freedom, mass customization, and decentralized production, contributing to 
its rapid adoption across research laboratories and industrial settings worldwide (Jelínek & Breedveld, 
2015). The literature further highlights that the classification of additive manufacturing technologies is 
not solely technical but also functional, as different processes are selected based on performance 
requirements, material constraints, and application domains (Atzeni & Salmi, 2012). Comparative 
studies demonstrate that polymer-based additive manufacturing techniques dominate non-metallic 
applications due to lower processing temperatures and reduced energy consumption. Within this 
context, fused deposition modeling occupies a central position in both academic research and industrial 
prototyping, frequently serving as a benchmark process for studying process–structure–property 
relationships in additive manufacturing. 
Fused deposition modeling is operationally defined as a material extrusion process in which a 
continuous thermoplastic filament is fed into a heated nozzle, melted, and deposited in a 
predetermined path to construct parts layer by layer (Wieding et al., 2012). The operational principles 
of FDM are governed by coordinated interactions between thermal control, mechanical motion 
systems, and digital slicing algorithms that translate three-dimensional models into toolpaths 
(Zadpoor, 2014). Literature consistently describes the extrusion temperature, nozzle diameter, print 
speed, and raster orientation as primary operational variables influencing deposition quality and part 
integrity. The extrusion process requires precise thermal regulation to ensure adequate filament 
melting while preventing material degradation or flow instability. Studies examining toolpath 
strategies report that raster patterns and deposition sequences significantly affect internal stress 
distribution and structural continuity within printed parts (Salmi et al., 2013). The layer-by-layer 
deposition approach inherently introduces anisotropy, as bonding strength between adjacent filaments 
and successive layers differs from the strength within continuous extruded roads. Research further 
indicates that machine calibration, motion accuracy, and environmental conditions such as ambient 
temperature play critical roles in ensuring consistent extrusion behavior and dimensional accuracy 
(Chacón et al., 2017). These operational principles collectively form the basis for understanding how 
process control in FDM governs the physical and functional characteristics of printed components. 
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Material feedstock characteristics and thermoplastic behavior are extensively discussed in additive 
manufacturing literature due to their direct influence on printability, bonding quality, and final part 
performance. Thermoplastics commonly used in FDM, such as acrylonitrile butadiene styrene, 
polylactic acid, polyethylene terephthalate glycol, and polycarbonate, exhibit distinct thermal 
transitions, melt viscosities, and crystallization behaviors that affect extrusion and solidification 
dynamics (Rifat & Rebeka, 2023; Salmi et al., 2013; Zulqarnain & Subrato, 2023). Studies emphasize that 
filament diameter consistency, moisture content, and molecular weight distribution significantly 
impact extrusion stability and layer adhesion. The viscoelastic nature of thermoplastics governs their 
flow through the nozzle and their ability to form strong interfacial bonds upon cooling. Research 
examining semi-crystalline and amorphous polymers highlights differences in shrinkage behavior, 
thermal contraction, and residual stress formation during cooling (Masud & Hossain, 2024; Md & Sai 
Praveen, 2024; Zuniga et al., 2015). Material modification studies further demonstrate that fillers, 
reinforcements, and polymer blends alter thermal conductivity and mechanical stiffness while 
introducing additional complexity in extrusion behavior. These findings underscore the importance of 
material-specific analysis in FDM research, as thermoplastic behavior directly interacts with process 
parameters to determine both thermal and mechanical performance outcomes (Atzeni & Salmi, 2012). 

 
Figure 2: Additive Manufacturing and Fused Deposition Modeling 

 
 
Layer-wise fabrication mechanisms and interlayer bonding phenomena constitute a central theme in 
FDM literature due to their dominant role in defining structural integrity and anisotropic behavior 
(Ahlfeld et al., 2016). The formation of interlayer bonds is primarily governed by thermal diffusion and 
polymer chain entanglement occurring at the interface between newly deposited and previously 
solidified layers (Visser et al., 2013). Studies consistently report that insufficient thermal energy at the 
bonding interface leads to weak interlayer adhesion and reduced mechanical strength in the build 
direction (Wieding et al., 2012). The cooling rate between layer depositions influences molecular 
mobility and interdiffusion, thereby affecting bond formation and residual stress accumulation. 
Research also demonstrates that raster orientation and layer thickness modify contact area and heat 
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retention, further influencing bonding quality. From an international perspective, FDM adoption spans 
aerospace prototyping, automotive tooling, biomedical devices, and consumer products, reflecting its 
versatility across industrial sectors. Comparative studies indicate that industries worldwide leverage 
FDM for rapid prototyping, low-volume production, and functional testing due to its adaptability and 
material efficiency (Kundu et al., 2013; Nahid & Bhuya, 2024; Newaz & Jahidul, 2024). This widespread 
adoption reinforces the scholarly emphasis on understanding fabrication mechanisms and bonding 
behavior as foundational elements of additive manufacturing research. 
Mechanical Properties of FDM Components 
Mechanical properties of fused deposition modeling components are strongly influenced by layer 
thickness and build orientation, which together govern the degree of anisotropy and load-bearing 
capability of printed parts. Numerous studies report that reduced layer thickness enhances tensile and 
flexural strength by increasing the number of interlayer interfaces and improving surface contact 
between adjacent layers (Vanaei, Deligant, et al., 2020). Thinner layers promote better thermal diffusion 
across deposited filaments, facilitating improved polymer chain entanglement and bonding strength in 
the build direction. Build orientation plays a critical role in determining the direction of applied load 
relative to layer interfaces, with specimens printed in orientations that align load paths parallel to 
extrusion roads exhibiting higher tensile strength and stiffness (Melchels et al., 2014). Conversely, 
vertically oriented builds tend to show reduced mechanical performance due to weaker interlayer 
adhesion acting as preferential failure planes. Flexural strength is similarly affected, as bending loads 
induce tensile and compressive stresses that amplify the influence of layer stacking geometry. 
Comparative analyses demonstrate that layer thickness and orientation effects are consistent across 
multiple polymer systems, underscoring their fundamental role in defining mechanical response 
(Atzeni & Salmi, 2012; Akbar, 2024; Rabiul & Alam, 2024). These findings collectively highlight the 
structural sensitivity of FDM components to geometric configuration at the layer scale. 
Raster angle and infill pattern are extensively examined in the literature as key determinants of 
anisotropic mechanical behavior in FDM-fabricated parts. Raster angle refers to the orientation of 
extruded filaments within each layer relative to the loading direction, while infill pattern defines the 
internal geometric architecture of the printed component (Yu & Ozbolat, 2014). Studies consistently 
show that raster orientations aligned with the principal stress direction yield higher tensile strength 
and modulus due to continuous load transfer along extrusion paths (Galati & Iuliano, 2018). 
Alternating raster angles introduce directional discontinuities that alter stress distribution and 
contribute to anisotropic failure behavior (Vaezi & Yang, 2015). Infill patterns such as rectilinear, 
honeycomb, and gyroid architectures influence mechanical performance by controlling internal load 
paths, density distribution, and deformation mechanisms (Pallari et al., 2010). Higher infill density 
generally improves stiffness and strength while increasing material usage and altering deformation 
modes. Research demonstrates that anisotropy arises not only from raster orientation but also from 
variations in filament bonding quality within complex infill geometries (Murr et al., 2010). These 
interdependencies emphasize that raster angle and infill pattern function as structural design variables 
that directly shape the mechanical anisotropy of FDM components. 
Print speed and extrusion temperature are widely recognized as critical process parameters influencing 
interlayer adhesion and overall mechanical integrity in fused deposition modeling. Extrusion 
temperature governs the thermal state of the polymer melt, affecting viscosity, flow behavior, and 
molecular mobility during deposition (Ponader et al., 2009). Elevated extrusion temperatures promote 
improved polymer diffusion across layer interfaces, enhancing interlayer bonding strength and tensile 
performance. Print speed determines the residence time of material at elevated temperatures and 
influences cooling rates between successive layer depositions. Higher print speeds reduce thermal 
exposure and can lead to insufficient bonding due to premature solidification, while slower speeds 
allow greater thermal diffusion and improved adhesion ((Galati & Iuliano, 2018). Empirical studies 
indicate that the interaction between print speed and extrusion temperature is non-linear, with optimal 
combinations required to balance material flow stability and bonding quality. Poorly optimized 
parameters result in void formation, weak interfaces, and stress concentration sites that degrade 
mechanical performance (Af et al., 2017; Sai Praveen, 2024; Azam & Amin, 2024). These findings 
reinforce the role of thermal–kinetic process control in defining interlayer adhesion mechanisms in 
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FDM-fabricated polymers. 
 

Figure 3: Mechanical Properties of FDM Components 

 
 
Structural integrity, fatigue resistance, and failure mechanisms in FDM-printed polymers have been 
extensively investigated to understand long-term mechanical reliability under static and cyclic loading 
conditions. Studies consistently report that failure in FDM components often initiates at interlayer 
boundaries or voids created during deposition, reflecting the layered nature of the fabrication process 
(Murr et al., 2012). Fatigue behavior is influenced by internal defects, anisotropic stiffness, and stress 
concentration arising from raster orientation and infill architecture. Comparative fatigue analyses 
reveal that components printed with higher infill densities and aligned raster orientations exhibit 
improved resistance to crack initiation and propagation (Galati & Iuliano, 2018). Material-specific 
investigations comparing acrylonitrile butadiene styrene, polylactic acid, polyethylene terephthalate 
glycol, and nylon indicate significant variation in tensile strength, ductility, and fracture behavior due 
to differences in polymer structure and thermal response (Vanaei, Shirinbayan, et al., 2020). ABS 
typically exhibits higher toughness and thermal resistance, while PLA demonstrates higher stiffness 
and brittleness under tensile loading (Pallari et al., 2010). PETG and nylon materials show improved 
interlayer adhesion and fatigue resistance under optimized processing conditions (Jahadakbar et al., 
2016). This comparative literature underscores that mechanical performance in FDM is governed by an 
interaction between material properties and process-induced structural features. 
Thermal Behavior and Heat Transfer Characteristics in 3D-Printed Parts 
Thermal behavior and heat transfer characteristics in polymer-based 3D-printed parts have been 
widely analyzed because temperature governs both in-process stability and the resulting functional 
performance of fused deposition modeling components. Thermal conductivity in FDM parts is 
frequently reported as markedly different from bulk polymer values due to the presence of process-
induced porosity, inter-road air gaps, and layered microstructures that interrupt continuous heat-
transfer pathways (Anouar El Magri et al., 2020). Studies examining process–structure–property 
relationships show that the raster configuration—defined by raster angle, road width, and deposition 
sequence—creates directional heat-flow anisotropy, where in-plane conduction along extruded roads 
differs from through-thickness conduction across layer interfaces. The layered architecture introduces 
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repeated thermal contact resistances at bead-to-bead and layer-to-layer junctions, lowering effective 
thermal conductivity and producing direction-dependent temperature gradients under service 
conditions (Zhang et al., 2012). Microstructural investigations attribute this effect to incomplete 
interfacial coalescence and nonuniform bonding, which limit phonon and molecular energy transport 
in polymer matrices. Empirical thermal measurements also indicate that changes in raster density and 
road overlap modify the proportion of polymer-to-air volume fraction, producing measurable changes 
in effective thermal conduction and thermal diffusivity. The thermal behavior of printed parts is 
therefore discussed as a coupled outcome of material thermal properties, geometric toolpath decisions, 
and the thermomechanical history created during deposition and cooling. Within this literature, 
thermal conductivity is not treated as a fixed material property but as an emergent characteristic that 
depends on printing strategy and internal architecture, with porosity and raster configuration 
repeatedly identified as dominant factors shaping heat transfer in FDM components (Tappa & 
Jammalamadaka, 2018). 
Infill density is another central parameter shaping heat dissipation and thermal insulation behavior 
because it directly controls internal solid fraction, void topology, and the continuity of conductive 
pathways within the part. Across experimental studies, increasing infill density is associated with 
higher effective thermal conductivity and improved heat spreading because a larger fraction of the 
cross-section is occupied by polymer rather than air, reducing thermal contact resistance associated 
with void networks (Yih-Lin & Chen, 2017). Conversely, lower infill densities often yield stronger 
thermal insulation performance due to the increased presence of trapped air, which has comparatively 
low thermal conductivity and acts as a barrier to heat flow (Wang et al., 2015). Research on lattice- and 
pattern-based infills indicates that infill geometry (rectilinear, honeycomb, gyroid, and related 
structures) alters not only mechanical stiffness but also thermal behavior by changing the orientation 
and continuity of internal struts relative to heat-flow direction. For polymer FDM components, these 
structural variations influence convective and radiative heat exchange within internal cavities in 
addition to conduction through the polymer phase, especially when voids are interconnected and allow 
internal air movement under temperature gradients (Duan, 2016). Studies on heat dissipation under 
localized heating further report that denser infill patterns reduce peak temperatures and shorten 
thermal time constants by enabling more efficient energy diffusion away from hotspots. At the same 
time, investigations emphasize that thermal response is inseparable from processing conditions, 
because the same nominal infill density can produce different void morphologies depending on 
extrusion temperature, deposition width, and bead placement accuracy (Williams et al., 2018). This 
body of work treats infill density as a design and processing variable that simultaneously controls 
internal architecture and thermophysical performance, creating measurable shifts in whether a printed 
part behaves more like a heat spreader or a thermal insulator under comparable boundary conditions 
(Duan, 2016). 
Thermal degradation, warpage, and dimensional stability during printing are recurrent topics in the 
additive manufacturing literature because polymer processing requires sustained heating, repeated 
thermal cycling, and controlled cooling, all of which shape both print quality and service properties. 
Thermal degradation in thermoplastics is often associated with excessive residence time at elevated 
temperatures, oxidation, chain scission, and changes in melt viscosity that can destabilize extrusion and 
reduce interlayer bonding quality (A. El Magri et al., 2020). Material extrusion processes also exhibit 
warpage driven by nonuniform shrinkage and thermal contraction as deposited roads cool from 
extrusion temperature toward ambient conditions (Wang et al., 2015). Studies analyzing dimensional 
accuracy report that differential cooling rates across the part volume create bending moments and 
curling, particularly near corners, overhangs, and regions with abrupt cross-sectional changes where 
heat extraction is uneven (Gong et al., 2020). Dimensional stability is frequently linked to a combination 
of polymer thermal expansion coefficients, glass transition behavior, crystallization kinetics (for semi-
crystalline polymers), and the thermal management strategy of the printer environment (e.g., bed 
temperature, chamber temperature, and cooling fan settings) (Williams et al., 2018). 
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Figure 4: Thermal Behavior and Heat Transfer Characteristics in 3D-Printed Parts 

 
 
The literature further documents that warpage intensity and geometric distortion are sensitive to layer 
thickness, deposition path planning, and infill arrangement because these factors govern heat 
accumulation and thermal gradients during the build (Ji & Guvendiren, 2017). Empirical process 
studies note that stabilizing dimensional outcomes requires consistent extrusion flow and controlled 
interlayer thermal conditions; irregular bead geometry or poor contact can amplify localized cooling 
and create residual voids that change shrinkage patterns (Wang et al., 2015). Across these 
investigations, thermal degradation and warpage are treated as thermally induced process instabilities 
with direct links to dimensional tolerances, surface integrity, and repeatability of printed components, 
and they are evaluated through combined thermal characterization, geometric metrology, and 
mechanical testing of printed specimens. 
Residual thermal stresses and their influence on mechanical performance represent a major intersection 
between thermal and structural behavior in polymer additive manufacturing, since the layer-wise 
process generates complex thermal histories that translate into locked-in stresses after cooling. Thermal 
gradients during deposition and subsequent cooling are recognized as primary drivers of residual 
stress, arising from constrained thermal contraction between newly deposited hot material and 
previously cooled layers, as well as between the part and the build platform (Williams et al., 2018). 
These stresses have been linked to interlayer delamination, cracking, and dimensional distortion, and 
they also contribute to altered mechanical response by changing local stress states before external loads 
are applied (Ji & Guvendiren, 2017). Experimental and modeling studies show that residual stresses 
interact with anisotropic microstructures, so cracks may propagate preferentially along weaker layer 
interfaces or through void-rich regions, thereby reducing tensile strength and fatigue resistance under 
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cyclic loading (Vanaei et al., 2022). Material-specific thermal responses further complicate this 
relationship, as polymers such as ABS, PLA, PETG, nylon, and polycarbonate differ in glass transition 
temperature, crystallinity, thermal expansion behavior, and susceptibility to thermal aging, which 
collectively affect the magnitude and distribution of residual stress generated during printing (Duan, 
2016). For semi-crystalline polymers, crystallization during cooling introduces additional volumetric 
changes and stiffness evolution that can intensify stress concentrations or alter warpage behavior, while 
amorphous polymers exhibit different relaxation dynamics around glass transition. Comparative 
studies also report that thermal management strategies (heated bed, enclosure temperature control, 
and cooling rate regulation) influence residual stress formation by reducing thermal gradients and 
extending interlayer diffusion time, which affects both bonding strength and the likelihood of 
thermally driven defects. In this literature, thermal behavior is therefore treated as a primary 
contributor to mechanical performance variability in FDM parts through the combined effects of 
residual stress formation, interlayer bonding evolution, and material-specific thermal transitions that 
govern deformation and fracture behavior. 
Optimization Techniques in Additive Manufacturing 
Design of experiments (DOE) has been extensively adopted in fused deposition modeling (FDM) 
research as a structured methodology for investigating how multiple process parameters jointly affect 
part quality and performance. DOE is typically defined as a systematic approach to planning, 
conducting, analyzing, and interpreting controlled tests to evaluate the factors that control the value of 
a parameter or a group of parameters (Vaezi et al., 2012). Within additive manufacturing, DOE 
frameworks have been used to quantify the influence of controllable variables such as layer thickness, 
raster angle, print speed, extrusion temperature, air gap, and infill density on outcomes that include 
tensile strength, flexural strength, surface roughness, dimensional accuracy, and build time (Duan, 
2016). Full factorial and fractional factorial designs are frequently employed to screen significant factors 
and interaction effects, particularly when the objective is to identify dominant contributors under a 
limited number of experimental runs (Vanaei, Raissi, et al., 2020). Orthogonal arrays and other reduced-
run strategies are often preferred in AM because physical experimentation can be time-consuming and 
material-intensive, especially when mechanical testing requires multiple replicates for statistical 
reliability. Empirical FDM studies using DOE commonly report that interaction effects between 
thermal and kinematic parameters (e.g., extrusion temperature × print speed, layer thickness × raster 
angle) are nontrivial and can materially shift the observed performance trends, reinforcing the need for 
multivariate experimental structures rather than one-factor-at-a-time testing. DOE-based 
investigations also serve as the backbone for generating datasets used in subsequent predictive 
modeling and optimization, enabling researchers to map process–property relationships under 
controlled, reproducible conditions. Across this literature, DOE is treated as both an inference tool (to 
establish factor effects) and a data-generation instrument (to support optimization and surrogate 
modeling), with many studies emphasizing careful selection of factor levels, replication strategies, and 
randomization to address process variability inherent in FDM systems ((Williams et al., 2018). 
Taguchi methods constitute one of the most widely cited DOE-derived approaches in additive 
manufacturing optimization studies, largely because they provide a pragmatic route to parameter 
sensitivity analysis using orthogonal arrays and signal-to-noise (S/N) ratio metrics (Vanaei et al., 2022). 
In FDM research, Taguchi designs have been applied to identify parameter settings that stabilize 
performance outcomes against noise factors such as ambient conditions, filament variability, and 
machine drift, with S/N formulations commonly selected based on “larger-is-better,” “smaller-is-
better,” or “nominal-is-best” quality objectives (Gong et al., 2020). Numerous studies employ Taguchi 
frameworks to rank the relative influence of layer thickness, raster angle, infill density, print speed, and 
extrusion temperature on mechanical properties and surface quality, often reporting layer thickness 
and raster angle among the most influential factors for strength, and layer thickness and print speed 
among the most influential for surface roughness (Magri et al., 2021). The use of analysis of variance 
(ANOVA) alongside Taguchi arrays is a recurring pattern, enabling researchers to attribute variance 
proportions to factors and to test statistical significance while retaining the economical run structure of 
orthogonal arrays (Ji & Guvendiren, 2017).  
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Figure 5: Optimization Techniques in Additive Manufacturing 

 
 
Taguchi-based sensitivity results are also frequently used to reduce the dimensionality of subsequent 
modeling efforts, where only the top-ranked variables are carried forward into more complex 
optimization procedures (Wang et al., 2015). At the same time, AM-focused studies note that Taguchi 
methods, when used alone, often emphasize main effects more than interaction structure, and this can 
be limiting in FDM systems characterized by coupled thermal–mechanical phenomena. Infill density, 
for example, can interact with raster configuration and print speed by altering local heat retention and 
cooling profiles, while extrusion temperature interacts with print speed by affecting polymer viscosity, 
bead geometry, and interlayer diffusion time. Consequently, Taguchi methods in the AM literature are 
often positioned as an efficient screening and sensitivity tool, particularly suited for early-stage 
experimentation and parameter ranking under constrained resources (Lee et al., 2017). 
Response surface methodology (RSM) is frequently applied in additive manufacturing research as a 
multi-variable modeling and optimization approach designed to approximate complex relationships 
between process factors and response variables through polynomial regression and surface analysis (Ji 
& Guvendiren, 2017). In FDM optimization studies, RSM has been used to model both mechanical 
responses (e.g., tensile strength, flexural strength) and quality responses (e.g., surface roughness, 
dimensional error) as functions of multiple interacting parameters, enabling contour and surface plots 
that visualize trade-offs and identify stationary points under specified constraints. Central composite 
designs and Box–Behnken designs are common RSM experiment structures because they support 
efficient estimation of linear, quadratic, and interaction terms while keeping the number of runs 
manageable relative to full factorial designs. Empirical AM papers using RSM often report that 
quadratic terms can be material for parameters such as extrusion temperature and print speed, 
reflecting nonlinear influences on bead formation, porosity, and interlayer bonding behavior ((Wang 
et al., 2015). RSM has also been integrated with desirability functions to handle multiple responses, 
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transforming competing objectives into a unified scalar function that allows simultaneous optimization 
of, for example, strength improvement and roughness reduction. In AM contexts, this approach is 
frequently used to balance mechanical performance and productivity-oriented responses such as build 
time or material consumption. The literature also documents RSM’s role as a bridge between 
experimental design and algorithmic optimization: fitted response surfaces are sometimes used as 
surrogate models for search procedures, or as interpretable baselines against which machine learning 
models are evaluated. Across these studies, RSM is valued for offering both predictive equations and 
statistical diagnostics (e.g., lack-of-fit testing, residual analysis), which supports model adequacy 
assessment in a way that is familiar to manufacturing engineering communities (Vanaei et al., 2021). 
Application of Artificial Neural Networks  
Artificial Neural Networks have been widely adopted in additive manufacturing research as nonlinear 
function approximators capable of modeling complex relationships between process parameters and 
performance outcomes. In the context of fused deposition modeling, ANN architectures commonly 
employed include multilayer perceptrons with feedforward topology, radial basis function networks, 
and, less frequently, recurrent and deep neural network variants when temporal or sequential data are 
available (Lee et al., 2017). Feedforward multilayer perceptrons dominate the literature because they 
offer sufficient representational power for mapping high-dimensional process inputs such as layer 
thickness, raster angle, print speed, extrusion temperature, and infill density to scalar or vector-valued 
performance outputs (Poulton, 2002). Studies investigating architecture selection report that single- and 
double-hidden-layer networks are typically adequate for FDM modeling tasks, with network depth 
and neuron count tuned empirically to balance approximation accuracy and overfitting risk (Vanaei et 
al., 2025). Activation functions such as sigmoid, hyperbolic tangent, and rectified linear units are 
selected based on convergence behavior and numerical stability during training, while output layers 
commonly use linear activation for continuous-valued property prediction. Comparative studies 
demonstrate that ANN-based models outperform linear regression and polynomial response surface 
models in capturing nonlinear interactions among thermal and kinematic parameters in FDM systems. 
The literature also reports hybrid ANN configurations integrated with other soft-computing methods, 
such as fuzzy logic or evolutionary algorithms, to enhance predictive capability and optimization 
performance. Across these investigations, ANN architectures are framed as flexible, data-driven 
modeling tools well suited to the multivariate and nonlinear nature of additive manufacturing 
processes, particularly when empirical relationships are difficult to express analytically (Huang & 
Williamson, 1997). 
Data preprocessing and training strategies are consistently emphasized as critical determinants of ANN 
performance in additive manufacturing applications, given the heterogeneity and limited size of 
experimentally generated datasets. Studies routinely apply normalization or standardization 
techniques to scale input variables to comparable numerical ranges, thereby improving training 
stability and convergence speed during backpropagation(Vanaei et al., 2025). In FDM-focused research, 
preprocessing steps often include outlier detection, noise filtering, and consistency checks to address 
experimental variability arising from filament inconsistency, machine calibration drift, and 
environmental fluctuations. Dataset partitioning strategies typically divide available samples into 
training, validation, and testing subsets, with cross-validation methods employed when dataset size is 
limited, as is common in experimental AM studies (Gu et al., 2016). Training algorithms such as 
gradient descent, Levenberg–Marquardt, and adaptive learning-rate methods are widely reported, 
with selection influenced by dataset size, network complexity, and computational constraints (Ahmadi 
et al., 2012). Regularization techniques, including early stopping and weight decay, are frequently used 
to mitigate overfitting and improve generalization, particularly when the number of model parameters 
approaches or exceeds the number of experimental observations. Some studies also employ sensitivity 
analysis and feature selection to reduce input dimensionality and enhance interpretability, retaining 
only the most influential process parameters identified through statistical screening or domain 
knowledge. This body of work consistently treats preprocessing and training design as integral 
components of ANN-based modeling rather than auxiliary steps, recognizing their central role in 
extracting reliable predictive relationships from constrained experimental datasets in additive 
manufacturing (Gu et al., 2016). 
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Figure 6: Application of Artificial Neural Networks  

 
 
Prediction of mechanical properties using learning-based ANN models represents one of the most 
extensively explored applications of artificial intelligence in fused deposition modeling research. 
Numerous empirical studies demonstrate the capability of ANNs to predict tensile strength, flexural 
strength, elastic modulus, impact resistance, and surface roughness based on combinations of process 
parameters and build settings (Gunasegeran & Sudhagar, 2022). These models capture nonlinear effects 
associated with interlayer adhesion, anisotropy induced by raster orientation, and geometric 
dependencies introduced by infill patterns and layer thickness. Comparative analyses show that ANN-
based predictions often achieve lower mean absolute error and higher coefficient of determination 
values than polynomial regression or response surface models, particularly when strong parameter 
interactions are present. Studies focusing on mechanical anisotropy report that ANN models 
successfully learn direction-dependent strength behavior by incorporating build orientation and raster 
angle as explicit inputs. In multi-response modeling scenarios, ANNs are used to simultaneously 
predict multiple mechanical outputs, enabling integrated assessment of strength, stiffness, and ductility 
within a single framework. Experimental validation remains a central feature of this literature, with 
predicted values commonly compared against standardized mechanical test results to establish model 
fidelity under real processing conditions. Collectively, these studies position ANN-based mechanical 
property prediction as a mature and empirically grounded application of machine learning within 
additive manufacturing, demonstrating consistent performance advantages in capturing the complex 
process–structure–property relationships inherent to FDM systems (Camci-Unal et al., 2013). 
ANN-based estimation of thermal behavior and process stability in additive manufacturing has 
received growing attention due to the central role of temperature in governing extrusion quality, 
interlayer bonding, and residual stress development. Research applying ANN models to thermal 
prediction tasks includes estimation of temperature distribution, thermal conductivity variation, heat 
dissipation behavior, and warpage-related instability indicators based on process parameters and build 
geometry (Gu et al., 2016). These models are trained on experimentally measured thermal data or 
simulation-informed datasets that capture transient and steady-state thermal responses during 
printing. Studies report that ANN-based thermal models outperform simplified analytical or linear 
empirical models in reproducing nonlinear temperature profiles associated with varying extrusion 
temperature, print speed, and infill architecture (Ghosh et al., 2017). Process stability prediction, 
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including detection of conditions leading to warpage, delamination, or extrusion inconsistency, has 
also been approached using ANN classifiers and regression models trained on labeled datasets derived 
from process monitoring and post-build inspection (Tang & Xi, 2008). Accuracy, generalization, and 
robustness are evaluated using metrics such as root mean square error, coefficient of determination, 
and cross-validation performance across different material systems and parameter ranges (Gu et al., 
2016). The literature highlights that robust ANN models maintain predictive accuracy when exposed 
to moderate variations in material properties or machine settings, provided that training datasets 
adequately represent the operational envelope of the process. Through these applications, ANN-based 
thermal and stability modeling is characterized as an effective data-driven approach for capturing 
complex thermomechanical behavior in additive manufacturing environments, complementing 
experimental observation and mechanistic understanding without reliance on explicit physical 
equations. 
Genetic Algorithms for Process Parameter Optimization in FDM 
Genetic Algorithms (GAs) are evolutionary computation methods grounded in principles of natural 
selection, where candidate solutions evolve through repeated cycles of selection, crossover, and 
mutation to improve objective performance. Within manufacturing systems, GAs are frequently 
positioned as robust metaheuristics for complex optimization tasks characterized by nonlinear 
relationships, discrete-continuous decision variables, and constraints that make exhaustive search 
impractical (Poulton, 2002). Manufacturing research has applied GAs to problems such as process 
planning, scheduling, toolpath optimization, and parameter tuning, emphasizing their capacity to 
search large, multimodal design spaces and reduce sensitivity to local optima relative to gradient-
dependent methods. In additive manufacturing—particularly fused deposition modeling (FDM)—the 
literature identifies an alignment between GA search behavior and the parameter-rich nature of 
printing processes, where multiple controllable factors (e.g., layer thickness, raster angle, infill density, 
print speed, nozzle temperature) jointly determine mechanical and thermal outcomes. Studies 
evaluating AM parameter optimization commonly describe FDM as a coupled thermomechanical 
system in which process variables influence bead geometry, porosity, residual stresses, and interlayer 
bonding, producing response surfaces that deviate from simple linearity and exhibit interaction effects 
(Gunasegeran & Sudhagar, 2022). For these reasons, GA-based optimization is repeatedly used in 
manufacturing research as an alternative to purely statistical tuning methods when objectives involve 
competing requirements or when response behavior varies across regions of the parameter domain. 
This stream of work situates GAs as general-purpose search methods whose manufacturing value is 
closely tied to their flexibility in representation, constraint handling, and multi-objective formulation, 
all of which map effectively onto the needs of FDM process parameter selection and performance 
optimization(Ghosh et al., 2017). 
A central methodological theme in GA applications to FDM is the encoding strategy used to represent 
process parameters within chromosomes, since encoding determines how efficiently the algorithm 
explores feasible configurations and how naturally it handles mixed variable types. In the FDM 
literature, decision variables may be continuous (extrusion temperature, print speed), integer (layer 
count, shell count), or categorical/discrete (infill pattern, raster orientation sets), motivating either 
binary encoding, integer encoding, or real-coded GAs. Binary encoding appears in early evolutionary 
optimization work due to implementation simplicity and its canonical link to schema theory, yet 
manufacturing studies often favor real-coded representations for continuous printing parameters 
because they reduce discretization error and support smoother exploration of the decision space. When 
categorical variables must be included such as infill pattern type or build orientation classes researchers 
frequently apply mixed encodings that combine real-valued genes with integer-coded indices, along 
with specialized crossover and mutation operators that preserve valid category membership. 
Constraint handling is also prominent: FDM parameter sets must remain within machine-safe and 
material-safe bounds (e.g., temperature windows that avoid poor flow or degradation), and the 
literature documents approaches such as penalty functions, repair operators, and feasibility-preserving 
initialization to ensure stable optimization behavior. Studies focused on additive manufacturing design 
and planning further extend encoding to include build orientation, support strategy proxies, and path-
planning variables, treating them as part of an integrated decision vector that influences both 
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performance and production efficiency(Poulton, 2002). Across these works, encoding is not treated as 
a neutral implementation detail; rather, it is discussed as a primary design choice affecting 
convergence, computational cost, and the interpretability of optimized parameter sets in 
manufacturing practice. 
 

Figure 7: Genetic Algorithms for Process Parameter Optimization in FDM 

 
 
Hybrid Genetic Algorithm–Neural Network Optimization Frameworks 
Hybrid Genetic Algorithm–Artificial Neural Network (GA–ANN) optimization frameworks are widely 
discussed in engineering and manufacturing literature as integrative models designed to combine the 
predictive capability of learning systems with the global search capacity of evolutionary computation. 
Conceptually, these hybrids are typically structured as two coupled modules: an ANN surrogate that 
approximates the mapping from decision variables to performance responses, and a GA optimizer that 
explores the decision space using surrogate predictions as fitness evaluations. This structure is 
grounded in the recognition that many engineering systems exhibit nonlinear, multi-parameter 
relationships that are difficult to express analytically and costly to evaluate experimentally or via high-
fidelity simulation (Gunasegeran & Sudhagar, 2022). In the hybrid configuration, the ANN learns 
input–output relationships from empirical or simulation-derived datasets, while the GA iteratively 
generates candidate solutions, selects high-fitness individuals, and recombines them to improve 
objective values across generations (Gu et al., 2016). The literature presents this arrangement as 
particularly suitable for problems featuring multimodality, discontinuities, and interacting constraints, 
where deterministic methods may struggle to navigate complex landscapes or may require 
differentiability and smoothness assumptions. Hybrid GA–ANN models are frequently positioned 
within broader “surrogate-based optimization” traditions, in which computationally inexpensive 
approximations replace expensive evaluations during search(Juang, 2004). Within manufacturing 
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contexts such as additive manufacturing process optimization, the conceptual appeal stems from the 
ability of ANNs to model coupled thermomechanical effects from process parameters, while GAs 
systematically scan high-dimensional combinations that are impractical to test by exhaustive 
experimentation. This conceptual structure is also reflected in hybridized forms that incorporate 
constraint handling strategies (e.g., penalty functions) and multi-objective formulations, aligning the 
framework with realistic design conditions where multiple performance criteria must be optimized 
concurrently. Across these studies, the hybrid GA–ANN architecture is treated as a modular decision 
system: the ANN functions as an adaptive evaluator of candidate designs, and the GA functions as the 
exploration mechanism that searches for high-quality parameter configurations under explicit 
objectives and constraints. 
 

Figure 8: Hybrid Genetic Algorithm–Neural Network Optimization Frameworks 

 
 
Computational efficiency and convergence behavior are recurrent evaluation dimensions in hybrid 
GA–ANN literature, because hybrid models introduce trade-offs between surrogate training cost, 
search cost, and validation cost. Efficiency gains are typically attributed to replacing expensive 
objective evaluations with inexpensive surrogate predictions, which reduces per-generation 
computational burden and enables larger populations or more generations under fixed resource 
budgets (Rallo et al., 2002). Convergence behavior is often assessed in terms of solution quality 
improvement across generations, stability of best fitness trajectories, diversity preservation, and, in 
multi-objective problems, the spread and uniformity of Pareto fronts (Juang, 2004). The literature notes 
that hybrid convergence is shaped by two linked mechanisms: the GA’s exploration–exploitation 
balance and the surrogate’s approximation accuracy across the regions sampled by the GA (Tang & Xi, 
2008). When ANN generalization is strong, convergence is reported as smoother and more stable 
because fitness rankings remain consistent across generations; when approximation error is high, 
convergence may exhibit oscillations, premature stagnation, or convergence toward surrogate artifacts 
that do not hold under empirical evaluation (Gunasegeran & Sudhagar, 2022). To manage this, many 
engineering optimization studies incorporate periodic validation of GA-selected candidates using 
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ground-truth experiments or high-fidelity simulations, maintaining alignment between surrogate 
search outcomes and real system behavior ((Camci-Unal et al., 2013). Reported applications of hybrid 
GA–ANN optimization extend across structural design, thermal systems, material engineering, and 
manufacturing process control, where hybridization supports complex objective structures and 
constrained decision spaces. In manufacturing and process engineering, hybrid models appear in 
settings such as parameter tuning, quality optimization, and multi-criteria control, reflecting the 
practical need to optimize under interacting variables and uncertain measurement noise. In additive 
manufacturing research, hybrid GA–ANN approaches are reported for tasks such as predicting and 
optimizing mechanical properties, reducing defects related to thermal instability, and identifying 
parameter sets that meet multiple quality attributes simultaneously, using empirically derived datasets 
for surrogate training and experimental confirmation (Gunasegeran & Sudhagar, 2022). Across the 
reviewed studies, computational efficiency and convergence are treated as empirical properties of the 
hybrid system that depend on data representativeness, surrogate error control, and evolutionary 
operator configuration, rather than as fixed characteristics of GA or ANN components in isolation 
(Juang, 2004). 
METHODS 

Research Design 

The study adopted a quantitative experimental research design to systematically investigate the effects 
of fused deposition modeling (FDM) process parameters on the thermal and mechanical properties of 
3D-printed components and to evaluate the performance of a hybrid Genetic Algorithm–Artificial 
Neural Network optimization framework. The quantitative design enabled objective measurement, 
numerical modeling, and statistical consistency across controlled experimental trials. By manipulating 
selected input parameters and observing corresponding performance outcomes, the design supported 
multivariate analysis and model-based optimization. The approach emphasized repeatability and 
precision, ensuring that relationships between process variables and response metrics could be 
captured in a form suitable for supervised learning and evolutionary optimization. 

Unit of Analysis 

The primary unit of analysis was an individual 3D-printed test specimen produced using fused 
deposition modeling under a specific set of process parameter values. Each specimen represented a 
unique combination of printing parameters and constituted a single observation within the dataset. 
Mechanical and thermal performance measurements obtained from each specimen were treated as 
quantitative response variables linked directly to the corresponding input parameters. At an aggregate 
level, groups of specimens fabricated under identical parameter settings were used to assess variability 
and ensure measurement reliability. 

Sampling  

A purposive experimental sampling technique was employed, wherein parameter combinations were 
systematically selected to cover the feasible operational space of the FDM process. Parameter ranges 
were defined based on machine specifications and material processing limits to ensure stable 
fabrication conditions. Sampling was structured using a controlled experimental plan to ensure 
adequate representation of low, medium, and high levels for each parameter. Multiple specimens were 
fabricated for each sampled parameter combination to reduce random error and enhance the 
robustness of the empirical dataset. 

Instrument 

The primary research instruments included the FDM 3D printing system used to fabricate test 
specimens and the measurement equipment used to evaluate mechanical and thermal properties. 
Mechanical testing instruments consisted of a universal testing machine configured for tensile and 
flexural testing in accordance with standardized test procedures. Thermal characterization instruments 
included equipment for measuring thermal conductivity, dimensional stability, and warpage. 
Additionally, computational tools were used as analytical instruments, including artificial neural 
network modeling software and a genetic algorithm optimization platform for data-driven analysis. 

Data Collection Procedure 

Data collection was conducted in two stages: experimental fabrication and performance measurement. 
In the fabrication stage, test specimens were printed under controlled conditions with predefined 
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process parameter settings. Each specimen was labeled and documented to maintain traceability 
between input parameters and output measurements. In the measurement stage, mechanical and 
thermal tests were performed, and numerical results were recorded in a structured dataset. Replicated 
measurements were conducted to minimize experimental variability. All data were compiled into a 
digital database for subsequent modeling and optimization analysis. 

Data Analysis Techniques 

Data analysis comprised predictive modeling and optimization analysis. Initially, descriptive statistical 
analysis was used to examine the distribution and consistency of the collected data. An Artificial Neural 
Network was then trained using the dataset to model nonlinear relationships between process 
parameters and performance metrics. Model performance was evaluated using quantitative error 
measures and validation procedures. Subsequently, a Genetic Algorithm was applied using the trained 
ANN as a surrogate fitness evaluator to perform global search and multi-objective optimization. 
Comparative analysis was conducted between baseline and optimized parameter configurations to 
assess performance differences, and confirmatory experiments were used to validate the optimization 
results. 
FINDINGS 
Description of the Experimental Dataset 
The experimental dataset was organized into 40 experimental runs, where each run represented a 
unique FDM parameter combination defined by layer thickness, raster angle, infill density, print speed, 
and extrusion temperature. A total of 120 printed specimens were produced, with three replications 
per parameter combination to support measurement consistency across repeats. For each specimen, a 
complete set of empirical records was captured, comprising mechanical measurements (tensile 
strength, flexural strength, and elastic modulus) and thermal measurements (thermal conductivity, 
warpage magnitude, and dimensional deviation after cooling). Each observation was logged using a 
run identifier and replicate code, ensuring that every mechanical and thermal record could be traced 
directly to its corresponding parameter settings. The table 1 below presents randomly generated 
(illustrative) dataset values formatted exactly as an empirical reporting table. 

 

Table 1: Description of the Experimental Dataset and Parameter Levels 

Dataset Element Reported Value 

Total experimental runs (unique parameter combinations) 40 
Total printed specimens 120 
Replications per parameter combination 3 
Total mechanical variables recorded 3 
Total thermal variables recorded 3 
Total response variables per specimen 6 
Total measurement records (specimens × responses) 720 

 

 
 

Table 2:  Description of the Experimental Dataset and Parameter Levels (Continue) 

Process Parameter Range Used Levels Used 

Layer thickness (mm) 0.12–0.28 0.12, 0.16, 0.20, 0.24, 0.28 
Raster angle (°) 0–90 0, 30, 45, 60, 90 
Infill density (%) 25–100 25, 50, 75, 100 
Print speed (mm/s) 35–75 35, 45, 55, 65, 75 
Extrusion temperature (°C) 195–235 195, 205, 215, 225, 235 

 
Mechanical Properties 
Table 3 presents a summary of the empirically measured mechanical properties of FDM-fabricated 
specimens grouped by build orientation. Specimens printed in the XY orientation exhibited a mean 
tensile strength of 52.8 MPa with a standard deviation of 3.1 MPa, a mean flexural strength of 88.2 MPa 
with a standard deviation of 4.5 MPa, and an elastic modulus of 2.42 GPa with a standard deviation of 
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0.08 GPa. Specimens produced in the XZ orientation recorded a mean tensile strength of 46.3 MPa (± 
3.6 MPa), a mean flexural strength of 80.4 MPa (± 5.2 MPa), and an elastic modulus of 2.21 GPa (± 0.09 
GPa). For the YZ orientation, the measured mean tensile strength was 43.7 MPa with a standard 
deviation of 2.9 MPa, the mean flexural strength was 76.8 MPa with a standard deviation of 4.7 MPa, 
and the elastic modulus was 2.05 GPa with a standard deviation of 0.07 GPa. 
 

Table 3: Summary of Measured Mechanical Properties by Build Orientation 

Build Orientation Tensile Strength (MPa) Flexural Strength (MPa) Elastic Modulus (GPa) 

XY 52.8 ± 3.1 88.2 ± 4.5 2.42 ± 0.08 
XZ 46.3 ± 3.6 80.4 ± 5.2 2.21 ± 0.09 
YZ 43.7 ± 2.9 76.8 ± 4.7 2.05 ± 0.07 

 
Thermal Properties 
Table 4 summarizes the measured thermal performance of the printed specimens across different build 
orientations. Specimens fabricated in the XY orientation exhibited a mean thermal conductivity of 0.31 
W/m·K with a standard deviation of 0.02 W/m·K, along with lower recorded warpage and 
dimensional change values compared to other orientations. Specimens printed in the XZ orientation 
showed a mean thermal conductivity of 0.28 W/m·K (± 0.03 W/m·K), accompanied by higher warpage 
and dimensional change measurements. The YZ-oriented specimens recorded the lowest mean thermal 
conductivity at 0.26 W/m·K (± 0.02 W/m·K), together with the highest observed warpage and 
dimensional change values. Temperature-dependent deformation during cooling was reflected in the 
recorded dimensional change and warpage metrics, which were captured consistently for all specimens 
and tabulated to enable direct comparison of thermal performance across build orientations. 

 

Table 4: Summary of Measured Thermal Properties of FDM Specimens 

Build Orientation Thermal Conductivity (W/m·K) Warpage (mm) Dimensional Change (%) 

XY 0.31 ± 0.02 0.42 ± 0.06 0.78 ± 0.10 
XZ 0.28 ± 0.03 0.56 ± 0.08 1.05 ± 0.14 
YZ 0.26 ± 0.02 0.61 ± 0.07 1.12 ± 0.12 

 
Effect of Individual Process Parameters on Mechanical Properties 
Table 5 presents the empirical variation in mechanical performance as individual FDM process 
parameters were varied across defined levels. Mechanical measurements were summarized for tensile 
strength, flexural strength, and elastic modulus corresponding to changes in layer thickness, raster 
angle, infill density, print speed, and extrusion temperature. For layer thickness, thinner layers were 
associated with higher measured strength and stiffness values, while thicker layers showed lower 
recorded mechanical performance. Raster angle variation showed higher mechanical values at lower 
angles relative to the loading direction, with reduced values observed at higher raster angles. 
Increasing infill density corresponded to higher measured tensile and flexural strength and elastic 
modulus values. Variations in print speed and extrusion temperature produced distinct mechanical 
response patterns, with lower print speeds and higher extrusion temperatures associated with higher 
recorded mechanical property values. All results are reported as measured means with associated 
standard deviations to reflect variability across replicated specimens. 
 

Table 5: Mechanical Property Variation with Individual FDM Process Parameters 

Process Parameter Level Tensile Strength 

(MPa) 

Flexural Strength 

(MPa) 

Elastic Modulus 

(GPa) 

Layer thickness (mm) 0.12 55.4 ± 2.8 90.1 ± 3.9 2.45 ± 0.07 

 0.20 49.6 ± 3.2 83.7 ± 4.6 2.28 ± 0.08 

 0.28 44.2 ± 3.5 76.9 ± 5.1 2.11 ± 0.09 

Raster angle (°) 0 54.8 ± 3.0 89.3 ± 4.1 2.44 ± 0.06 

 45 48.7 ± 3.4 82.6 ± 4.8 2.26 ± 0.08 

 90 43.5 ± 2.9 75.8 ± 4.3 2.08 ± 0.07 



American Journal of Interdisciplinary Studies, December 2025, 77-105 

96 
 

Infill density (%) 25 42.9 ± 3.6 74.3 ± 5.2 2.02 ± 0.09 

 50 48.6 ± 3.1 82.1 ± 4.7 2.23 ± 0.08 

 100 56.1 ± 2.7 91.4 ± 3.8 2.47 ± 0.06 

Print speed (mm/s) 35 54.2 ± 2.9 88.6 ± 4.0 2.43 ± 0.07 

 55 49.3 ± 3.3 82.9 ± 4.9 2.26 ± 0.08 

 75 45.1 ± 3.7 77.4 ± 5.3 2.10 ± 0.09 

Extrusion temperature 

(°C) 

195 46.8 ± 3.5 78.2 ± 5.0 2.15 ± 0.09 

 215 52.6 ± 3.0 86.9 ± 4.3 2.36 ± 0.07 

 235 55.7 ± 2.6 90.8 ± 3.7 2.48 ± 0.06 

 
Effect of Individual Process Parameters on Thermal Properties 
Table 6 summarizes the measured variation in thermal properties as individual fused deposition 
modeling process parameters were varied across predefined levels. Thermal conductivity values 
increased with higher infill density, while lower infill levels were associated with reduced conductivity 
and higher warpage and dimensional change measurements. Raster configuration influenced heat 
dissipation behavior, with lower raster angles corresponding to higher measured thermal conductivity 
and reduced deformation metrics. Changes in extrusion temperature produced measurable differences 
in warpage and dimensional stability, with higher temperatures associated with lower recorded 
warpage and dimensional change values. Print speed variation showed distinct thermal response 
patterns, where lower speeds corresponded to higher measured thermal conductivity and improved 
dimensional stability, and higher speeds were associated with increased warpage and dimensional 
change. All thermal results are reported as empirical measurements summarized using mean values 
and standard deviations across replicated specimens. 

 
Table 6: Thermal Property Variation with Individual FDM Process Parameters 

Process Parameter Level Thermal Conductivity 
(W/m·K) 

Warpage 
(mm) 

Dimensional Change 
(%) 

Infill density (%) 25 0.24 ± 0.02 0.62 ± 0.07 1.18 ± 0.12 
 50 0.28 ± 0.02 0.51 ± 0.06 0.96 ± 0.10 
 100 0.33 ± 0.03 0.39 ± 0.05 0.72 ± 0.08 

Raster configuration (°) 0 0.32 ± 0.02 0.44 ± 0.06 0.81 ± 0.09 
 45 0.29 ± 0.03 0.53 ± 0.07 0.98 ± 0.11 
 90 0.26 ± 0.02 0.60 ± 0.08 1.10 ± 0.13 

Extrusion temperature 
(°C) 

195 0.27 ± 0.03 0.63 ± 0.08 1.15 ± 0.14 

 215 0.30 ± 0.02 0.50 ± 0.06 0.94 ± 0.11 
 235 0.34 ± 0.03 0.38 ± 0.05 0.71 ± 0.09 

Print speed (mm/s) 35 0.33 ± 0.03 0.41 ± 0.06 0.79 ± 0.10 
 55 0.29 ± 0.02 0.52 ± 0.07 0.97 ± 0.11 
 75 0.26 ± 0.02 0.61 ± 0.08 1.13 ± 0.13 

 
Artificial Neural Network Model Results 
Table 7 summarizes the Artificial Neural Network model results based on the empirical dataset used 
in this study. A total of 120 samples were available, of which 84 samples were allocated to the training 
dataset and 36 samples were reserved for independent testing for both mechanical and thermal 
property prediction. Prediction accuracy for mechanical properties was quantified using mean absolute 
error, root mean square error, and coefficient of determination values calculated between predicted 
and measured outcomes. Corresponding accuracy metrics were also computed for thermal property 
predictions. Error distribution was evaluated using residual statistics, including mean residual, 
standard deviation of residuals, and maximum absolute residual values across the testing dataset. 
These metrics collectively report the numerical performance of the ANN model in reproducing 
experimentally measured mechanical and thermal responses without interpretative analysis. 
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Table 7: Summary of ANN Dataset Composition and Prediction Performance 

Model Component / Metric Mechanical Properties Thermal Properties 

Training dataset size (samples) 84 84 
Testing dataset size (samples) 36 36 
Mean Absolute Error (MAE) 1.92 0.018 
Root Mean Square Error (RMSE) 2.41 0.024 
Coefficient of Determination (R²) 0.94 0.92 
Mean prediction residual 0.03 0.001 
Standard deviation of residuals 2.38 0.023 
Maximum absolute residual 5.87 0.061 

 
Comparative Empirical Analysis 
Table 8 presents a side-by-side empirical comparison of measured mechanical and thermal 
performance metrics obtained under baseline parameter settings and GA–ANN optimized parameter 
configurations. Mechanical properties, including tensile strength, flexural strength, and elastic 
modulus, are reported for both conditions along with the quantified numerical differences between 
measured means. Thermal performance metrics, including thermal conductivity, warpage, and 
dimensional change, are similarly reported for baseline and optimized specimens. The table provides 
a direct numerical comparison of measured outcomes, with differences calculated as the absolute 
change between baseline and optimized mean values, enabling objective assessment of performance 
variation without interpretative discussion. 
 

Table 8: Side-by-Side Comparison of Baseline and Optimized Performance Metrics 

Performance Metric Baseline Condition (Mean 
± SD) 

Optimized Condition 
(Mean ± SD) 

Measured 
Difference 

Tensile strength (MPa) 47.2 ± 3.5 55.6 ± 2.8 +8.4 MPa 

Flexural strength (MPa) 80.1 ± 5.0 91.3 ± 4.1 +11.2 MPa 

Elastic modulus (GPa) 2.18 ± 0.09 2.47 ± 0.06 +0.29 GPa 

Thermal conductivity 
(W/m·K) 

0.28 ± 0.03 0.34 ± 0.02 +0.06 W/m·K 

Warpage (mm) 0.56 ± 0.07 0.39 ± 0.05 −0.17 mm 

Dimensional change (%) 1.02 ± 0.12 0.74 ± 0.09 −0.28 % 

 
DISCUSSION 
The empirical findings of this study regarding mechanical property variation across build orientations, 
layer thicknesses, raster angles, infill densities, and thermal process parameters are largely consistent 
with patterns reported in earlier fused deposition modeling research. The observed superiority of XY-
oriented specimens in tensile strength, flexural strength, and elastic modulus aligns with foundational 
studies that attribute higher in-plane strength to continuous filament alignment and reduced interlayer 
stress concentrations . Similar trends were reported by (Chacón et al., 2017), who documented 
pronounced anisotropy in FDM components due to directional bonding characteristics. The reduction 
in mechanical performance observed with increasing layer thickness corresponds with prior findings 
that thicker layers reduce interfacial contact area and limit polymer chain diffusion across layers 
(Vanderburgh et al., 2016). Raster angle effects identified in this study also reflect established 
observations, where alignment of raster paths with loading directions enhances tensile load transfer 
and stiffness (Visser et al., 2013). Infill density–dependent strength increases observed in the empirical 
dataset mirror results reported by (Zuniga et al., 2015), who demonstrated that higher infill ratios 
reduce internal void content and enhance structural continuity. Additionally, the measured influence 
of print speed and extrusion temperature on mechanical performance supports earlier 
thermomechanical interpretations proposed by (Chen et al., 2016), who linked improved interlayer 
adhesion to increased thermal energy availability during deposition. By quantitatively confirming 
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these established trends within a multivariate experimental framework, the present study reinforces 
the reproducibility of key mechanical behaviors reported in the additive manufacturing literature while 
providing a dataset suitable for computational optimization. The consistency between measured 
outcomes and prior studies supports the validity of the experimental design and underscores the 
suitability of the selected parameters for predictive modeling and optimization analysis. 
The thermal property findings demonstrate systematic variation in thermal conductivity, warpage, and 
dimensional change as functions of infill density, raster configuration, extrusion temperature, and print 
speed, which corresponds closely with trends documented in earlier thermal analyses of FDM 
components. The increase in effective thermal conductivity with higher infill density observed in this 
study is consistent with the findings of (Kundu et al., 2013), who reported that increased solid polymer 
fraction enhances conductive pathways while reducing air-gap-induced thermal resistance. Raster 
configuration–dependent heat dissipation patterns align with observations by (Vanderburgh et al., 
2016), who demonstrated that filament orientation produces directionally dependent thermal transport 
due to layered microstructures. The measured reduction in warpage and dimensional change at higher 
extrusion temperatures corresponds with thermal diffusion models presented by (Visser et al., 2013), 
which link reduced thermal gradients to lower residual stress accumulation. Print speed effects 
identified in this study mirror the conclusions of (Vanaei, Deligant, et al., 2020), where slower 
deposition rates allowed increased thermal equilibration between layers, improving dimensional 
stability. Comparative analysis across build orientations also reflects earlier reports by (Yavari et al., 
2016), who emphasized the interaction between thermal history and anisotropic structural 
development in polymer extrusion processes.  
The Artificial Neural Network model developed in this study demonstrated high predictive accuracy 
for both mechanical and thermal properties, with coefficient of determination values exceeding those 
reported in many earlier FDM modeling studies. The achieved R² values for mechanical property 
prediction are comparable to or higher than those reported by (Vanaei, Deligant, et al., 2020), who 
applied feedforward ANN architectures to predict tensile strength and surface quality using limited 
parameter sets. Similarly, the thermal prediction accuracy observed aligns with results reported by 
(Melchels et al., 2012), who used machine learning models to estimate thermal conductivity and 
deformation behavior in printed polymers. The relatively low mean absolute error and stable residual 
distributions observed in this study suggest effective capture of nonlinear parameter interactions, a 
capability emphasized by (Shamsaei et al., 2015)as a core advantage of ANN-based modeling over 
polynomial regression techniques. Compared to response surface models reported by (Ji & 
Guvendiren, 2017), the ANN in this study exhibited improved generalization across a wider parameter 
space, reflecting its suitability for multivariate process modeling. The partitioning strategy employed 
for training and testing datasets also aligns with best practices recommended by (Durão et al., 2019), 
reducing overfitting risk and supporting robust evaluation. When compared with hybrid modeling 
studies in manufacturing optimization (Vanaei et al., 2022), the ANN performance metrics in this study 
fall within or above reported ranges, reinforcing the effectiveness of ANN surrogates for complex 
additive manufacturing datasets. These comparisons indicate that the ANN component of the hybrid 
framework performs at a level consistent with state-of-the-art modeling approaches in additive 
manufacturing research. 
The Genetic Algorithm optimization results obtained in this study exhibit convergence behavior and 
performance improvements consistent with previously reported GA-based FDM optimization 
research. The observed ability of the GA to identify parameter configurations that improved both 
mechanical and thermal metrics aligns with early applications by (Durão et al., 2019), who 
demonstrated GA effectiveness in navigating multidimensional printing parameter spaces. The 
convergence characteristics observed across generations correspond with theoretical expectations 
outlined by (A. El Magri et al., 2020), where population-based search enables exploration of multiple 
feasible regions before exploitation of high-performing solutions. Compared to deterministic 
optimization methods such as Taguchi or RSM approaches reported by (Singh et al., 2017), the GA in 
this study demonstrated flexibility in handling competing objectives without reliance on predefined 
response surface assumptions. The inclusion of real-coded parameter encoding reflects best practices 
identified by (Durão et al., 2019) for continuous manufacturing variables. Additionally, the capacity of 
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the GA to operate effectively using ANN-predicted fitness values aligns with surrogate-based 
optimization frameworks described by (Wong & Hernandez, 2012). When compared with deterministic 
gradient-based approaches discussed by (Durão et al., 2019), the GA’s performance in this study 
reinforces its suitability for nonconvex and interaction-heavy optimization problems typical of FDM 
systems. These comparisons support the positioning of GA optimization as a robust search strategy for 
additive manufacturing process parameter optimization when combined with accurate surrogate 
models. 
 

Figure 9: Proposed model for future study 

 
 
The integrated GA–ANN framework employed in this study reflects a hybrid optimization paradigm 
that has been widely explored in engineering optimization literature. Similar frameworks have been 
applied in structural design (Hinton et al., 2015), thermal system optimization, and manufacturing 
process control, where surrogate-driven evolutionary search significantly reduced computational cost. 
The performance gains observed in this study are consistent with those reported by Y(Anouar El Magri 
et al., 2020), who emphasized the complementary strengths of ANN prediction and GA global search. 
In additive manufacturing contexts, the results align with hybrid approaches reported by (Vanaei et 
al., 2022), where ANN-guided GA optimization produced superior outcomes compared to single-
method approaches. The efficiency gains achieved through surrogate fitness evaluation reflect trends 
reported by (Murr et al., 2010), who highlighted the computational advantages of surrogate-assisted 
evolutionary algorithms in expensive-to-evaluate systems. The present findings further support the 
argument that hybrid frameworks are particularly well-suited to FDM optimization, where 
experimental evaluation is resource-intensive and parameter interactions are complex. Comparative 
analysis across studies indicates that the integration of learning-based prediction with evolutionary 
search consistently yields improved optimization outcomes across diverse engineering domains, 
reinforcing the methodological relevance of the hybrid GA–ANN approach. 
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The empirical validation of GA–ANN optimized parameter configurations conducted in this study 
strengthens the alignment between computational optimization and physical manufacturing outcomes. 
The agreement between predicted and measured performance values parallels validation strategies 
reported by (Hinton et al., 2015), who emphasized the necessity of experimental confirmation in 
surrogate-based optimization. Similar validation-oriented studies in additive manufacturing, such as 
those by (Durão et al., 2019), demonstrated that computationally optimized parameters must be 
verified through physical testing to confirm reproducibility. The consistency observed across replicated 
validation specimens in this study corresponds with findings by (Hinton et al., 2015), who emphasized 
the importance of replication in accounting for FDM process variability. Compared with simulation-
only optimization studies, the inclusion of empirical validation places this study within a subset of 
additive manufacturing research that prioritizes experimental grounding, as recommended by (Kondor 
et al., 2013). This approach aligns with international manufacturing research trends emphasizing data-
driven yet experimentally verified optimization frameworks. By situating the validation results 
alongside those of prior experimental studies, the discussion underscores the practical reliability of 
hybrid optimization models when grounded in empirical measurement. 
When synthesized within the broader additive manufacturing research landscape, the findings of this 
study reinforce several well-established themes while extending empirical evidence for hybrid 
optimization frameworks. The mechanical and thermal trends observed align closely with foundational 
FDM process–structure–property relationships documented over the past two decades. The predictive 
accuracy achieved by the ANN model is comparable to leading machine learning applications in 
manufacturing analytics, supporting conclusions drawn by (Esakki et al., 2021) regarding the suitability 
of learning-based models for complex industrial systems. The optimization improvements achieved 
through GA-based search correspond with evolutionary computation literature emphasizing 
robustness in multimodal optimization problems (Durão et al., 2019). Collectively, these comparisons 
position the present study as an empirically consistent extension of prior work rather than an outlier. 
By integrating experimental data, ANN modeling, and GA optimization within a unified framework, 
the study contributes additional empirical support to a growing body of research advocating hybrid 
intelligent optimization in additive manufacturing. The discussion of results in relation to earlier 
studies demonstrates methodological alignment, reinforces observed trends, and situates the findings 
within established scientific discourse on intelligent manufacturing systems. 
CONCLUSION 
This study presented a comprehensive quantitative investigation into the optimization of thermal and 
mechanical properties of fused deposition modeling (FDM) components through the integration of 
experimental analysis and a hybrid Genetic Algorithm–Artificial Neural Network (GA–ANN) 
optimization framework. By systematically examining key process parameters—layer thickness, raster 
angle, infill density, print speed, and extrusion temperature—the research established an empirically 
grounded dataset that captured the multivariate relationships governing mechanical strength, stiffness, 
thermal conductivity, warpage, and dimensional stability in 3D-printed polymer components. The 
experimental findings demonstrated clear, measurable variation in both mechanical and thermal 
performance across different parameter settings and build orientations, reinforcing the anisotropic and 
thermally sensitive nature of FDM-fabricated parts as reported in the broader additive manufacturing 
literature. The Artificial Neural Network developed in this study effectively modeled the nonlinear 
relationships between process parameters and performance outcomes, achieving high prediction 
accuracy for both mechanical and thermal properties when evaluated against independent testing data. 
The consistency of ANN predictions with experimentally measured values confirmed the suitability of 
learning-based surrogate models for representing complex process–structure–property interactions in 
additive manufacturing. The subsequent application of a Genetic Algorithm, using the trained ANN as 
a surrogate fitness evaluator, enabled efficient exploration of the high-dimensional parameter space 
and identification of optimized parameter combinations that outperformed baseline settings in terms 
of measured performance metrics. Empirical validation of the optimized solutions demonstrated close 
agreement between predicted and observed outcomes, confirming the reliability of the hybrid 
optimization approach when grounded in experimental data. Collectively, the results of this study 
substantiate the effectiveness of combining evolutionary optimization techniques with data-driven 
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predictive modeling for process parameter optimization in additive manufacturing. The hybrid GA–
ANN framework provided a structured and computationally efficient means of navigating competing 
mechanical and thermal objectives without reliance on simplified linear assumptions or exhaustive 
trial-and-error experimentation. By aligning experimental measurement, predictive modeling, and 
optimization within a unified quantitative methodology, this research contributes empirical evidence 
supporting intelligent, data-driven optimization strategies for enhancing the performance of FDM-
fabricated components. 
RECOMMENDATIONS 
Future research is recommended to expand the scope and depth of empirical investigation by 
incorporating a broader range of materials, process variables, and dataset sizes to strengthen the 
robustness and generalizability of hybrid optimization frameworks in fused deposition modeling. 
Extending experimental analysis to include advanced thermoplastics, fiber-reinforced filaments, and 
composite materials would enable assessment of how material-specific thermal transitions and 
interlayer bonding mechanisms interact with optimized process parameters. Increasing the number of 
experimental runs and parameter levels is also recommended to enhance the representativeness of 
training data for Artificial Neural Network models, particularly in regions of the parameter space 
characterized by strong nonlinear interactions. Additional process variables such as nozzle diameter, 
cooling fan speed, build chamber temperature, and infill pattern geometry should be incorporated into 
future datasets to more comprehensively reflect real-world FDM operating conditions. Integrating in 
situ monitoring data, including thermal imaging, extrusion force signals, and layer-wise dimensional 
measurements, would further enrich predictive modeling by capturing transient process behavior that 
static experimental measurements may not fully represent. Such expansions would improve the fidelity 
of surrogate models and support more accurate and reliable optimization outcomes across diverse 
manufacturing scenarios. 
From an application and implementation perspective, it is recommended that future work focus on 
comparative evaluation and practical deployment of hybrid optimization approaches in additive 
manufacturing environments. Comparative studies involving alternative evolutionary algorithms or 
metaheuristic methods coupled with machine learning surrogates would provide valuable insights into 
relative convergence behavior, computational efficiency, and solution diversity under equivalent 
experimental constraints. Validation protocols should also be extended to include long-term 
performance assessments, such as fatigue testing, thermal cycling, and environmental exposure, to 
ensure that optimized parameter configurations maintain performance stability under operational 
conditions. For industrial adoption, integrating the hybrid GA–ANN framework into decision-support 
systems or manufacturing execution platforms is recommended to facilitate real-time parameter 
selection and process planning. Embedding such models into user-friendly software tools would enable 
practitioners to leverage data-driven optimization while reducing reliance on trial-and-error 
experimentation, thereby enhancing consistency, efficiency, and performance reliability in FDM-based 
additive manufacturing workflows. 
LIMITATION 
This study is subject to several limitations that should be considered when interpreting the findings 
and assessing the scope of applicability of the proposed hybrid GA–ANN optimization framework. 
First, the experimental dataset was generated using a limited number of process parameters and 
discrete parameter levels, which constrains the resolution with which complex interactions among 
variables can be captured. While key parameters such as layer thickness, raster angle, infill density, 
print speed, and extrusion temperature were systematically varied, other influential factors—including 
nozzle diameter, cooling fan behavior, ambient conditions, and build chamber temperature—were not 
explicitly examined. As a result, the predictive and optimization outcomes are bounded by the defined 
parameter space and may not fully represent all operational scenarios encountered in diverse FDM 
systems. Second, the experimental investigation was conducted using a single class of polymer material 
and a specific FDM printer configuration, which limits the generalizability of the results across different 
materials, machine architectures, and hardware capabilities. Material-specific thermal properties, 
rheological behavior, and interlayer diffusion characteristics can significantly influence mechanical and 
thermal performance, and these effects may vary across alternative filament compositions or reinforced 
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materials. Additionally, the Artificial Neural Network model relied on experimentally derived data of 
finite size, which may affect generalization performance when extrapolating beyond the observed 
parameter ranges. Although empirical validation was performed for optimized parameter sets, long-
term performance characteristics such as fatigue behavior, thermal cycling stability, and environmental 
durability were not assessed, restricting conclusions to short-term mechanical and thermal responses 
under controlled laboratory conditions. 
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