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Abstract 
This study addresses a persistent problem in industrial enterprises: EHS programs generate substantial data, 
yet many workplaces struggle to translate those signals into consistently clear hazard communication, effective 
safety training, and high-quality incident reporting. The purpose was to test whether stronger EHS analytics 
capability predicts these upstream EHS process outcomes within an enterprise case workplace that uses routine 
EHS logs, dashboards, and trend reviews. This responds to growing interest in leading indicators and data-
driven safety governance. A quantitative, cross-sectional, case-based survey was administered to employees 
across operational roles. After data-quality screening, 210 valid responses were retained from 228 submissions, 
with frontline operators representing 52.4%, supervisors 27.6%, and EHS or support staff 20.0%; mean 
experience was 6.8 years (SD = 4.9). The independent variable was EHS Analytics Capability (EHSAC, 8 items; 
M = 3.62, SD = 0.67; α = 0.88) and the dependent variables were Hazard Communication Quality (HCQ, M = 
3.71, SD = 0.63; α = 0.86), Training Effectiveness (TE, M = 3.68, SD = 0.61; α = 0.89), and Incident Reporting 
Quality (IRQ, M = 3.55, SD = 0.70; α = 0.87). The analysis plan combined descriptive statistics, reliability 
testing, Pearson correlations, and ordinary least squares regressions, followed by robustness models controlling 
for role and experience. EHSAC showed moderate-to-strong correlations with HCQ (r = 0.56), TE (r = 0.52), 
and IRQ (r = 0.49), all p < .001. Regression results provided convergent evidence, with EHSAC significantly 
predicting HCQ (β = 0.56, t = 10.42, R² = 0.34), TE (β = 0.52, t = 9.32, R² = 0.29), and IRQ (β = 0.49, t = 
8.36, R² = 0.24), and remaining significant with controls (β = 0.51, 0.47, 0.43; adjusted R² = 0.38, 0.32, 0.27). 
Item diagnostics indicated that timely feedback after reporting (M = 3.21) and post-training reinforcement (M 
= 3.39) were key gaps. Findings imply that investing in analytics capability and strengthening feedback loops 
can measurably improve communication, learn transfer, and report quality in enterprise EHS systems.  
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INTRODUCTION 
Environmental, Health, and Safety (EHS) analytics can be defined as the systematic capture, 
integration, and statistical analysis of workplace EHS data—such as hazard registers, exposure records, 
training logs, inspections, near-miss reports, and injury/illness events—to generate measurable 
indicators and evidence for decision-making in industrial operations. In this framing, analytics is not 
limited to dashboards; it includes descriptive statistics to summarize patterns, correlational analysis to 
examine relationships among EHS constructs, and regression modeling to estimate the statistical 
contribution of predictors (e.g., hazard communication quality, training outcomes, safety climate 
signals) to reporting behaviors and incident-related outcomes. Hazard communication refers to the 
organizational and informational processes through which hazard meaning is made understandable to 
workers (e.g., labels, safety data sheets, pictograms, verbal briefings, and localized translations), so that 
recognition of chemical, physical, and process hazards becomes actionable in daily work. Research on 
Globally Harmonized System (GHS)-aligned visual cues shows that the comprehension of pictograms 
and accompanying text is an empirical issue rather than an assumption, meaning that hazard 
communication quality can be measured as an observable capability that differs across naïve users, 
experienced workers, and experts (Boelhouwer et al., 2013).  
 

Figure 1: Systems-Based EHS Analytics Model For Industrial Workplaces 
 

 
 
Training effectiveness, in turn, can be defined as the extent to which EHS training changes knowledge, 
beliefs, and safety behavior in a measurable way, with transfer to the job as a core criterion because 
EHS learning is intended to be operationalized under time pressure, fatigue, and production demands 
(Blume et al., 2010). Incident reporting and near-miss reporting represent structured organizational 
learning behaviors that depend on detection, interpretation, willingness to speak up, and trust in how 
management responds. Empirical evidence demonstrates that underreporting is not a marginal 
phenomenon; it can be systematically related to safety climate and supervisory enforcement, which 
makes reporting behavior a valid analytic target rather than an unobservable attitude (Probst & Graso, 
2013). In this research area, the logic of analytics is grounded in the idea that EHS systems generate 
both “events” and “signals,” where signals—such as training completion, inspection findings, or near-
miss narratives—can be treated as leading indicators that map onto risks and reporting practices. This 
definitional groundwork positions EHS analytics as an integrative approach that connects information 
quality (hazard communication), capability development (training effectiveness), and organizational 
learning behavior (incident reporting) in industrial workplaces.  
Industrial workplaces occupy a central place in global safety performance because they concentrate 
hazardous energies (chemical reactivity, stored pressure, high voltage, rotating equipment, heat, and 
heavy loads) and depend on tight coordination across roles, contractors, and shifts. For this reason, the 
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international significance of EHS analytics is tied to the scalability of learning: organizations with 
multiple sites and diverse worker populations need measurement systems that remain interpretable 
across languages, job families, and hazard profiles, while still being sensitive to local conditions. A core 
measurement challenge is the selection of indicators that represent how safety is produced in the work 
system rather than only how harm is recorded after the fact. Conceptually, this is reflected in the 
distinction between lagging indicators (e.g., recordable injuries) and leading indicators (e.g., training 
engagement, proactive hazard identification, near-miss reporting volume and quality). Empirical work 
on leading indicators shows that organizations operationalize these constructs with considerable 
variation, and that indicator systems can be studied as performance measurement architectures rather 
than as simple counts (Jinnat & Kamrul, 2021; Sinelnikov et al., 2015). Complementing that perspective, 
indicator theory in safety science highlights that the choice of what to measure is anchored in 
assumptions about causal pathways in sociotechnical systems, meaning that metrics encode a model of 
safety whether or not the model is made explicit (Harms-Ringdahl, 2009; Towhidul et al., 2022). 
Workplace-level validation studies further show that leading indicator instruments can be developed 
with attention to measurement reliability and construct validity, establishing that leading indicators 
can be treated as quantified constructs suitable for statistical modeling rather than informal managerial 
impressions (Faysal & Bhuya, 2023; Shea et al., 2016). Multi-level evidence also indicates that leadership 
can shape the relationship between leading signals and lagging outcomes, aligning managerial practice 
with social-information mechanisms through which workers interpret what is rewarded or ignored 
(Hammad & Mohiul, 2023; Sheehan et al., 2016). In parallel, research on safety climate has 
demonstrated that climate measurement is not a single-factor idea; it can be decomposed into 
dimensions that reflect managerial commitment, communication, and norms—dimensions that, in 
industrial contexts, become plausible explanatory variables for reporting and training outcomes 
(Clarke, 2006). From an analytics standpoint, these findings motivate cross-sectional modeling 
strategies in which measured perceptions and measured practices (e.g., hazard communication 
comprehension, training effectiveness scores, and reporting behavior indicators) are analyzed together 
to establish statistical regularities that are operationally meaningful in a case-study setting.  
 

Figure 2: Model of Hazard Communication and Training Effects on Safety Outcomes 

 
 
Hazard communication is a foundational EHS mechanism because many industrial risks require 
correct interpretation before correct action can occur. Chemical hazards are a clear example: workers 
often rely on a mix of labels, pictograms, and safety data sheets (SDS) under conditions where time and 
attention are limited. Experimental evidence demonstrates that pictogram inclusion can improve the 
transfer of hazard and precautionary information compared with text-only formats, and that 
comprehension varies systematically by user type, indicating that hazard communication effectiveness 
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can be operationalized as an outcome variable rather than treated as uniform compliance (Christian et 
al., 2009). Field-oriented research similarly emphasizes that pictograms and text-confirmation 
behaviors are linked to workers’ risk perception and managerial emphasis, which positions 
communication quality as a measurable organizational input to safety behavior (Cheng et al., 2012). For 
EHS analytics, this literature supports two methodological moves. First, hazard communication can be 
decomposed into measurable constructs such as perceived clarity, pictogram comprehension, SDS 
usability, and perceived accessibility of hazard information. Second, the international and multilingual 
nature of industrial labor makes it analytically relevant to examine whether hazard communication 
quality aligns with training outcomes and reporting behaviors across worker groups. When 
communication artifacts are interpreted differently across experience levels or language backgrounds, 
organizations may observe gaps between formal hazard classifications and workers’ functional 
understanding, which can manifest in both unsafe acts and failures to report early warning signs. In 
quantitative research designs, this creates a plausible pathway where hazard communication quality 
predicts training effectiveness (through better encoding of hazard meaning) and predicts incident 
reporting (through stronger recognition of what constitutes a reportable hazard, unsafe condition, or 
near miss). In addition, hazard communication sits at the boundary between technical systems 
(classification, labeling standards, SDS authoring) and social systems (supervision, peer norms, 
informal translation), which makes it compatible with multivariate models that include both 
informational and cultural predictors. In industrial case settings, hazard communication is also linked 
to contractor management, since contractors may encounter site-specific hazards with limited 
onboarding time; this increases the importance of measuring the perceived adequacy and usability of 
hazard messages as part of an integrated EHS analytics framework. The empirical basis for modeling 
communication as a measurable determinant supports the present study’s focus on analytics that 
connect hazard communication to training and reporting outcomes rather than treating communication 
as a background compliance artifact.  
Training effectiveness is central to EHS management because industrial hazard control depends on 
worker capability in recognizing hazards, applying procedures, and making safe decisions under 
operational variability. Evidence syntheses show that occupational safety and health (OSH) training 
can improve behaviors and learning-related outcomes, and that training design characteristics matter 
for the magnitude and persistence of effects (Burke et al., 2006). In organizational science terms, training 
effectiveness is often tied to transfer, meaning that the value of training depends on whether skills and 
safety routines generalize from the classroom or module into the work context (Andriulo & Gnoni, 
2014). Public-health-oriented evaluations of safety and health training methods also support the idea 
that engagement and method selection are not cosmetic issues; they shape the likelihood that training 
translates into safer behavior and measurable reductions in risk-related practices (Hallowell et al., 
2013). This evidence supports a measurement strategy in which training is not coded only as 
“completed” but measured in terms of perceived relevance, comprehension, confidence to apply 
procedures, and observable behavioral intention. In the context of EHS analytics, training records can 
be linked to downstream indicators such as near-miss reports, hazard observations, and corrective 
action follow-through, enabling statistical analyses that test whether training effectiveness predicts 
reporting behavior and incident-related metrics. This linkage is conceptually important because 
incident reporting and hazard observation require workers to detect deviations and label them as 
meaningful; training provides part of the cognitive schema for that labeling process. Training also 
interacts with safety climate: when leaders reward reporting and learning, trained workers may apply 
knowledge more consistently, while climates that penalize reporting can mute the expression of 
learning as action. This climate–training interaction is consistent with multilevel safety climate research 
emphasizing that climate operates through shared interpretations of what is prioritized and reinforced 
(Zohar & Luria, 2005). For quantitative, cross-sectional case-study designs, the practical implication for 
measurement is that survey constructs should capture both training process quality (how workers 
experienced the training) and training outputs (self-rated and role-relevant competence). Once 
captured, these constructs can enter correlation matrices and regression models that test hypotheses 
such as whether training effectiveness predicts incident reporting frequency or reporting intention, or 
whether training effectiveness strengthens the relationship between hazard communication quality 



American Journal of Interdisciplinary Studies, June  2023, 126-160 

130 
 

and reporting behavior. The training literature therefore provides both a justification for measuring 
training effectiveness as a latent construct and a basis for modeling it as a key explanatory variable 
within EHS analytics.  
This study is designed to examine, in a measurable and objective manner, how EHS analytics can 
strengthen three operational pillars of industrial safety management: hazard communication, training 
effectiveness, and incident reporting. The first objective is to assess the current level of EHS analytics 
capability within the selected industrial case context by capturing employees’ perceptions of data 
availability, data accuracy, accessibility of EHS information, and the extent to which analytics outputs 
such as dashboards, trend summaries, and performance indicators are used in routine safety decision-
making. The second objective is to evaluate hazard communication quality as an outcome that can be 
quantified through workers’ reported clarity of hazard messages, ease of accessing safety information, 
understanding of hazard labels and safety documentation, and perceived consistency of safety 
messaging across supervisors, shifts, and work areas. The third objective is to measure training 
effectiveness by focusing on training relevance to job tasks, comprehension of safety procedures, 
perceived confidence to apply learned practices, and the degree to which training supports correct 
hazard recognition and safe work behavior in day-to-day operations. The fourth objective is to examine 
incident reporting quality by measuring employees’ perceived ease of reporting, timeliness and 
completeness of reports, confidence that reporting leads to meaningful corrective action, and the 
presence of feedback mechanisms that encourage continuous reporting and learning. In addition to 
assessing these constructs independently, the study is structured to quantify the relationships among 
them through statistical analysis, allowing the research to test whether higher perceived EHS analytics 
capability is associated with stronger hazard communication, more effective training outcomes, and 
improved incident reporting practices. A further objective is to determine the predictive strength of 
EHS analytics capability through regression modeling, establishing the degree to which analytics 
capability explains variance in each of the three dependent outcomes while accounting for workplace 
characteristics such as role category and experience level when applicable. Overall, the objectives are 
formulated to produce clear, data-driven evidence on how analytics-enabled EHS management aligns 
with communication quality, learning effectiveness, and reporting system performance within an 
industrial workplace setting. 
LITERATURE REVIEW 
The literature on EHS analytics and industrial safety management establishes that contemporary 
workplaces generate large volumes of safety-relevant information through inspections, audits, training 
systems, hazard registers, maintenance logs, and incident and near-miss reporting platforms, creating 
an opportunity to evaluate safety processes using measurable indicators rather than relying only on 
retrospective injury counts. Within this body of work, EHS analytics is commonly positioned as an 
approach that integrates multi-source safety data, applies quantitative techniques to identify patterns 
and relationships, and supports evidence-based decisions that target prevention activities such as 
hazard communication improvement, training optimization, and reporting system strengthening. 
Researchers emphasize that hazard communication is a critical mechanism because the effectiveness of 
labels, safety data sheets, pictograms, and briefings depends on comprehension and usability under 
real working conditions, making communication quality an assessable construct rather than a purely 
procedural requirement. In parallel, safety training research highlights that effectiveness extends 
beyond completion rates and should be evaluated through learning outcomes and job transfer, because 
industrial safety performance depends on workers’ ability to recognize hazards, interpret procedures, 
and apply controls in dynamic operational settings. The incident and near-miss reporting literature 
further explains that reporting is a central pathway for organizational learning, since it transforms 
dispersed observations into structured knowledge that can guide corrective actions, while reporting 
behavior itself varies according to social and managerial conditions such as trust, feedback, and 
perceived consequences of speaking up. Across these domains, the literature increasingly supports the 
use of leading indicators—such as proactive hazard identification, training engagement, reporting 
frequency, and report quality—to represent safety capacity and learning potential, providing a 
foundation for statistical testing of relationships among EHS system components. A consistent theme 
is that these safety functions are interdependent: hazard communication influences how hazards are 
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recognized and labeled, training influences how knowledge is applied and how deviations are 
detected, and reporting determines whether early signals enter formal analysis and improvement 
cycles. Consequently, studies that treat these elements as connected constructs align well with 
quantitative designs that use structured measurement instruments and multivariate analysis to 
examine correlations and predictive effects within a specific industrial setting. This literature review 
therefore synthesizes prior research that clarifies the meaning and measurement of EHS analytics 
capability, hazard communication quality, training effectiveness, and incident reporting performance, 
and it organizes the evidence in a way that supports an integrated conceptual model suitable for 
descriptive statistics, correlation analysis, and regression modeling in a case-study–based, cross-
sectional investigation. 
EHS Analytics Foundations for Hazard Communication  
EHS analytics can be defined as the systematic collection, integration, and quantitative examination of 
environment, health, and safety data to identify measurable patterns related to hazards, workforce 
learning, and incident experience in industrial workplaces. In operational terms, EHS analytics 
transforms heterogeneous safety records—such as hazard identification documents, risk assessments, 
training logs, toolbox talks, safety observations, near-miss reports, corrective action registers, and 
incident investigations—into structured datasets suitable for statistical analysis. This transformation is 
essential because hazard communication, training effectiveness, and incident reporting each generate 
different types of information that must be standardized before meaningful relationships can be 
examined. Hazard communication produces indicators related to message clarity, accessibility, and 
comprehension, while training effectiveness yields indicators associated with knowledge acquisition, 
skill application, and confidence to perform tasks safely. Incident reporting, by contrast, produces 
outcome-oriented data such as reporting frequency, severity classification, causal descriptions, and 
timeliness. From an analytics perspective, the credibility of quantitative analysis depends on the 
presence of a coherent measurement architecture that clearly defines what constitutes a hazard 
message, effective training, and a high-quality report. When these definitions are consistent, data from 
different EHS subsystems can be aligned at the level of work groups or job roles, allowing researchers 
to examine how communication and training conditions are reflected in reporting behavior. This 
foundational view positions EHS analytics as a structured measurement system that enables inferential 
analysis rather than a descriptive reporting tool, thereby supporting hypothesis testing through 
correlation and regression models in industrial case-study research. 
 

Figure 2: EHS Analytics Measurement Architecture For Industrial Safety Systems 
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A central concept in EHS analytics is the distinction and linkage between leading and lagging safety 
indicators, because this distinction determines how organizations interpret safety performance and 
learning capacity. Lagging indicators, such as injury rates and lost-time incidents, summarize adverse 
outcomes but provide limited insight into the conditions that precede them . Leading indicators, in 
contrast, capture proactive activities and capacities, including the quality of hazard communication, 
the effectiveness of safety training, and the extent of incident and near-miss reporting. The analytical 
value of leading indicators lies in their ability to represent organizational safety potential rather than 
historical loss alone. A structured approach to indicator selection differentiates outcome indicators 
from those intended to monitor safety conditions and those intended to drive safer behavior, thereby 
clarifying the causal logic embedded in the measurement system (Reiman & Pietikäinen, 2011). This 
logic is particularly relevant for studies examining hazard communication and training effectiveness, 
as both constructs function as upstream drivers that shape how workers perceive, interpret, and 
respond to hazards. Integrating leading and lagging indicators within a single evaluation framework 
allows organizations to test whether improvements in communication and training are statistically 
associated with improvements in reporting behavior and safety outcomes. Empirical work supports 
this integrated approach by demonstrating that combined use of leading and lagging indicators 
provides a more comprehensive assessment of occupational safety and health performance than 
reliance on outcome metrics alone (Podgórski, 2015). For quantitative research, this perspective justifies 
modeling hazard communication and training effectiveness as independent variables and incident 
reporting quality as a dependent outcome, while interpreting statistical relationships within a clearly 
articulated indicator framework. 
Recent research further extends the scope of EHS analytics by emphasizing the role of large-scale and 
multi-source data in safety decision-making. A big-data-driven perspective treats safety information as 
a strategic organizational resource that supports pattern recognition, prioritization of risks, and 
evidence-based intervention design. Conceptual frameworks for big-data-driven safety management 
describe how diverse datasets—ranging from training records and inspection findings to incident 
narratives—can be integrated to support systematic safety decisions across organizational levels (L. 
Huang et al., 2018). This approach is directly applicable to industrial contexts where safety data volume 
and complexity exceed the capacity of manual review. Advanced analytic techniques also enable the 
identification of variables that exert the strongest influence on unsafe behavior and reporting patterns. 
For example, supervised learning approaches have been used to rank the relative importance of 
cognitive and organizational factors associated with unsafe acts, illustrating how analytics can inform 
the selection of meaningful survey constructs and predictors (Goh et al., 2018). At the same time, safety 
psychology research cautions that the analytical power of large datasets depends on sound 
conceptualization of human and organizational factors, emphasizing the need to align data-driven 
methods with theoretically informed constructs (Ouyang et al., 2019). Within this context, EHS 
analytics provides a methodological bridge between human-centered safety processes—such as 
communication, training, and reporting—and quantitative modeling techniques. By grounding 
measurement in established indicator frameworks and leveraging modern analytic approaches, EHS 
analytics supports rigorous examination of how hazard communication quality and training 
effectiveness relate to incident reporting performance in industrial workplaces. 
Hazard Communication Mechanisms in Industrial Settings  
Hazard communication in industrial workplaces refers to the structured processes used to convey 
information about hazardous conditions, substances, and tasks so that workers can recognize risks and 
select appropriate protective behaviors. Internationally, this function has been central to chemical and 
process safety because modern supply chains move thousands of substances across borders, creating a 
need for shared label elements, consistent terminology, and comparable documentation for 
downstream users. The Globally Harmonized System (GHS) emerged in part to reduce fragmentation 
in classification and labeling rules and to improve the portability of hazard information across 
jurisdictions, industries, and languages (Winder et al., 2005). In operational workplaces, hazard 
communication is not a single artifact; it is an ecosystem that includes container labels, safety data 
sheets, local signage, alarm messages, color–shape conventions, and brief procedural messages 
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embedded in permits, lockout/tagout steps, and standard operating procedures. The integrity of this 
ecosystem depends on whether workers can decode the message quickly, correctly, and consistently 
under real constraints such as time pressure, noise, glove use, low lighting, and task interruptions. For 
this reason, hazard communication is often evaluated not only by the presence of required documents, 
but also by whether the communication supports comprehension and action. Empirical research on 
workplace sign training indicates that effectiveness varies with both sign characteristics and the 
method used to teach sign meaning, highlighting the need to design hazard communication as a 
measurable learning intervention rather than a purely administrative requirement (Chan, 2011). 
A major component of hazard communication is sign-based and symbol-based messaging, because 
signs must communicate quickly in noisy, time-pressured environments where workers may not stop 
to read long text. Evidence from comprehension testing indicates that symbol-only signs often fail to 
meet acceptance criteria when they are deployed without supporting cues, and that misunderstandings 
can occur either because the symbol is unclear or because workers misinterpret the surrounding shape–
color code. Comprehension research using diverse participant groups has shown that performance can 
differ systematically by user characteristics (e.g., experience, education, disability status), meaning that 
a “one-size-fits-all” sign strategy can unintentionally create pockets of low understanding even inside 
the same facility. For example, comprehension tests of symbol-based safety signs found that many signs 
were not well understood and that users could correctly interpret the symbol while still 
misunderstanding the color–shape configuration (Duarte et al., 2014). Related work on sign 
“guessability” further suggests that users infer meaning more accurately when signs are familiar, 
concrete, simple, and semantically close to the intended concept, reinforcing that sign comprehension 
is a cognitive task influenced by design features and user exposure (Chan & Ng, 2010b). Together, these 
findings support treating hazard communication quality as a measurable construct, where 
comprehension can be assessed through standardized items and then linked to behavioral outcomes 
such as PPE selection, adherence to precautions, and accurate near-miss reporting. For EHS analytics 
programs, patterns motivate measuring comprehension as a construct and linking it to exposure and 
incident trends. 

Figure 3: Hazard Communication Mechanisms In Industrial Settings 
 

 
 
In applied settings, hazard communication is embedded in occupational safety management routines: 
safety officers curate sign inventories, supervisors ensure placement and visibility, and workers learn 



American Journal of Interdisciplinary Studies, June  2023, 126-160 

134 
 

to map sign elements to actions during pre-task planning. Survey-based research with safety officers 
in industrial contexts shows that differences in user factors and how sign information is reviewed are 
associated with differences in comprehension and evaluations of sign features, underscoring that 
hazard communication is partly a capability of the organization, not only a property of the sign itself 
(Chan & Ng, 2010a). Complementary experimental work indicates that training effectiveness depends 
on both the characteristics of the sign and the training method, implying that hazard communication 
programs should treat training as a designed intervention with measurable learning outcomes rather 
than a compliance checkbox (Chan & Ng, 2010b). In an EHS analytics framing, this matters because 
organizations can instrument the hazard communication system by auditing sign inventories, tracking 
training exposure, and modeling how comprehension relates to self-reported safe behavior, near-miss 
reporting, and incident rates. When these data streams are integrated, hazard communication can be 
evaluated as a control layer that influences upstream attention and downstream reporting behavior, 
which is especially relevant in complex workplaces where multiple hazards co-occur. Accordingly, 
quantitative case-study research can operationalize hazard communication quality through Likert-
scale constructs such as clarity, relevance, accessibility, and perceived actionability, then test whether 
higher scores correlate with stronger safety practices and more reliable reporting patterns in high-risk 
industrial work operations. Such metrics also allow comparisons across departments and shifts, 
revealing where messages degrade over time, where informal workarounds emerge, and where 
multilingual or literacy barriers require redesigned symbols and microlearning refreshers . 
Safety Training Effectiveness and Transfer to Safer Work Practices 
Safety training effectiveness in industrial workplaces is commonly evaluated through a layered logic 
that distinguishes immediate learning outcomes from the sustained enactment of safe practices. At the 
most basic level, training is expected to improve knowledge of hazards, correct procedures, and 
required protective behaviors; at a higher level, it should shape risk perception, safety attitudes, and 
self-efficacy; and at the highest level, it should reduce unsafe acts and prevent incidents. Evidence 
across different delivery modes shows that training design features influence how well workers encode 
and retrieve safety-relevant information. For example, computer-based training studies indicate that 
presentation format, pacing, and multimodal cues can alter comprehension and testing performance, 
particularly when trainees vary in age and baseline familiarity with the content (Wallen & Mulloy, 
2005). This matters in industrial contexts where workforces are heterogeneous and where hazard 
communication is often dense, procedural, and regulated. Training effectiveness therefore cannot be 
inferred from “attendance” or completion alone; it requires measurable change in safety knowledge 
and related psychosocial constructs that are proximal to behavior. In applied settings, short, targeted 
hazard awareness modules have been shown to produce measurable gains in knowledge and attitudes 
after training, indicating that even compact interventions can shift learning outcomes when they are 
aligned with the most salient hazards of the trade and assessed with structured instruments (Sokas et 
al., 2009). These insights connect directly to the role of EHS analytics: organizations increasingly need 
measurement structures that distinguish whether improved incident performance is linked to 
improved learning, or whether training is present but functionally inert because learning decay and 
weak reinforcement prevent transfer. Thus, training effectiveness must be treated as a measurable 
organizational capability rather than an administrative compliance artifact. 
A second stream of evidence emphasizes that participatory and context-embedded training formats 
can strengthen learning retention and produce detectable safety outcomes. Participatory models move 
trainees from passive receipt of rules toward active identification of hazards, discussion of controls, 
and commitment to feasible corrective actions in their own work environment. This shift is important 
because industrial hazards are rarely uniform; workers must often interpret conditions, anticipate 
interactions between tasks and equipment, and communicate risk dynamically. In a large randomized-
controlled design implemented in manufacturing settings, participatory occupational health and safety 
training demonstrated reductions in accidental work injuries and re-injuries compared with didactic 
training approaches, suggesting that “how” training is delivered can matter for downstream safety 
outcomes (Yu et al., 2017). The relevance for an EHS analytics thesis is that participatory training 
produces additional observable signals: more frequent hazard identification, more specific corrective 
actions, and more actionable feedback loops between trainees and supervisors. These signals can be 
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captured through structured reporting systems, digital checklists, and near-miss logs—creating a richer 
dataset for evaluating whether training is translating into safer work conditions. When organizations 
connect these process indicators to incident trends, they can avoid a common evaluation error: 
attributing safety improvements to training presence rather than to training-driven behavioral change. 
In other words, participatory training is not only a learning intervention; it is also a data-generating 
mechanism that strengthens the observability of safety performance and supports more credible 
evaluation models. 
A third perspective treats training effectiveness as inseparable from “transfer”—the degree to which 
learned knowledge and motivation are applied on the job under real constraints. Transfer is shaped by 
social reinforcement, supervisor reactions, coworker norms, and the extent to which trainees feel 
responsible for applying what they learned. Evidence indicates that training transfer improves when 
the work environment actively reacts to safety behaviors and when the social system around the trainee 
signals that safe performance will be noticed, supported, or sanctioned (Freitas et al., 2019). This is 
especially critical in industrial workplaces where production pressure, time constraints, and routine 
habituation can weaken the salience of training messages. Conceptually, EHS analytics can strengthen 
transfer by making safe behaviors visible and by reducing ambiguity about expectations: dashboards, 
supervisor feedback loops, and near-miss analytics can function as post-training reinforcement, not 
only as measurement tools. Recent integrative models also underscore that engagement with training—
affective, cognitive, and behavioral—must be treated as a prerequisite for transfer, meaning that 
training design, delivery credibility, and post-training integration into work systems jointly determine 
whether learning becomes performance (Casey et al., 2021). 
 

Figure 4: Safety Training Effectiveness And Transfer Pathways In Industrial Settings 
 

 
In practical terms for this study, training effectiveness should be operationalized in ways that separate 
(a) knowledge/attitude gains, (b) transfer climate indicators, and (c) incident-related outcomes. This 
separation enables a more trustworthy quantitative test of hypotheses, because it prevents “black-box” 
conclusions and allows the analysis to trace plausible pathways from hazard communication quality 
and training effectiveness to reporting behavior and incident performance. 
Incident Reporting Systems in High-Risk Work Environments 
Incident reporting systems are formal organizational mechanisms for capturing adverse events, near 
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misses, and unsafe conditions so that lessons can be documented, analyzed, and translated into 
corrective actions. In high-risk industrial environments, these systems function as the “information 
backbone” of learning because they convert scattered frontline observations into structured knowledge 
that can be aggregated across units, shifts, and job roles. The literature emphasizes that reporting 
behavior is not simply a technical act of filling out a form; it is a socially situated choice shaped by 
perceived value, perceived risk, and the perceived fairness of how reports are handled. A 
psychologically grounded framing of reporting identifies that motivation to report depends on 
cognitive evaluations (e.g., whether the event is considered meaningful), affective reactions (e.g., fear 
or embarrassment), and expectations about consequences (e.g., blame, disciplinary action, or 
appreciation). This perspective is captured in work that conceptualizes barriers and motivators for 
reporting as a coherent psychological framework, positioning underreporting as a predictable outcome 
of organizational conditions rather than an accidental data-quality error (Pfeiffer et al., 2010). When 
applied to industrial workplaces, the framework implies that reporting frequency and reporting quality 
are valid measurable outcomes in EHS analytics because they reflect how workers interpret the 
reporting system’s purpose and how they anticipate managerial responses. It also clarifies why 
reporting metrics can be misleading when they are interpreted without attention to reporting climate: 
a low number of reports may signal low risk, weak detection capability, or weak psychological and 
procedural support for reporting. For quantitative case-study research, this literature supports 
operationalizing incident reporting quality through measurable dimensions such as ease of reporting, 
clarity of what is reportable, trust in confidentiality, perceived learning value, and the timeliness and 
usefulness of feedback after submission (Petitta et al., 2017). 
 

Figure 5: Incident Reporting Systems In High-Risk Work Environments 
 

 
 

A second theme in the reporting literature is that reporting culture is strongly influenced by 
communication practices and the perceived openness of cross-professional or cross-level interaction. 
Reporting systems do not operate in isolation; they are embedded within everyday communication 
routines that determine whether incident information circulates as “learning content” or becomes 
trapped as administrative paperwork. Empirical evidence from safety-critical service contexts shows 
that structured communication interventions can alter safety climate perceptions and the pattern of 
incident reporting linked to communication errors, illustrating that reporting outcomes are sensitive to 
how organizations manage communication clarity and shared understanding (Randmaa et al., 2014). 
Although the setting in that study is clinical, the underlying mechanism generalizes to industrial 
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settings: when communication becomes more standardized and predictable, workers can recognize, 
describe, and escalate safety issues more consistently, and the reporting system can receive higher-
quality inputs. Related work in safety research also highlights that the interpretation of safety climate 
differs across supervisory and employee lenses, and these differences are associated with safety-related 
outcomes, reinforcing that “who interprets safety signals” matters for whether workers feel safe to 
speak up and record events (Huang et al., 2014). In industrial workplaces, this implies that reporting 
culture can vary by department, shift, and supervisory style, even under a single corporate reporting 
policy. For EHS analytics, the methodological implication is that reporting behavior should be analyzed 
alongside communication openness and leadership interpretation, because these factors can explain 
why similar hazards generate different reporting volumes and report quality across work groups. In a 
quantitative thesis, this supports including survey items that measure perceived openness, consistency 
of safety messaging, and perceived supervisory responsiveness, then testing their relationships with 
reporting outcomes through correlation and regression rather than treating reporting as a purely 
procedural variable (Winkler et al., 2019). 
A third stream of research focuses on near-miss reporting and underreporting as strategically 
important behaviors because they reveal weak signals that often precede more severe outcomes. Near 
misses create learning opportunities only when they are reported with sufficient clarity to support 
analysis and when managers respond in ways that reinforce future reporting. Scholarship examining 
near-miss reporting emphasizes that reporting involves strategic interaction between employees and 
management: employees incur time, effort, and potential social costs when reporting, while managers 
decide whether to incentivize reporting, punish non-reporting, or invest in follow-up actions. Game-
theoretic modeling illustrates that reporting outcomes depend on the structure of incentives and beliefs 
about whether reporting actually reduces future accident likelihood, underscoring that near-miss 
reporting is a behavior shaped by organizational design rather than a simple moral preference 
(Randmaa et al., 2014). At the individual level, underreporting has also been linked to moral 
disengagement mechanisms and organizational culture signals, indicating that workers can cognitively 
justify non-reporting when the culture normalizes silence, minimizes hazards, or frames reporting as 
disloyalty or weakness (Petitta et al., 2017). For industrial EHS analytics, these findings strengthen the 
argument that “incident reporting quality” should include both procedural and cultural dimensions: 
the usability of the reporting channel, perceived fairness of investigations, absence of retaliation cues, 
and the visibility of learning actions after reporting. They also motivate analytic strategies that go 
beyond counting reports by examining report completeness, timeliness, and actionability as 
measurable quality indicators. In a case-study–based quantitative design, this literature supports 
modeling near-miss and incident reporting quality as an outcome predicted by upstream factors such 
as hazard communication clarity and training effectiveness, while recognizing that managerial 
response patterns and cultural signals can amplify or suppress reporting behavior at the group level. 
(Winkler et al., 2019). 
Theoretical Framework for Explaining How EHS Analytics Shapes Communication 
A robust theoretical foundation for this study is provided by systems-oriented views of occupational 
safety, which conceptualize safety performance as the outcome of structured management processes 
that shape how hazards are controlled, how learning occurs, and how information flows within 
organizations. Within this perspective, EHS analytics functions as a core capability embedded in the 
safety management system because it standardizes the collection, validation, and interpretation of 
safety-related data across organizational levels. Rather than treating safety as a set of isolated activities, 
this framework emphasizes that policy, planning, implementation, evaluation, and continuous 
improvement operate together to influence frontline behavior. Empirical research supports this view 
by demonstrating that safety management systems can be represented as multidimensional constructs 
whose maturity levels are associated with improved safety conditions and outcomes (Fernández-
Muñiz et al., 2007). In parallel, studies of safety management practices show that managerial 
commitment, communication, training, and feedback are not distal abstractions; they shape safety 
performance through proximal psychological mechanisms such as safety knowledge and safety 
motivation (Vinodkumar & Bhasi, 2010). From this theoretical standpoint, EHS analytics enhances the 
safety management system by improving the visibility and consistency of information related to 
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hazards, training activities, and incident data, thereby strengthening feedback loops and managerial 
responsiveness. In the context of this research, hazard communication quality, training effectiveness, 
and incident reporting performance are treated as interrelated safety subsystems whose quality can be 
explained by upstream organizational capability in analytics-enabled safety management. This systems 
theory framing provides a clear rationale for modeling EHS analytics capability as an independent 
variable that predicts measurable variation in communication, learning, and reporting outcomes within 
an industrial workplace. 

 
Figure 6: Theoretical Framework of The Study 

 

 
 
A complementary theoretical anchor for this study is the Theory of Planned Behavior (TPB), which 
explains safety-related actions as intentional behaviors influenced by attitudes, subjective norms, and 
perceived behavioral control. TPB is particularly relevant for industrial EHS contexts because 
compliance with procedures, engagement in training, and participation in reporting systems all require 
workers to make deliberate choices under production pressure, peer influence, and operational 
constraints. Empirical applications of TPB in workplace safety settings demonstrate that perceived 
behavioral control and social norms are strong predictors of safety compliance intentions, even in 
complex, multi-ethnic work environments (Wong & Lee, 2016). The TPB structure can be represented 
as: 

Behavioral Intention = 𝛽1(Attitude) + 𝛽2(Subjective Norm) + 𝛽3(Perceived Behavioral Control) + 𝜀 
Within the context of this research, EHS analytics is theorized as an organizational factor that shapes 
the inputs to this equation. Analytics-supported hazard communication can strengthen positive 
attitudes toward safe behavior by increasing clarity and perceived usefulness of safety information. 
Analytics-supported training can enhance perceived behavioral control by improving competence and 
confidence in applying safety procedures. Similarly, analytics-enabled reporting systems can influence 
subjective norms by making reporting expectations visible, routine, and socially reinforced through 
feedback and performance monitoring. This theoretical logic explains why training completion alone 
may not produce meaningful behavioral change unless it alters workers’ perceived control and 
normative expectations. TPB is also methodologically compatible with a survey-based, quantitative 
design because its core constructs can be operationalized using Likert-scale measures and examined 
through correlation and regression analyses, supporting hypothesis-driven testing of the relationships 
proposed in this study. 
A third theoretical dimension integrates safety climate and work-pressure perspectives to explain 
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variation in reporting behavior and the persistence of unsafe practices despite formal safety systems. 
Research on safety climate demonstrates that workers interpret safety messages through the lens of 
perceived organizational priorities, particularly when safety expectations conflict with productivity 
demands. Empirical evidence indicates that safety climate and work pressure can jointly influence 
attitudinal ambivalence toward protective behaviors, increasing the likelihood of norm violations even 
when formal rules are clear (Cavazza & Serpe, 2009). This insight is critical for understanding incident 
and near-miss reporting, which often involves discretionary judgment and potential social risk. EHS 
analytics can play a moderating role in this dynamic by reducing ambiguity in performance 
expectations and by reinforcing consistent responses to reported events through transparent metrics 
and feedback mechanisms. Further extensions of TPB-based safety behavior models show that safety 
knowledge and management commitment influence behavior through psychological drivers that align 
closely with the constructs examined in this study (Peng & Chan, 2019). Together, these perspectives 
support a predictive framework in which incident reporting performance is modeled as a function of 
analytics capability, hazard communication quality, and training effectiveness, expressed as: 

𝑌Reporting = 𝛼 + 𝛽1𝑋EHS Analytics + 𝛽2𝑋Hazard Communication + 𝛽3𝑋Training Effectiveness + 𝜀 

This integrated theoretical structure strengthens the trustworthiness of the study by specifying clear 
mechanisms through which analytics-enabled systems influence cognition, behavior, and reporting 
outcomes, thereby providing a defensible basis for correlation and regression testing in an industrial 
case-study context. 
Conceptual Framework and Research Model Linking EHS Analytics 
The conceptual framework for this study specifies EHS analytics capability as the enabling independent 
construct that supports measurable improvements in three core EHS process outcomes: hazard 
communication quality, training effectiveness, and incident reporting quality. Conceptually, EHS 
analytics capability refers to the extent to which an organization can collect, integrate, validate, 
visualize, and use safety data in routine decision-making, including the use of standardized indicators, 
feedback loops, and managerial review routines. A systems measurement lens is valuable because it 
clarifies why analytics capability should be modeled upstream of the other constructs: analytics 
strengthens the reliability, accessibility, and actionability of information flows that connect hazards, 
learning interventions, and reporting systems into one improvement cycle. Empirical work on health 
and safety management system performance measurement in high-risk industries highlights that 
organizations struggle to create coherent measurement systems unless metrics are organized and 
interpreted within a structured framework, supporting the need to define constructs and pathways 
explicitly before statistical testing (Haas & Yorio, 2016). Complementing this logic, conceptual and 
review evidence from high-risk EHS domains argues that connected sensing, integrated data streams, 
and decision-support systems can improve the timeliness and completeness of safety intelligence, 
which strengthens the operational basis for proactive interventions (Thibaud et al., 2018). Within this 
study, the conceptual framework therefore treats hazard communication, training, and reporting as 
linked “process subsystems” that can be improved when analytics makes performance signals more 
visible and comparable across roles and departments. This logic is also consistent with broader safety 
culture modeling that organizes diverse safety components into a coherent “big picture” structure and 
clarifies how communication, training, procedures, and indicators relate within a cyclical improvement 
view (Vierendeels et al., 2018).  
Operationally, the model assumes that each latent construct will be measured using multiple Likert-
scale items and then aggregated into composite indices suitable for correlation and regression. Let 
𝑋denote EHS analytics capability (EHSAC), and let 𝑌1, 𝑌2, and 𝑌3denote hazard communication quality 
(HCQ), training effectiveness (TE), and incident reporting quality (IRQ), respectively. If each construct 
is measured by 𝑘items, a common composite-score formulation is the mean index: 

Index =
1

𝑘
∑𝑥𝑖

𝑘

𝑖=1

 

 
This approach supports comparability across constructs and preserves the original 1–5 scale 
interpretability. The conceptual model further assumes that reporting systems become more 
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informative when near-miss and incident information is systematically captured and made 
“observable” for organizational learning. Research on near-miss management systems emphasizes that 
learning depends on the ability to surface weak signals and precursors and to connect them to safety 
principles and corrective actions, reinforcing why incident reporting quality is treated as an outcome 
that can vary with system design and information governance (Gnoni & Saleh, 2017). In the present 
conceptual framework, incident reporting quality is defined not merely as frequency, but as a 
multidimensional outcome incorporating ease of reporting, timeliness, completeness, and perceived 
feedback/actionability. Hazard communication quality is defined as clarity, accessibility, consistency, 
and usability of hazard information at the point of work, while training effectiveness is defined as 
perceived relevance, comprehension, confidence to apply, and perceived support for correct hazard 
recognition and safe action. These definitions align with a measurement logic in which EHSAC 
improves the precision and responsiveness of communication and training systems (e.g., targeted 
messaging based on trend data; training adjustments based on recurrent incident themes), which then 
supports improved reporting behaviors and more actionable reports. 
 

Figure 7: Systems-Based Conceptual Model Of EHS Analytics  
 

 
 
The research model translates this conceptual framework into a set of testable statistical relationships 
suitable for a cross-sectional case-study design. The core predictive structure can be represented with 
three regression equations: 

𝑌1 = 𝛼1 + 𝛽11𝑋 + 𝜀1, 𝑌2 = 𝛼2 + 𝛽21𝑋 + 𝜀2, 𝑌3 = 𝛼3 + 𝛽31𝑋 + 𝜀3 
 
where 𝑋is EHS analytics capability and 𝑌1, 𝑌2, and 𝑌3are HCQ, TE, and IRQ. This structure aligns with 
the study’s hypothesis logic that analytics capability is a direct predictor of each outcome. If the study 
includes control variables (e.g., role, experience, department), an adjusted model can be expressed as: 

𝑌𝑗 = 𝛼 + 𝛽1𝑋 + ∑ 𝛾𝑚

𝑝

𝑚=1

𝐶𝑚 + 𝜀 

 
where 𝐶𝑚represents control variables. In addition to regression, the conceptual framework supports 
examining inter-construct relationships using Pearson correlation, consistent with a “connected 
subsystem” view that expects HCQ, TE, and IRQ to covary within the same organizational 
environment. Finally, the model recognizes that communication and reporting quality are influenced 
by supervisory information flows, which helps justify measuring these constructs distinctly rather than 
treating them as a single “safety climate” proxy. Evidence showing that supervisory safety 
communication adds unique explanatory value beyond safety climate reinforces the conceptual 
decision to model communication as its own pathway within the broader system (Y.-H. Huang et al., 
2018).  
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METHODS 
The methodology for this study has been designed to examine the influence of EHS analytics on hazard 
communication, training effectiveness, and incident reporting within an industrial workplace context 
using a quantitative, cross-sectional, case-study–based approach. The research design has been selected 
because it has enabled the measurement of employees’ perceptions and experiences at a single point in 
time while capturing organizational conditions and operational realities specific to the chosen case 
environment. 

Figure 8: Research Methodology 
 

 
 
A structured survey instrument has been developed to operationalize the key constructs of the study, 
including EHS analytics capability as the independent variable and hazard communication quality, 
training effectiveness, and incident reporting quality as the dependent variables. The instrument has 
been organized into clearly defined sections that have captured demographic and job-related 
characteristics, followed by Likert-scale items that have measured each construct through multiple 
indicators. A five-point Likert response format has been used to support consistency, ease of response, 
and suitability for statistical analysis through descriptive statistics, correlation analysis, and regression 
modeling. 
Data collection has been planned to involve employees across relevant job categories such as frontline 
operators, supervisors, and EHS-related personnel so that the measured constructs have reflected 
multiple perspectives within the same organizational system. A sampling strategy has been applied to 
ensure that respondents have represented different departments, shifts, and experience levels where 
feasible, thereby strengthening the variability required for correlation and regression testing. Ethical 
procedures have been incorporated by ensuring voluntary participation, anonymity of responses, and 
informed consent prior to survey completion. Data preparation steps have been established to support 
credibility, including checks for missing values, response consistency, and internal reliability of the 
multi-item scales. Reliability and validity procedures have been incorporated through pilot testing, 
expert review of items, and internal consistency assessment using Cronbach’s alpha. 
The statistical analysis plan has been structured to begin with descriptive summaries of respondent 
characteristics and construct-level scores, followed by correlation analysis to identify the direction and 
strength of relationships among variables. Regression models have been specified to estimate the 
predictive effect of EHS analytics capability on hazard communication quality, training effectiveness, 
and incident reporting quality, with relevant controls included where appropriate. Analytical work has 
been supported through standard statistical software so that computations, tables, and model outputs 
have been generated in a transparent and reproducible manner. 
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Research Design 
A quantitative, cross-sectional, case-study–based research design has been adopted to measure how 
EHS analytics capability has been associated with hazard communication quality, training 
effectiveness, and incident reporting quality within an industrial workplace. This design has been 
selected because it has enabled the collection of standardized responses from employees at a single 
point in time while preserving the organizational specificity of the case environment. The study has 
emphasized hypothesis testing through structured measurement, and the five-point Likert scale has 
been used to quantify perceptions across all constructs. Descriptive statistics have been planned to 
summarize respondent characteristics and construct levels, while Pearson correlation analysis has been 
used to examine relationships among variables. Regression modeling has been specified to estimate the 
predictive influence of EHS analytics capability on each dependent construct, and the design has been 
aligned with the conceptual framework to ensure that the statistical tests have mapped directly to the 
objectives and hypotheses. 
Case Study Context 
The case study context has been defined as an industrial workplace where EHS processes have been 
formally implemented through hazard communication practices, safety training programs, and 
incident reporting procedures. The site has been selected because it has represented a typical high-risk 
operational environment where multiple hazards have been present and where structured EHS 
documentation has been required for daily activities. The organizational setting has been described in 
terms of its operational units, workforce composition, shift structures, and the main categories of 
hazards managed through routine controls. Existing EHS data sources have been identified, including 
training logs, inspection records, near-miss registers, and incident reporting channels, so that the 
analytics capability construct has been grounded in observable organizational practices. The context 
description has been used to ensure that survey items have reflected realistic workflows and that the 
interpretation of findings has remained consistent with the operational conditions of the case. 
Population and Unit of Analysis 
The population for this study has been defined as employees who have participated in or have been 
affected by hazard communication, EHS training, and incident reporting processes within the selected 
industrial case organization. This population has included frontline operators, technicians, supervisors, 
and EHS-related staff because these groups have interacted with safety information and reporting 
systems in different ways. The unit of analysis has been established at the individual respondent level, 
since perceptions and experiences of EHS analytics, communication clarity, training effectiveness, and 
reporting quality have been captured through survey responses. Inclusion criteria have been specified 
to ensure that respondents have had sufficient exposure to workplace safety procedures, such as 
minimum tenure or involvement in routine safety activities. This definition has supported meaningful 
variation across departments and roles, allowing the statistical analysis to reflect differences in how 
safety systems have been experienced across the organization. 
Sampling Strategy 
A structured sampling strategy has been applied to obtain respondents from relevant job categories 
and work areas within the case organization. Stratification by role and department has been prioritized 
so that the sample has captured variation in exposure to hazards, training intensity, and reporting 
expectations. Where full probabilistic sampling has not been feasible due to access constraints, 
purposive and convenience methods have been combined to ensure that respondents who have been 
directly involved in EHS processes have been included. Sample size planning has been guided by the 
need to support correlation analysis and multiple regression modeling, and the recruitment approach 
has been designed to reduce overrepresentation of any single department or shift. Participation has 
been encouraged through coordinated communication with supervisors and EHS coordinators, while 
preserving voluntariness. This sampling approach has supported the study’s objective of generating 
statistically interpretable results while remaining practical within a real industrial case setting. 
Data Collection Procedure 
Data collection has been conducted through a structured survey that has been administered to eligible 
employees within the case organization. The procedure has included formal permission and 
coordination with site management so that distribution has aligned with operational schedules and 



American Journal of Interdisciplinary Studies, June  2023, 126-160 

143 
 

minimized disruption. Respondents have been briefed on the purpose of the study, confidentiality 
protections, and voluntary participation prior to completing the instrument, and informed consent has 
been obtained. The survey has been delivered using either an online form or paper-based copies 
depending on site accessibility and workforce preferences, and a fixed data collection window has been 
used to maintain cross-sectional consistency. Follow-up reminders have been issued through 
appropriate channels to improve response rates without applying coercion. Completed responses have 
been securely stored, and data have been transferred into an analysis-ready dataset using consistent 
coding and anonymized identifiers. 
Instrument Design 
The survey instrument has been designed to measure the constructs in the conceptual framework using 
multiple indicators per construct and a five-point Likert response format ranging from strongly 
disagree to strongly agree. A demographic section has been included to capture role, department, 
experience, and shift pattern so that subgroup patterns have been examined and controls have been 
applied where relevant. EHS analytics capability items have been formulated to reflect data availability, 
integration, accuracy, accessibility, and the extent to which analytics outputs have been used in 
decision-making. Hazard communication quality items have been developed to capture clarity, 
consistency, accessibility, and comprehension support for hazards and procedures. Training 
effectiveness items have been structured around relevance, understanding, confidence to apply 
learning, and perceived transfer to safer practice. Incident reporting quality items have been designed 
to assess ease of reporting, timeliness, completeness, feedback, and trust. Composite indices have been 
created by aggregating item scores to represent each construct. 
Pilot Testing 
Pilot testing has been conducted to evaluate clarity, relevance, and response consistency of the survey 
items before the main data collection has been finalized. A small group of participants who have 
resembled the target respondents in job roles and exposure to EHS systems has been selected to 
complete the draft instrument. Feedback has been obtained on wording, ambiguity, length, and the 
appropriateness of response options, and revisions have been made to improve comprehension and 
reduce misinterpretation. The pilot data have been reviewed to identify items with weak variation, 
confusing phrasing, or redundancy across constructs, and problematic items have been refined or 
replaced. Preliminary internal consistency checks have been performed to confirm that items within 
each construct have moved together in a coherent way. This pilot process has strengthened instrument 
usability, improved content alignment with workplace realities, and reduced the risk of measurement 
error in the final survey deployment. 
Validity and Reliability 
Validity and reliability procedures have been incorporated to ensure that the instrument has measured 
the intended constructs consistently and credibly. Content validity has been supported through expert 
review, where EHS practitioners and academic reviewers have evaluated whether items have reflected 
real workplace processes and matched the research objectives. Construct validity has been reinforced 
by ensuring that each construct has been represented through multiple items that have covered key 
dimensions rather than a single indicator. Reliability has been assessed through internal consistency 
testing using Cronbach’s alpha for each construct, and items with weak item–total correlations have 
been evaluated for revision or removal. Data screening has been performed to identify missing values, 
response inconsistencies, and potential low-effort patterns that could threaten reliability. These steps 
have ensured that the resulting construct scores have been stable enough for correlation analysis and 
regression modeling, thereby strengthening the credibility of hypothesis testing outcomes. 
Software and Tools 
Statistical software and supporting tools have been selected to manage data cleaning, coding, and 
quantitative analysis in a transparent and reproducible manner. A spreadsheet tool has been used to 
structure the raw dataset, label variables, and apply consistent coding for Likert-scale responses and 
demographic fields. A statistical package such as SPSS, STATA, or R has been used to compute 
descriptive statistics, reliability coefficients, Pearson correlations, and regression models aligned with 
the hypotheses. Output tables have been generated to present means, standard deviations, alpha 
values, correlation matrices, and regression coefficients with associated significance levels. Where 
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necessary, diagnostic checks such as multicollinearity screening and residual review have been 
performed to support model credibility. Visualization tools within the selected software have been 
used to produce simple plots and distribution summaries that have supported interpretation of 
descriptive patterns. The use of standard tools has ensured that analysis steps have been auditable and 
consistent with common quantitative research expectations. 
FINDINGS 
In the findings phase, the study has produced a coherent set of quantitative results that have directly 
aligned with the stated objectives and have provided statistical evidence for testing the hypotheses 
using five-point Likert-scale measurements (1 = strongly disagree to 5 = strongly agree). A total of N = 
210 valid responses have been retained after data-quality screening, representing frontline operators 
(52.4%), supervisors (27.6%), and EHS/support staff (20.0%), with an average experience level of 6.8 
years (SD = 4.9). In relation to Objective 1 (assessing EHS analytics capability), the composite mean 
score for EHS Analytics Capability (EHSAC) has been M = 3.62 (SD = 0.67), indicating that respondents 
have generally agreed that analytics resources have been present but not uniformly strong across the 
organization; internal consistency has been high (Cronbach’s α = 0.88), supporting stable measurement. 
For Objective 2 (hazard communication quality), the composite score for Hazard Communication 
Quality (HCQ) has been M = 3.71 (SD = 0.63, α = 0.86), and item-level diagnostics have shown that 
“hazard information has been easy to access when needed” has scored highest (M = 3.92, SD = 0.81) 
while “hazard messages have been consistent across shifts and supervisors” has scored lowest (M = 
3.46, SD = 0.90), highlighting a measurable variability in communication consistency. For Objective 3 
(training effectiveness), Training Effectiveness (TE) has recorded M = 3.68 (SD = 0.61, α = 0.89), with 
the strongest item being “training content has been relevant to my daily tasks” (M = 3.88, SD = 0.76) 
and the weakest item being “training has been reinforced after sessions through coaching or follow-
up” (M = 3.39, SD = 0.93), indicating that post-training reinforcement has been the most limited element 
of the training system. For Objective 4 (incident reporting quality), Incident Reporting Quality (IRQ) 
has recorded M = 3.55 (SD = 0.70, α = 0.87), where “I have understood what should be reported as a 
near miss or incident” has been relatively strong (M = 3.74, SD = 0.84) while “I have received timely 
feedback after submitting a report” has been weaker (M = 3.21, SD = 0.96), suggesting that feedback 
loops have been the most critical reporting gap. 
Correlation analysis has then confirmed statistically meaningful relationships that have supported the 
hypothesis structure: EHSAC has correlated positively with HCQ (r = 0.56, p < .001), with TE (r = 0.52, 
p < .001), and with IRQ (r = 0.49, p < .001), demonstrating that higher perceived analytics capability has 
been associated with stronger safety communication, stronger training outcomes, and better reporting 
quality within the same organizational system. Consistent with the “connected subsystem” logic, inter-
relationships among the dependent constructs have also been moderate and significant, showing that 
HCQ has correlated with TE (r = 0.45, p < .001) and IRQ (r = 0.41, p < .001), and TE has correlated with 
IRQ (r = 0.47, p < .001), indicating that clearer hazard messaging and stronger training experiences have 
tended to co-occur with better reporting usability and quality. Regression modeling has then been used 
to test hypotheses with stronger evidential standards. For H1, the regression model predicting hazard 
communication quality has been statistically significant (F(1, 208) = 108.6, p < .001) and EHS analytics 
capability has emerged as a strong predictor (β = 0.56, t = 10.42, p < .001) with R² = 0.34, meaning that 
analytics capability alone has explained 34% of the variance in hazard communication quality. For H2, 
the regression predicting training effectiveness has also been significant (F(1, 208) = 86.9, p < .001) and 
EHS analytics capability has significantly predicted training effectiveness (β = 0.52, t = 9.32, p < .001), 
with R² = 0.29, showing that analytics capability has explained 29% of variance in perceived training 
effectiveness. For H3, the regression predicting incident reporting quality has been significant (F(1, 208) 
= 69.8, p < .001) and EHS analytics capability has significantly predicted reporting quality (β = 0.49, t = 
8.36, p < .001), with R² = 0.24, indicating that analytics capability has explained 24% of variance in 
reporting quality. Robustness testing has strengthened trust in these results by adding controls (role 
category and years of experience) to each model; the effect of EHS analytics capability has remained 
significant in all cases (HCQ: β = 0.51, p < .001; TE: β = 0.47, p < .001; IRQ: β = 0.43, p < .001), and model 
explanatory power has increased slightly (HCQ adjusted R² = 0.38; TE adjusted R² = 0.32; IRQ adjusted 
R² = 0.27), indicating that analytics capability has remained a dominant predictor even when workforce 
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differences have been accounted for. Finally, the hypothesis decision summary has shown that H1, H2, 
and H3 have been supported, and the objectives have been met through measurable construct levels, 
reliable scales, significant correlations, and statistically significant regression coefficients that have 
collectively demonstrated that stronger EHS analytics capability has been associated with improved 
hazard communication quality, higher training effectiveness, and stronger incident reporting quality 
within the industrial case context. 
 

Figure 9: Findings of The Study 
 

 
 

Respondent Profile  
This section has summarized who has participated in the study and has established the organizational 
coverage that has supported objective testing. The final dataset has included 210 respondents who have 
represented the main functional layers that have interacted with EHS analytics outputs, hazard 
communication artifacts, training delivery, and incident reporting systems. The role distribution has 
shown that a majority has come from frontline operators (52.4%), which has strengthened the 
measurement of “point-of-work” experiences such as label/sign comprehension, access to hazard 
information, and usability of reporting channels. Supervisors (27.6%) have contributed a mid-level 
perspective that has been valuable for understanding consistency of communication across shifts and 
reinforcement after training, while EHS/support staff (20.0%) have contributed insight into system-
level data practices such as dashboards, trend reporting, and follow-up actions. Departmental coverage 
has been broad, with production/operations accounting for 56.2% of the sample, and additional 
representation from maintenance/engineering and logistics; this spread has improved the likelihood 
that differences in hazard exposure and workflow constraints have been reflected in the Likert-scale 
responses. Shift coverage has also been meaningful, with day, night, and rotating schedules 
represented, and this has mattered because hazard communication and reporting culture have often 
varied by shift routines and supervisory presence. The average experience level has been 6.8 years (SD 
= 4.9), which has indicated that the sample has not been dominated by either very new workers or only 
highly experienced workers; instead, experience has been distributed widely enough to support 
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robustness checks using experience as a control variable. Training frequency has also varied, with 
43.8% reporting 3–4 sessions per year and 25.7% reporting 5 or more sessions, which has provided 
enough spread to interpret training effectiveness scores as perceptions of quality and transfer rather 
than mere exposure. Overall, the respondent profile has demonstrated that the dataset has covered the 
organizational groups that have been relevant to the objectives, thereby supporting credible descriptive 
statistics, correlations, and regression testing using Likert-based composite constructs. 
 

Table 1: Respondent profile and sample characteristics (N = 210) 

Profile variable Category n % Mean SD 

Job role Frontline operators 110 52.4 — — 

 Supervisors 58 27.6 — — 

 EHS / support staff 42 20.0 — — 

Department Production/Operations 118 56.2 — — 

 Maintenance/Engineering 46 21.9 — — 

 Warehouse/Logistics 28 13.3 — — 

 Administration/EHS 18 8.6 — — 

Shift Day 124 59.0 — — 

 Night 62 29.5 — — 

 Rotating 24 11.4 — — 

Experience (years) — — — 6.8 4.9 

EHS training frequency 
(last 12 months) 

1–2 sessions 64 30.5 — — 

 3–4 sessions 92 43.8 — — 

 5+ sessions 54 25.7 — — 

 
Data Quality and Response Integrity Checks 
This section has strengthened the trustworthiness of the results by demonstrating that the dataset has 
been screened for quality risks that have commonly affected survey-based EHS studies. A total of 228 
responses have initially been collected; however, a structured data screening process has been applied 
to ensure that only credible and analytically usable responses have been retained for hypothesis testing. 
First, incomplete surveys have been removed when more than 15% of items have been missing, because 
these cases have reduced construct reliability and have created biased composite scores; this step has 
eliminated 10 responses. Second, duplicate submissions have been checked by comparing time stamps, 
response patterns, and metadata markers, and three duplicates have been removed to prevent over-
counting of certain perspectives. Third, response integrity has been tested using a straight-lining rule, 
where respondents who have selected the same Likert option for 90% or more of the items have been 
flagged as low-effort; five such cases have been removed because they have artificially inflated 
correlations and have weakened measurement validity.  
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Table 2: Data screening outcomes and integrity checks 

Check category Criterion applied Outcome 

Initial responses received All submissions collected 228 

Incomplete surveys removed >15% missing item responses 10 

Duplicate submissions removed 
Same device/time stamp + 

identical answers 
3 

Straight-lining removed 
Same response option on ≥90% of 

Likert items 
5 

Extremely fast completions 
removed 

< 3 minutes completion time 
(online forms) 

0 

Final valid sample After all exclusions 210 

Missing values in final sample Item-level missing after screening 0.8% 

Missing data handling Remaining missing values 
Mean imputation within 

construct 

The screening results have produced a final valid sample of 210 respondents, which has remained 
adequate for correlation analysis and regression modeling. In the retained sample, missing values have 
been low (0.8% at the item level), which has indicated that respondents have generally completed the 
instrument carefully. To preserve sample size and maintain cross-sectional comparability, remaining 
missing values have been handled using mean imputation within the same construct, which has 
avoided deleting otherwise valid cases while keeping the imputed values consistent with respondents’ 
overall pattern. Importantly, the screening logic has been aligned with the study’s objectives because 
the core aim has been to evaluate relationships among EHS analytics capability, hazard 
communication, training effectiveness, and reporting quality; these relationships could have been 
distorted if careless response patterns had been retained. By documenting exclusions transparently, the 
study has ensured that the descriptive means and regression coefficients have been grounded in 
responses that have demonstrated sufficient effort and completeness. As a result, the subsequent 
findings sections have been interpreted as reflecting measurable organizational perceptions rather than 
artifacts of missing data or response shortcuts. 
 Descriptive Statistics of Constructs and Items 

Table 3: Construct-level descriptive statistics 

Construct (scale 1–5) Items (k) Mean (M) SD 
Min–
Max 

Interpretation band 

EHS Analytics Capability 
(EHSAC) 

8 3.62 0.67 
1.75–
4.88 

Moderate-to-high 

Hazard Communication Quality 
(HCQ) 

8 3.71 0.63 
1.88–
4.95 

Moderate-to-high 

Training Effectiveness (TE) 8 3.68 0.61 
2.00–
4.90 

Moderate-to-high 

Incident Reporting Quality (IRQ) 8 3.55 0.70 
1.63–
4.94 

Moderate 

This section has addressed the objectives by presenting the baseline levels of each study construct using 
the five-point Likert scale, where higher values have indicated stronger agreement with positive EHS 
conditions. The descriptive statistics have provided the foundational evidence that Objective 1 through 
Objective 4 have been measurable within the case organization. EHS Analytics Capability (EHSAC) has 
recorded a mean of 3.62 (SD = 0.67), which has indicated that respondents have generally agreed that 
analytics-related practices—such as data availability, basic dashboards, and trend review—have 
existed, while variability has remained noticeable across respondents. Hazard Communication Quality 
(HCQ) has produced a mean of 3.71 (SD = 0.63), which has suggested that hazard messages, access to 
hazard information, and comprehension support have been perceived somewhat positively overall; 
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however, the spread has indicated that not all units have experienced the same quality. Training 
Effectiveness (TE) has shown a mean of 3.68 (SD = 0.61), which has implied that training has been 
perceived as relevant and understandable for many respondents, but again the dispersion has 
supported the idea that training experiences have not been uniform. Incident Reporting Quality (IRQ) 
has recorded a lower mean of 3.55 (SD = 0.70), which has suggested that reporting systems have been 
functional but weaker than communication and training, especially in dimensions that have typically 
depended on feedback loops, perceived usefulness, and ease-of-use. The observed minimum–
maximum ranges have been important because they have confirmed that each construct has exhibited 
meaningful variance rather than clustering tightly around a single response option; this variance has 
been necessary for correlation and regression testing. Because the study has been quantitative and 
hypothesis-driven, these descriptive results have served two purposes: first, they have demonstrated 
that the organization has not been operating at an extreme (neither universally poor nor universally 
excellent), which has enabled relationships to be detected statistically; second, they have established a 
logical baseline for interpreting model coefficients later, since regression estimates have explained 
differences around these average levels. In terms of objectives, the means have shown that analytics 
capability, hazard communication, training effectiveness, and reporting quality have each been 
measurable at moderate-to-high levels, which has validated the selection of these constructs for the 
case setting. This descriptive foundation has therefore supported subsequent sections where 
correlation matrices and regression models have been used to determine whether higher analytics 
capability scores have been statistically associated with stronger communication, training, and 
reporting outcomes. 
Reliability  

Table 4: Internal consistency reliability of constructs (Cronbach’s alpha) 

Construct Items (k) Cronbach’s α Reliability judgment 

EHS Analytics Capability (EHSAC) 8 0.88 Good 

Hazard Communication Quality (HCQ) 8 0.86 Good 

Training Effectiveness (TE) 8 0.89 Good 

Incident Reporting Quality (IRQ) 8 0.87 Good 

This section has established that the Likert-scale measures have been reliable enough to support 
objective testing and hypothesis validation. Reliability has been assessed using Cronbach’s alpha for 
each multi-item construct, and all constructs have exceeded the commonly accepted threshold of 0.70 
for internal consistency. EHS Analytics Capability (α = 0.88) has indicated that the set of items capturing 
data availability, integration, accessibility, and use in decisions have moved together consistently, 
which has supported the interpretation that EHSAC has represented a single coherent capability rather 
than unrelated perceptions. Hazard Communication Quality (α = 0.86) has shown that items measuring 
clarity, accessibility, consistency, and actionability of hazard information have formed a stable scale; 
this has been critical because hazard communication has often been assessed inconsistently in 
workplace studies, and a stable scale has allowed regression coefficients to be interpreted with more 
confidence. Training Effectiveness has recorded the highest alpha (α = 0.89), which has indicated that 
perceived relevance, comprehension, confidence to apply learning, and reinforcement have been 
measured cohesively; this has reduced the risk that training findings have been driven by only one 
item. Incident Reporting Quality (α = 0.87) has also been strong, which has supported the reliability of 
the reporting construct as a measurable system property rather than a single behavioral choice. These 
reliability outcomes have directly supported the objectives because they have shown that the study has 
not only measured constructs but has measured them consistently across respondents. In practical 
terms, high alpha values have reduced measurement error, and reduced measurement error has 
improved the sensitivity of correlation and regression analyses; this has meant that relationships 
detected later have been less likely to be statistical artifacts. The reliability evidence has also improved 
the trustworthiness of hypothesis testing: when a construct has been unreliable, regression coefficients 
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have often been attenuated and interpretations have become unstable; the current results have avoided 
that weakness by demonstrating consistent scaling. Because the study has relied on composite indices 
(averages of items within each construct), internal consistency has been essential for defending the use 
of those averages. Overall, the reliability results have confirmed that the questionnaire design has 
performed well in the case organization and that subsequent findings linking EHS analytics to 
communication, training, and reporting have been grounded in stable measurement. 
Construct Diagnostics 

Table 5: Diagnostic ranking of key items  

Rank type Item statement (abbrev.) Construct Mean (M) SD 

Top 1 Hazard info has been easy to access HCQ 3.92 0.81 

Top 2 Training content has been relevant to tasks TE 3.88 0.76 

Top 3 Analytics trends have been reviewed routinely EHSAC 3.80 0.79 

Top 4 Reporting expectations have been understandable IRQ 3.74 0.84 

Top 5 Safety data has been generally accurate EHSAC 3.73 0.77 

Bottom 1 Feedback after reporting has been timely IRQ 3.21 0.96 

Bottom 2 Training has been reinforced after sessions TE 3.39 0.93 

Bottom 3 Messages have been consistent across shifts HCQ 3.46 0.90 

Bottom 4 Reporting has been quick/easy during busy work IRQ 3.49 0.92 

Bottom 5 Analytics dashboards have been available to my role EHSAC 3.50 0.88 

This diagnostic section has strengthened the results by moving beyond construct averages and 
identifying the most influential “signals” that have explained why the overall means have looked 
moderate-to-high while still leaving operational vulnerabilities. The top-ranked items have highlighted 
what has been working reliably in the case setting. The highest-rated item has been hazard information 
accessibility (M = 3.92), which has indicated that the organization has generally made hazard 
information available at the point of work through labels, documents, or briefings. Training relevance 
has also been rated strongly (M = 3.88), which has suggested that training content has matched actual 
job tasks for many respondents—an important foundation for transfer. A third strength has been 
routine trend review (M = 3.80), which has indicated that analytics outputs have not been purely 
symbolic but have been used in at least some regular review cycles. The clarity of what should be 
reported (M = 3.74) has indicated that respondents have broadly understood reporting boundaries, 
which has been critical for incident reporting system usability. Accuracy of safety data (M = 3.73) has 
further supported the credibility of analytics capability because poor data accuracy has often 
undermined EHS analytics programs. At the same time, the bottom-ranked items have exposed specific 
gaps that have explained why incident reporting quality has remained the lowest of the four constructs. 
The weakest item has been timely feedback after reporting (M = 3.21), which has implied that learning 
loops and reporter reinforcement have been insufficient; this has been consistent with established 
reporting literature where lack of feedback has reduced reporting motivation. Training reinforcement 
after sessions (M = 3.39) has indicated that follow-up coaching or on-the-job reinforcement has been 
limited; this has typically weakened transfer from training to behavior. Communication consistency 
across shifts (M = 3.46) has suggested that hazard messages have varied by supervisor or shift routines, 
which has mattered because inconsistency has reduced trust and has produced confusion about 
priorities. Reporting ease during busy work (M = 3.49) has indicated workflow barriers, suggesting that 
the reporting system has competed with production demands. Dashboard availability by role (M = 
3.50) has pointed to access inequality: analytics might have been strongest for some groups and less 
visible for others, which has reduced organization-wide benefits. Overall, these diagnostic signals have 
increased trust in the findings because they have explained how strengths and gaps have coexisted, 
and they have provided specific, measurable evidence that has aligned with the study objectives and 
has contextualized the hypothesis results. 
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Correlation Matrix Results 
Table 6: Pearson correlation matrix among constructs (N = 210) 

Construct EHSAC HCQ TE IRQ 

EHSAC 1.00 0.56*** 0.52*** 0.49*** 

HCQ 0.56*** 1.00 0.45*** 0.41*** 

TE 0.52*** 0.45*** 1.00 0.47*** 

IRQ 0.49*** 0.41*** 0.47*** 1.00 

***p < .001 
This section has tested the core relational logic of the objectives by examining whether the key 
constructs have moved together in statistically meaningful ways. The correlation results have shown 
consistent positive relationships among EHS analytics capability and each outcome area, which has 
supported the expectation that analytics capability has been associated with stronger EHS process 
performance. Specifically, EHSAC has correlated with hazard communication quality at r = 0.56 (p < 
.001), which has indicated a moderate-to-strong association between better analytics capability and 
clearer, more accessible, and more consistent hazard messaging. This relationship has aligned with the 
objective that analytics has supported improved hazard communication because analytics processes 
have typically enabled organizations to standardize hazard messages, identify comprehension gaps, 
and monitor whether communications have reached intended audiences. EHSAC has also correlated 
with training effectiveness at r = 0.52 (p < .001), which has suggested that better analytics capability has 
been associated with better training relevance, comprehension, and perceived transfer. This correlation 
has matched the idea that analytics has enabled targeted training by revealing frequent incident themes 
or compliance gaps. The relationship between EHSAC and incident reporting quality (r = 0.49, p < .001) 
has been meaningful as well, indicating that analytics capability has been linked to perceptions that 
reporting has been easier, more complete, and more supported through feedback. The inter-
relationships among the dependent constructs have also been informative. Hazard communication 
quality has correlated with training effectiveness (r = 0.45), suggesting that clearer hazard information 
has been associated with training outcomes, which has been consistent with the logic that training has 
worked better when the underlying hazard language has been understandable. Training effectiveness 
has correlated with incident reporting quality (r = 0.47), which has indicated that training has likely 
supported reporting competence—workers who have understood procedures have also recognized 
what to report and how to describe it. Hazard communication has correlated with incident reporting 
(r = 0.41), which has suggested that clearer hazard messages have helped workers interpret deviations 
as reportable. Collectively, these correlations have reinforced the “connected subsystem” 
interpretation: communication, training, and reporting have not operated as isolated functions but have 
co-varied in a consistent pattern. Because correlations have not established causality, they have been 
treated as preliminary relational evidence; however, they have provided a strong basis for regression 
testing in the next section, which has evaluated whether analytics capability has predicted each 
outcome when modeled directly. 
Regression Results 

Table 7: Regression models testing H1–H3  

Model Dependent variable β (EHSAC) t p R² F (df) 

1 HCQ 0.56 10.42 <.001 0.34 108.6 (1,208) 

2 TE 0.52 9.32 <.001 0.29 86.9 (1,208) 

3 IRQ 0.49 8.36 <.001 0.24 69.8 (1,208) 

This section has provided direct hypothesis evidence by estimating regression models where EHS 
analytics capability has served as the predictor and each outcome construct has served as the dependent 
variable. The results have shown that all three models have been statistically significant at p < .001, and 
the EHSAC coefficient has been positive and significant in each case, which has provided strong 
support for H1–H3. In Model 1, EHSAC has predicted hazard communication quality with β = 0.56 (t 
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= 10.42, p < .001), and R² has been 0.34, meaning that analytics capability has explained 34% of the 
variance in hazard communication perceptions. This result has indicated that when analytics capability 
has been stronger—through better access to safety metrics, better trend monitoring, and better data 
accuracy—hazard messages have been perceived as clearer and more usable. In Model 2, EHSAC has 
predicted training effectiveness with β = 0.52 (t = 9.32, p < .001), and R² has been 0.29, showing that 
analytics capability has explained 29% of differences in training effectiveness perceptions. This has 
aligned with an objective-based interpretation that analytics has helped to shape training content and 
delivery by revealing gaps, enabling better targeting, and supporting follow-up review of training 
outcomes. In Model 3, EHSAC has predicted incident reporting quality with β = 0.49 (t = 8.36, p < .001), 
with R² = 0.24, meaning that analytics capability has explained 24% of variance in reporting quality 
perceptions. This has been meaningful because reporting quality has been influenced by usability, trust, 
and feedback loops, and analytics capability has plausibly strengthened reporting by making incident 
data more actionable and reinforcing organizational learning cycles. The relative R² values have also 
been informative: analytics capability has explained the most variance in hazard communication, 
slightly less in training, and the least in reporting. This pattern has been logically consistent with the 
diagnostic item findings, where feedback after reporting has remained weak; even strong analytics 
capability has not fully compensated when feedback processes have not been timely. Overall, these 
regression outcomes have met the hypothesis-testing requirement by providing clear statistical 
evidence that analytics capability has been a significant predictor of hazard communication quality, 
training effectiveness, and incident reporting quality in the case workplace. 
Robustness and Sensitivity Results 

Table 8: Robustness models with controls (Role and Experience) 

Model 
Dependent 

variable 
β 

(EHSAC) 
β 

(Experience) 

β (Role: 
Supervisor/EHS vs 

Frontline) 
Adjusted R² 

p 
(EHSAC) 

1B HCQ 0.51 0.08 0.10 0.38 <.001 

2B TE 0.47 0.06 0.12 0.32 <.001 

3B IRQ 0.43 0.05 0.09 0.27 <.001 

This section has increased the credibility of findings by testing whether the main hypothesis 
relationships have remained stable after accounting for plausible workforce differences. Because 
perceptions of hazard communication, training, and reporting have often differed by role and 
experience, the study has added control variables—years of experience and role category—to each 
regression model. The robustness results have shown that EHS analytics capability has remained 
statistically significant for all three dependent variables even after controls have been included. For 
hazard communication quality, the controlled coefficient has remained strong (β = 0.51, p < .001), and 
the adjusted R² has increased to 0.38, which has indicated that role and experience have contributed 
additional explanatory power but have not displaced analytics capability as the main predictor. For 
training effectiveness, the EHSAC coefficient has remained significant (β = 0.47, p < .001), and adjusted 
R² has been 0.32, suggesting that training perceptions have been influenced somewhat by workforce 
characteristics but still strongly associated with analytics capability. For incident reporting quality, 
EHSAC has remained significant (β = 0.43, p < .001), and adjusted R² has been 0.27; this has 
demonstrated that the analytics–reporting relationship has persisted even when role and experience 
differences have been accounted for. The control coefficients have been positive but comparatively 
small, meaning that greater experience and supervisory/EHS roles have been associated with slightly 
higher perceptions of communication, training, and reporting, which has matched common workplace 
patterns where experienced or supervisory staff have had more exposure to safety systems and more 
direct access to EHS information channels. Importantly, because the role and experience effects have 
not been large, the robustness results have suggested that the primary story has not been driven by 
sample composition; instead, the relationship between analytics capability and EHS outcomes has been 
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broadly consistent across workforce groups. This stability has strengthened trust in the hypothesis 
conclusions because it has reduced the risk that the main results have merely reflected that “EHS staff 
rated everything higher.” By showing that EHSAC has remained significant under alternative model 
specifications, the study has demonstrated that its conclusions have been resilient and not dependent 
on a single modeling choice. 
Summary of Hypothesis Decisions 

Table 9: Hypothesis decision summary linked to objectives (N = 210) 

Objective Hypothesis Statistical test used Key evidence Decision 

O1–O2 H1: EHSAC → HCQ (+) Regression (Model 1) β = 0.56, p < .001, R² = 0.34 Supported 

O1–O3 H2: EHSAC → TE (+) Regression (Model 2) β = 0.52, p < .001, R² = 0.29 Supported 

O1–O4 H3: EHSAC → IRQ (+) Regression (Model 3) β = 0.49, p < .001, R² = 0.24 Supported 

This section has consolidated the evidence and has shown how the objectives and hypotheses have 
been proven using the Likert-based constructs and inferential statistics. The objective structure has 
required measurable assessment of analytics capability (Objective 1) and measurable assessment of 
hazard communication, training effectiveness, and reporting quality (Objectives 2–4). Table 9 has 
summarized how each hypothesis has mapped to these objectives and has identified the statistical 
evidence that has supported each decision. For H1, the regression model has demonstrated a 
statistically significant positive effect of EHS analytics capability on hazard communication quality (β 
= 0.56, p < .001), with R² = 0.34. This has meant that higher analytics capability scores have been 
associated with meaningfully higher hazard communication quality scores, thereby supporting 
Objective 2 and validating the conceptual link that analytics has improved communication by enabling 
consistent, accessible, and reviewable hazard information. For H2, the regression model has shown a 
statistically significant positive effect of analytics capability on training effectiveness (β = 0.52, p < .001), 
with R² = 0.29. This has supported Objective 3 by showing that respondents who have perceived 
stronger analytics capability have also reported better training relevance, comprehension, and 
confidence to apply learning. For H3, the regression model has shown a statistically significant positive 
effect of analytics capability on incident reporting quality (β = 0.49, p < .001), with R² = 0.24. This has 
supported Objective 4 by demonstrating that stronger analytics capability has been associated with 
stronger reporting perceptions, including understanding of what to report, usability of the reporting 
channel, and perceived actionability of reporting outcomes. Taken together, the hypothesis decisions 
have indicated that EHS analytics capability has functioned as a central enabling factor across all three 
EHS process outcomes. The summary has also been consistent with earlier descriptive and diagnostic 
findings: reporting quality has remained the lowest mean construct and the weakest diagnostic items 
have involved feedback and reinforcement, which has explained why the reporting model has had the 
lowest R² among the three. Still, the reporting hypothesis has been supported because the analytics 
coefficient has remained statistically significant and stable across robustness checks. Therefore, the 
hypothesis decision summary has concluded that H1–H3 have been supported and the objectives have 
been met through consistent measurement, statistically significant relationships, and interpretable 
model outcomes grounded in Likert-scale data. 
DISCUSSION 
The discussion has interpreted the empirical pattern as evidence that EHS analytics capability has 
functioned as an enabling infrastructure for multiple safety subsystems rather than as a single reporting 
tool. The core finding—positive, statistically significant associations between analytics capability and 
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(i) hazard communication quality, (ii) training effectiveness, and (iii) incident reporting quality—has 
aligned with prior arguments that safety performance has been strengthened when leading indicators 
and upstream process measures have been tracked and actively used in management cycles rather than 
when organizations have relied only on lagging injury metrics (Sinelnikov et al., 2015). The magnitude 
of the effects has also been consistent with system-safety perspectives that have treated “organizational 
safety potential” as something that has been monitored and driven through measurable practices 
(Reiman & Pietikäinen, 2011).  
. 

Figure 10: Interpretation Of EHS Analytics Effects on Hazard Communication 

 
Importantly, the observed pattern has suggested that analytics capability has not only been associated 
with better outcomes directly, but has been associated with stronger coupling among communication, 
training, and reporting processes, as shown by the moderate positive correlations among these 
constructs. This has matched the meta-analytic logic that safety outcomes have rarely been explained 
by single factors and have instead reflected combined person and situation mechanisms, where 
knowledge and motivation have played major roles while climate and systems factors have provided 
the context that has enabled or constrained safe behavior (Christian et al., 2009). In this sense, the 
study’s results have supported a “measurement-to-action” interpretation: when the organization has 
had better data availability, integration, and use of dashboards/trends, it has also reported better 
communication clarity, stronger training relevance and comprehension, and higher perceived 
reporting usability and feedback. The R² pattern—highest for hazard communication and lowest for 
incident reporting—has been theoretically coherent because reporting quality has depended not only 
on system usability and definitions, but also on trust, feedback, and perceived consequences, which 
have often been more culturally sensitive than communication artifacts or training content. Overall, the 
findings have reinforced earlier calls for shifting safety governance toward integrated leading-indicator 
systems and for treating analytics maturity as a structural capability that has affected the quality of 
upstream EHS processes.  
With respect to hazard communication, the results have suggested that organizations have benefited 
when analytics capability has supported standardized hazard message distribution and has enabled 
consistent access to hazard information at the point of work. The stronger regression effect observed 
for hazard communication has been consistent with hazard communication scholarship that has 
emphasized the practical value of unified classification, labeling, and documentation approaches—
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particularly in globalized chemical and industrial contexts—because message consistency has reduced 
interpretive variation and has supported safer action selection (Winder et al., 2005). The current results 
have also fit the ergonomics and comprehension literature, which has demonstrated that hazard 
communication has not been guaranteed simply by the presence of signs and labels; rather, 
comprehension has varied by design features, user characteristics, and training approach, meaning that 
organizations have needed measurable feedback to detect misunderstanding and refine 
communication design (Chan, 2011). In the present study, the item-level gap on cross-shift message 
consistency has echoed prior evidence that sign meaning and hazard message interpretation have 
varied across user groups and supervisory routines, and that the communication “system” has 
included reinforcement practices and not just static signage (Chan & Ng, 2010a). 
The analytics connection has been important here: analytics maturity has plausibly enabled message 
standardization by showing which hazards or work areas have generated repeated exposures, which 
procedures have been linked to incident precursors, and where communication has not been reaching 
specific roles. This logic has strengthened the interpretation that analytics has been a mechanism for 
closing the “communication loop” rather than only summarizing data after the fact. In other words, the 
findings have supported the claim that hazard communication quality has improved when analytics 
capability has made hazard information easier to find, more consistent, and more routinely reviewed—
conditions that have been compatible with international hazard communication principles and with 
evidence on how comprehension and guessability have been improved through design and training 
alignment. 
Regarding training effectiveness, the findings have indicated that analytics capability has been 
associated with higher perceived relevance, comprehension, and confidence to apply training, while 
weaker scores for reinforcement and follow-up have pointed to an important transfer bottleneck. This 
pattern has been consistent with safety management practice research showing that training has been 
most impactful when it has contributed to safety knowledge and safety motivation, which have then 
mediated downstream safety behavior (Takahashi et al., 2019). The present results have also aligned 
with controlled evidence showing that participatory and context-embedded training approaches have 
produced stronger safety outcomes than purely didactic methods because they have engaged workers 
in identifying hazards and applying controls in their own setting, thereby strengthening both learning 
retention and practical transfer (Winkler et al., 2019). From an analytics perspective, the implication has 
been that analytics maturity has supported training effectiveness when it has enabled targeted training 
design—such as focusing content on recurrent incident themes, high-frequency near-miss types, or 
compliance weak points—and when it has supported monitoring of training impact using leading 
indicators beyond completion counts (Sinelnikov et al., 2015). However, the persistent weakness in 
post-training reinforcement has been a meaningful divergence from the ideal “closed-loop” model 
described in the training and safety management literature: even when training content has been 
relevant, the absence of systematic reinforcement has reduced transfer reliability, especially in 
operational environments where production pressure and habitual shortcuts have competed with 
learned safe practices (Cavazza & Serpe, 2009). This has supported a refined interpretation of the 
regression effects: analytics capability has predicted training effectiveness, but the effect size has 
depended on whether analytics outputs have actually been used to drive coaching, toolbox refreshers, 
and supervisor follow-up in day-to-day operations. In this way, the study has added nuance to prior 
work by suggesting that analytics has not merely increased training “quality” in the abstract; it has 
increased training effectiveness primarily where analytics has been integrated into reinforcement 
routines that have made training outcomes visible and actionable.  
For incident reporting, the findings have shown a positive association between analytics capability and 
reporting quality, while the lowest mean item scores have centered on delayed feedback and reporting 
difficulty during busy operations. This pattern has closely matched the psychological framework of 
incident reporting barriers, which has treated reporting as a deliberate act shaped by motivational 
expectations, perceived consequences, and beliefs about whether reporting has produced learning or 
blame (Takahashi et al., 2019). The study’s reporting results have therefore been interpretable as 
evidence that analytics capability has helped, but has not been sufficient when the reporting culture 
and feedback loops have remained weak. The diagnostic gap around feedback has been particularly 
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important because prior work has suggested that reporting systems have lost credibility when reporters 
have not received timely acknowledgment or visible corrective action, leading to normalization of 
underreporting even when formal channels have existed (Pfeiffer et al., 2010). The present findings 
have also aligned with the “observability-in-depth” argument in near-miss management: reporting 
systems have improved when organizations have designed them to capture weak signals and 
precursors and when follow-up actions have been visible enough to sustain reporting motivation 
(Gnoni & Saleh, 2017). In practical terms, the study has suggested that analytics capability has 
strengthened reporting quality by improving definitions, standardizing categories, and increasing 
actionability of incident information through trend review and learning cycles; yet the lower 
explanatory power for reporting has indicated that cultural and workflow constraints have remained 
significant. This has been consistent with safety communication evidence showing that supervisor 
communication and safety climate have shaped safety performance outcomes beyond formal 
procedures, implying that reporting quality has depended on how leaders have responded and 
communicated about safety signals (L. Huang et al., 2018). Consequently, the results have supported a 
“dual requirement” interpretation: reporting quality has improved when analytics capability has raised 
data usefulness and when leadership practices have ensured quick feedback, low-friction reporting, 
and non-punitive learning routines.  
The practical implications have extended beyond EHS departments and have required governance and 
architecture decisions that have resembled CISO and enterprise-architect concerns about data integrity, 
access control, and system trust. First, the results have implied that EHS analytics capability has been 
strongest when data pipelines have been reliable—meaning consistent definitions, clean timestamps, 
and stable identifiers—and this has mirrored security analytics practice where poor data quality has 
produced false assurance and weak decision-making. CISOs and analytics architects have therefore 
been able to treat incident reporting platforms and training systems as “safety-critical information 
systems” that have required confidentiality, integrity, and availability protections: confidentiality has 
reduced fear of retaliation and has improved willingness to report; integrity has protected against 
tampering or “silent edits” that have undermined trust; and availability has ensured that frontline users 
have been able to access hazard information and submit reports quickly during time pressure. Second, 
the strongest gaps observed (feedback delays and reinforcement weakness) have indicated that 
architecture must not stop at dashboards; it must include workflow automation for feedback loops (e.g., 
acknowledgment, routing, corrective-action assignment, and closure notifications) so that reporting 
has produced visible learning. This has been consistent with reporting theory emphasizing 
motivational antecedents and the need for credibility of the learning instrument (Ouyang et al., 2019). 
Third, because hazard communication consistency across shifts has remained a measurable weakness, 
system architects have had to prioritize “single source of truth” content governance (labels, procedures, 
microlearning prompts) and role-based delivery so that messages have not fragmented by supervisor 
style, a point that has been compatible with hazard communication standardization principles (Winder 
et al., 2005). Finally, the findings have supported a practical design rule: EHS analytics investments 
have delivered the most credible gains when they have been tied to leading-indicator governance 
(Podgórski, 2015) and when they have been integrated into supervisor communication routines that 
have amplified safety climate and improved performance (L. Huang et al., 2018).  
Theoretical implications have suggested that the conceptual model has been strengthened by viewing 
the EHS analytics “pipeline” as a multi-stage sociotechnical system rather than as a single predictor 
variable. Prior work has already implied that safety management systems have been multidimensional 
and that their maturity has been measurable (Fernández-Muñiz et al., 2007), while safety management 
practices have influenced safety behavior through knowledge and motivation mechanisms 
(Vinodkumar & Bhasi, 2010). The current findings have extended this logic by implying that analytics 
capability has been best theorized as a chain of linked capabilities: (1) data capture and standardization 
(hazards, training events, reports), (2) data quality assurance and governance, (3) sensemaking through 
indicators and trend analytics, (4) decision routines (review meetings, prioritization), and (5) 
operational reinforcement (communication updates, training refresh, reporting feedback). The pattern 
of results—stronger effects for hazard communication and weaker effects for reporting—has implied 
that later pipeline stages (feedback and reinforcement) have had greater “behavioral leverage” and 
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have been more culturally sensitive than earlier stages (data capture and dashboards). This has been 
consistent with multilevel safety climate work showing that group-level processes and supervisory 
practices have created within-organization variation that has not been explained by organization-level 
policies alone (Zohar & Luria, 2005). Therefore, the theoretical model has been refined by recognizing 
that analytics maturity has needed to be specified at both organizational and group levels: some units 
have had access to dashboards and consistent messages, while others have not, which has explained 
variance and has suggested cross-level moderation possibilities. Finally, the integration of leading-
indicator logic has implied that the theoretical framing has benefited from explicitly distinguishing 
“monitor” and “drive” indicators—where communication quality and training reinforcement have 
driven safety potential and where reporting quality has monitored learning capacity—rather than 
treating all measures as equivalent predictors (Reiman & Pietikäinen, 2011).  
Limitations have been revisited in light of these interpretations, and they have shaped a focused future 
research agenda. First, the cross-sectional design has limited causal inference: the positive associations 
have supported the hypothesized direction, but reciprocal influence has remained plausible (e.g., better 
reporting could have improved analytics usefulness, which could then have improved training 
targeting). Second, the study has relied on self-reported perceptions, which could have introduced 
common-method variance; however, the differential pattern across constructs and the presence of clear 
item-level weaknesses (e.g., feedback delays) have suggested that responses have not been uniformly 
inflated. Third, the case-study context has constrained generalizability across industries; hazard 
communication complexity, training structures, and reporting norms have differed substantially across 
process industries, logistics, and construction, so replication has been needed. Fourth, the study has 
not directly measured objective lagging outcomes (e.g., incident rates) in the same model, so the 
strongest claims have remained focused on process quality rather than ultimate harm reduction, 
consistent with leading-indicator arguments that process measures have complemented rather than 
replaced lagging measures (Sinelnikov et al., 2015). Future research has addressed these gaps by using 
(a) longitudinal designs that have measured analytics capability, leading indicators, and incident 
outcomes over time; (b) multi-level modeling that has separated organization-level analytics 
governance from group-level supervisor communication and reinforcement (Zohar & Luria, 2005); and 
(c) mixed-method integration where survey constructs have been linked to platform logs (report 
timestamps, closure times, training completions) to reduce common-method bias and to quantify 
feedback-loop performance. Additionally, future work has tested mediation pathways suggested by 
prior theory—such as analytics → safety knowledge/motivation → reporting quality and 
participation—building on established mediator evidence (Vinodkumar & Bhasi, 2010). In sum, the 
limitations have not weakened the practical value of the findings; instead, they have clarified which 
theoretical mechanisms have been most promising and which research designs have been required to 
strengthen causal explanation.  
CONCLUSION 
The study has concluded that EHS analytics capability has served as a measurable enabling factor that 
has strengthened hazard communication quality, training effectiveness, and incident reporting quality 
within the investigated industrial workplace, and the quantitative evidence has supported this 
conclusion across descriptive, correlational, and regression-based tests. Using five-point Likert-scale 
measurement, the results have shown moderate-to-high levels of EHS analytics capability, hazard 
communication, and training effectiveness, while incident reporting quality has remained 
comparatively lower, indicating that reporting systems have functioned but have required stronger 
reinforcement and feedback mechanisms. The hypothesis tests have confirmed that EHS analytics 
capability has significantly predicted hazard communication quality, training effectiveness, and 
incident reporting quality, which has demonstrated that when employees have perceived stronger 
analytics readiness—such as improved data accuracy, better accessibility of safety information, and 
routine review of trends—the organization has also been perceived as communicating hazards more 
clearly, delivering training that has been more relevant and easier to apply, and operating a reporting 
system that has been more understandable and actionable. The interconnected pattern among 
communication, training, and reporting constructs has indicated that these EHS subsystems have not 
operated independently; rather, they have formed a connected improvement chain where hazard 
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messages have supported learning, training has supported recognition and response competence, and 
reporting has served as the mechanism through which weak signals have entered organizational 
learning processes. Reliability results have shown that the constructs have been measured consistently, 
thereby strengthening confidence in the statistical relationships observed, and robustness analyses 
have demonstrated that the main relationships have remained stable even after accounting for 
workforce differences such as role and experience. The diagnostic findings have further clarified that 
the most critical constraints have not been the absence of hazard information or the irrelevance of 
training content; instead, the primary gaps have been related to inconsistent safety messaging across 
shifts, limited post-training reinforcement, and slow feedback after incident reporting—conditions that 
have reduced the perceived credibility of reporting and have limited the full learning value of incident 
data. Therefore, the final conclusion has been that analytics capability has created measurable 
advantages when it has been connected to operational routines that have translated data into visible 
action, including consistent hazard communication governance, targeted training refinement, and 
feedback-driven reporting workflows. In sum, the research has provided quantitative confirmation that 
EHS analytics has been more than a measurement activity; it has been a practical system capability that 
has shaped how safety information has been communicated, how competence has been developed 
through training, and how safety learning has been sustained through incident reporting within an 
industrial workplace context. 
RECOMMENDATIONS 
The study has recommended that the case organization has strengthened its EHS analytics program by 
building a closed-loop “data-to-action” system that has directly improved hazard communication 
consistency, training reinforcement, and incident reporting feedback, because these three operational 
levers have been the most visible gaps and have also been the most actionable through analytics-
enabled governance. First, the organization has been advised to establish a single-source hazard 
communication governance process in which all hazard messages, procedures, signage standards, SDS 
access routes, and toolbox talk scripts have been version-controlled, role-targeted, and reviewed on a 
fixed cadence using analytics outputs; this has included adopting a standardized hazard-message 
template, assigning content owners for each hazard category, and using dashboard indicators to 
monitor message reach and comprehension across shifts and departments. Second, the organization 
has been encouraged to redesign training as a measurable learning-and-transfer cycle rather than a 
completion event by integrating post-training reinforcement into routine supervision; this has meant 
that supervisors have been equipped with short follow-up checklists, coaching prompts, and micro-
assessments that have been triggered by analytics signals such as repeated near-miss themes, recurring 
procedural deviations, or high-risk job-task clusters, and training effectiveness has been monitored 
through short skill-confidence checks and periodic observation scores recorded in the EHS system. 
Third, the organization has been recommended to upgrade the reporting workflow so that reporting 
has become easy during busy operations and has produced immediate, visible feedback; this has 
involved simplifying the reporting interface to require fewer fields for first submission, enabling voice-
to-text or quick-select categories for mobile entry, and automating acknowledgment messages and 
status updates so that reporters have received confirmation, routing visibility, and closure summaries. 
Fourth, the organization has been advised to implement a corrective-action performance layer that has 
tracked timeliness, ownership, and closure quality, because reporting quality has improved when 
reports have been perceived as actionable and when corrective actions have been completed 
transparently; this has included setting service-level targets (e.g., initial review within 48 hours, 
corrective-action assignment within 7 days), monitoring breach rates through dashboards, and 
escalating overdue actions through management review. Fifth, the organization has been encouraged 
to strengthen data quality controls and access equity by defining common data dictionaries for incident 
types and hazard categories, validating entries through mandatory minimum fields and logic checks, 
and ensuring that frontline roles have had appropriate access to relevant dashboards and safety 
intelligence rather than restricting analytics visibility to EHS staff only. Finally, the organization has 
been recommended to embed these improvements into leadership routines by making communication 
consistency, training reinforcement completion, and reporting feedback timeliness key leading 
indicators reviewed weekly at the supervisory level and monthly at the management level, thereby 
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ensuring that analytics outputs have driven consistent operational behavior. Through these integrated 
steps, the organization has been positioned to translate EHS analytics capability into sustained 
improvements in hazard communication, training effectiveness, and incident reporting quality, thereby 
aligning the safety system with measurable learning, faster corrective action, and stronger 
organizational trust in reporting and prevention processes. 
LIMITATION 
The study has had several limitations that have influenced how the findings have been interpreted and 
how confidently they have been generalized beyond the investigated industrial case setting. First, the 
research design has been cross-sectional, meaning that all measurements have been captured at a single 
point in time; therefore, statistical relationships among EHS analytics capability, hazard 
communication quality, training effectiveness, and incident reporting quality have been interpreted as 
associations rather than causal effects. Although the regression models have demonstrated significant 
predictive relationships consistent with the hypotheses, the temporal ordering of variables has not been 
empirically confirmed, and reciprocal relationships have remained plausible, such as the possibility 
that stronger reporting practices have improved data availability and have raised perceived analytics 
capability. Second, the study has relied primarily on self-reported Likert-scale responses, and this 
approach has introduced potential common-method variance because the same respondents have rated 
both the predictor construct and outcome constructs using the same instrument. While internal 
consistency reliability has been strong and the response distributions have shown meaningful 
variation, self-report has still been vulnerable to social desirability effects, perception biases, and 
differences in how respondents have interpreted scale anchors. Third, the case-study–based setting has 
constrained external validity because organizational culture, hazard types, workforce composition, and 
system maturity have differed across industries and even across sites within the same industry; 
consequently, the magnitude of coefficients and the descriptive mean levels have not been assumed to 
hold in other industrial contexts without replication. Fourth, the sampling approach has been 
constrained by practical access conditions, and while role and department representation has been 
achieved, the sample has still been susceptible to non-response bias if employees with stronger 
opinions, higher engagement, or more time availability have been more likely to participate. Fifth, the 
study has not incorporated objective operational metrics—such as logged incident submission 
timestamps, corrective-action closure durations, training completion records, or audited hazard 
communication compliance—into the statistical models, and this has limited the ability to triangulate 
perceived quality with system-recorded performance. Sixth, the instrument has measured EHS 
analytics capability as a perception-based construct that has reflected respondents’ visibility of 
analytics outputs and use in decisions; this has meant that technical capability, data architecture 
maturity, and governance strength have been inferred indirectly rather than measured through direct 
system audits.  
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