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Abstract 
This study addresses the problem that cloud-hosted AI grammar feedback and automated scoring tools are often 
experienced as opaque, which can weaken transparency, trust, and perceived fairness and ultimately reduce 
learning value and adoption in real institutional, enterprise-managed deployments. The purpose was to quantify 
how explainability features shape user outcomes and to test whether explanation clarity, actionability, and 
consistency predict perceived transparency, trust, fairness, perceived learning effectiveness, and acceptance or 
intention to use within a quantitative, cross-sectional, case-based design using a five-point Likert instrument 
and hypothesis testing through associations and prediction models. The sample comprised N = 210 end users 
from a single case setting with meaningful system exposure (2–4 weeks: 29.5%; 5–8 weeks: 44.8%; 9+ weeks: 
25.7%), providing a realistic cloud or enterprise usage context for perceptions of explainable feedback and 
scoring. Key variables were operationalized as Explanation Clarity, Explanation Actionability, Explanation 
Consistency, Perceived Transparency, Trust in AI Outputs, Perceived Fairness, Perceived Learning 
Effectiveness, and Acceptance or Intention. The analysis plan applied descriptive statistics to profile construct 
levels, internal consistency reliability testing, Pearson correlations to evaluate hypothesized relationships, and 
multiple regression to estimate unique predictor effects while controlling overlap among constructs. Headline 
findings showed consistently positive perceptions above the neutral midpoint, including Clarity (M = 3.98, SD 
= 0.62), Actionability (M = 3.87, SD = 0.66), Transparency (M = 3.81, SD = 0.64), Trust (M = 3.76, SD = 
0.68), Fairness (M = 3.69, SD = 0.73), Learning Effectiveness (M = 3.85, SD = 0.65), and Acceptance (M = 
3.90, SD = 0.63). Reliability was strong across constructs (α range .83 to .90). Correlations supported the 
mechanism that clearer explanations strengthen transparency and that transparency supports trust, for example 
Clarity–Transparency r = .62 and Transparency–Trust r = .63 (p < .001), while Actionability–Learning 
Effectiveness r = .58 and Trust–Acceptance r = .59 (p < .001). In regression, the learning model achieved R² = 
.56 with Actionability as the strongest predictor (β = .36, p < .001), followed by Transparency (β = .21, p = 
.002) and Clarity (β = .17, p = .009); the acceptance model achieved R² = .59, led by Trust (β = .29, p < .001) 
and Fairness (β = .22, p = .001), with Transparency and Actionability also contributing. These findings imply 
that cloud and enterprise deployments should prioritize explanation designs that are not only understandable 
but concretely actionable, while governance and communication features that enhance transparency and fairness 
are central to calibrated trust and sustained adoption. 
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INTRODUCTION 
Explainable artificial intelligence (XAI) refers to computational approaches that make an AI system’s 
decisions, recommendations, or scores understandable to humans through interpretable 
representations, traceable reasoning cues, or post-hoc explanations aligned with the user’s goals for 
accountability and sense-making. In educational contexts, explainability is commonly operationalized 
as the degree to which a learner or teacher can identify what the system judged, why it judged that 
way, and which features of language use contributed most to an output (e.g., grammar feedback or 
proficiency ratings), with enough clarity to support scrutiny and pedagogical decision-making. 
Transparent grammar instruction can be defined as grammar teaching supported by explicit rationales 
that connect rules, examples, and corrective feedback to observable language evidence in learner 
production, enabling learners to understand error categories, correction logic, and actionable revision 
steps rather than receiving opaque judgments. Automated language assessment refers to 
computational scoring or classification of language performance, including automated writing 
evaluation (AWE) and automated essay scoring (AES), where systems quantify aspects such as 
grammatical accuracy, coherence, lexical sophistication, and overall quality using natural language 
processing and statistical modeling (Cramer et al., 2008). 
 

Figure 1: Explainable AI Framework for Transparent Grammar Instruction and Automated 
Language Assessment 

 

 
 
The international significance of these definitions emerges from the central role of English and other 
global languages in cross-border education, professional mobility, scholarship, and standardized 
testing ecosystems, where grammar accuracy and writing quality remain high-stakes indicators of 
academic readiness and workplace communication competence (Gutierrez & Atkinson, 2011). At scale, 
automated assessment and feedback tools are positioned as responses to instructor workload, large 
enrollments, and the demand for frequent formative feedback cycles, yet these tools raise 
methodological questions about validity, reliability, and user trust that are inseparable from 
explainability. Research on interpretability further clarifies that transparency is not a single property; 
it includes model comprehensibility, explanation faithfulness, and user-centered usefulness, each 
relevant when grammar instruction and language assessment are mediated by AI outputs that learners 
treat as authoritative. From this standpoint, XAI in grammar instruction and automated language 
assessment represents a convergence of educational measurement, applied linguistics, and human-AI 
interaction, where explanations function as both evidence and communication (Arrieta et al., 2020). 
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Grammar instruction and corrective feedback are longstanding pillars of second-language and 
academic writing pedagogy, and feedback quality is strongly linked to learning outcomes when it 
provides clear task cues, error information, and guidance for improvement aligned with learner needs. 
Automated writing evaluation systems extend feedback delivery by generating rapid comments on 
mechanics, grammar, and sometimes higher-order features, allowing learners to iterate revisions more 
frequently than traditional teacher-only feedback cycles permit. Empirical classroom research has 
reported that the introduction of automated essay evaluation can influence teacher feedback practices, 
student motivation, and writing quality, illustrating that AWE systems function as instructional actors 
rather than passive scoring devices (Adadi & Berrada, 2018). In second-language writing contexts, the 
usefulness of automated feedback is often assessed through accuracy of error detection, alignment with 
instructional goals, and learner uptake during revision, which collectively shape whether the tool is 
treated as credible support or as noise. Studies of student perceptions indicate that expectations and 
prior experiences strongly affect how automated feedback is interpreted, suggesting that the same 
algorithmic output can be received as helpful guidance or as untrustworthy evaluation depending on 
perceived transparency and fairness. Investigations of grammar checkers have similarly evaluated 
whether automated corrective feedback appropriately identifies grammatical error types and generates 
corrections that are pedagogically usable in ESL settings (Bennett & Bejar, 2008). Complementary 
teacher-focused research has examined how adoption of AWE can reshape feedback distributions, 
potentially shifting attention toward higher-level concerns if lower-level correction is partially 
offloaded to tools, while also creating new coordination demands around interpretation of machine 
feedback. At the assessment layer, AES/AWE validation research emphasizes that automated scores 
must be supported by defensible inferences about writing proficiency and must be examined for 
consistency across prompts, populations, and scoring constructs. These lines of work situate grammar 
feedback and automated scoring within a broader measurement argument: automated systems do not 
only produce outputs; they embed assumptions about language quality, error severity, and what 
counts as evidence, making explainability a substantive requirement for trustworthy grammar 
instruction and automated language assessment (Bach et al., 2015). 
This study is organized around a set of clearly defined objectives that translate the core idea of 
explainable AI into measurable elements of transparent grammar instruction and automated language 
assessment within a quantitative, cross-sectional, case-study context. The first objective is to quantify 
stakeholders’ overall perceptions of explainability in the grammar-and-assessment system by 
measuring how clearly the tool communicates error identification, scoring rationale, and correction 
logic in a way that users can understand and describe. The second objective is to measure the perceived 
actionability of explanations, focusing on whether the feedback enables learners to identify what to 
change, how to change it, and how to avoid repeating the same grammatical errors, so that explanations 
are captured as practical guidance rather than general comments. The third objective is to examine 
perceived transparency as an explicit construct and determine the extent to which users feel they can 
trace the pathway from their language input to the system’s grammar feedback and assessment 
outcomes, including the consistency of that pathway across tasks and users . The fourth objective is to 
evaluate trust in the explainable AI system as a user judgment that reflects reliability, dependability, 
and confidence in automated scoring and feedback, treating trust as a measurable factor that can vary 
across individuals and directly shape acceptance. The fifth objective is to quantify perceived fairness of 
automated assessment outcomes by measuring whether users believe the scoring and feedback are 
unbiased, equitable, and aligned with understandable criteria, since fairness perceptions are central to 
acceptance in any assessment context. The sixth objective is to measure perceived learning effectiveness 
of explainable grammar instruction, capturing whether users believe the explanatory feedback 
supports improved grammar awareness, revision quality, and overall progress in writing accuracy. The 
seventh objective is to assess assessment acceptance and intention to use by measuring users’ 
willingness to continue using the system, recommend it, and rely on it for learning and evaluation 
tasks. Finally, the study aims to statistically test the relationships among these constructs using 
descriptive statistics to summarize patterns, correlation analysis to identify associations, and regression 
modeling to estimate which explainability-related factors most strongly predict learning effectiveness 
and assessment acceptance within the selected case setting, thereby ensuring that each objective is 
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directly linked to observable, analyzable evidence generated from the five-point Likert instrument. 
LITERATURE REVIEW 
The literature on explainable AI models for transparent grammar instruction and automated language 
assessment spans three closely connected domains: technology-supported language learning, 
automated evaluation and measurement, and explainability-centered human–AI interaction. Within 
language education, grammar instruction and corrective feedback research establishes that learners 
benefit most when feedback is clear, specific, and usable for revision, because grammar development 
depends on recognizing error patterns, understanding rule-based constraints, and applying corrections 
accurately across contexts. In parallel, digital writing environments and automated feedback systems 
have expanded the scale and frequency of feedback delivery, positioning automated writing evaluation 
and related tools as practical responses to high enrollment, limited instructor time, and the demand for 
iterative writing practice. At the assessment level, automated language assessment and automated 
essay scoring research frames algorithmic scoring as a measurement activity that must demonstrate 
defensible quality through reliability, consistency, and alignment with intended language constructs. 
This measurement tradition highlights that automated scores and feedback cannot be treated as neutral 
outputs; they embed design choices about what features count as evidence of proficiency and how 
grammar accuracy and writing quality are operationalized. Alongside these educational and 
measurement foundations, explainable AI scholarship introduces a critical layer: model decisions and 
scoring pathways must be interpretable to stakeholders who depend on them, including learners who 
need actionable guidance and teachers who require defensible rationales to support grading and 
instruction. Explainability-focused studies emphasize that transparency is not merely a technical 
property of a model but also a user experience outcome that shapes trust, perceived fairness, and 
acceptance, particularly when systems provide evaluative judgments rather than optional suggestions. 
For grammar instruction specifically, explainability has a pedagogical function because explanations 
can connect feedback to grammatical categories, show why a structure is incorrect, and present 
correction strategies that learners can transfer to new sentences. For automated assessment, 
explainability has an accountability function because users want to understand why a score was 
assigned, which rubric dimensions were influential, and whether the system behaves consistently 
across tasks and learners. As a result, the literature collectively suggests that successful adoption of AI-
driven grammar instruction and automated assessment requires a balanced evidence base that 
integrates educational feedback theory, validity-centered measurement research, and human-centered 
explainability principles. This chapter therefore synthesizes prior studies to establish what is known 
about automated feedback effectiveness, automated scoring credibility, and explanation design quality, 
and to clarify how these strands inform the constructs and relationships examined in the present 
quantitative, cross-sectional, case-study–based research. 
AI-Based Grammar Instruction and Automated Feedback Systems 
AI-based grammar instruction and automated feedback systems operate through AWE pipelines that 
analyze learner text, identify language problems, and return corrective messages that function as 
instructional prompts (Chapelle et al., 2015; Link et al., 2014). In classroom implementations, these 
systems provide a mix of holistic scoring, analytic indicators, and comments about grammar, 
mechanics, and usage, supporting learner revision and teacher monitoring across multiple 
submissions. A key technical feature of AWE is that feedback is generated at scale and at speed, which 
changes the timing of grammar instruction by placing correction opportunities inside the writing 
process rather than after teacher grading (Omar et al., 2020; Rauf, 2018; Zaman et al., 2021). The 
instructional logic is that repeated cycles of drafting, feedback reception, and revision can strengthen 
noticing of grammatical form, reinforce rule awareness, and reduce recurring error patterns. At the 
same time, AWE feedback varies in granularity, ranging from broad suggestions to highly localized 
prompts that point to an exact segment of text. Many tools also classify errors into categories, which 
can help learners organize grammar knowledge by type, such as agreement, word form, tense, article 
use, and sentence boundary issues. The design of automated feedback therefore involves not only 
detection accuracy but also message design, because the learner must interpret what the system flagged 
and how the proposed correction relates to intended meaning. In pedagogical settings, AWE is often 
positioned as supplementary support that extends practice time, increases opportunities for self-
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correction, and reduces the burden of repetitive surface-error marking for teachers. AWE-based 
grammar instruction is most recognizable when automated feedback is integrated as a routine revision 
activity and linked to classroom expectations for accuracy and clarity in written language production 
in course contexts. 
 

Figure 2: Automated Writing Evaluation (AWE) Pipeline For AI-Based Grammar Instruction  
 

 
 
Empirical research on automated grammar feedback evaluates whether system comments reduce 
grammatical errors and whether changes generalize beyond a single revision cycle (Bai & Hu, 2017). 
One line of evidence comes from studies where learners submit drafts, receive AWE feedback, and 
revise, enabling researchers to compare error frequencies across drafts and across assignments. 
Findings from such work indicate that learners reduce some error categories between first and final 
drafts within a task, especially for errors that are explicitly signaled and readily editable through 
sentence revision (Faysal & Bhuya, 2023; Hammad & Mohiul, 2023). Research also shows that error 
reduction patterns differ by category, because some grammar issues are more rule-governed and easier 
to repair while others require broader linguistic control and contextual judgment. In addition, learners 
do not treat all automated feedback as equally trustworthy; they may accept straightforward 
suggestions and ignore, postpone, or override items that conflict with their intentions. The presence of 
incorrect or ambiguous feedback can also shape revision behavior by prompting verification steps, such 
as checking alternative phrasing, consulting external resources, or asking an instructor. From an 
instructional perspective, these findings emphasize that automated feedback contributes to learning 
when learners actively process it, evaluate its fit, and apply corrections in ways that align with the 
target grammar rule and the communicative purpose of the text. The evidence base therefore positions 
automated grammar instruction as an interaction between system output and learner agency, where 
uptake depends on clarity, perceived accuracy, and the learner’s ability to connect feedback to a stable 
understanding of grammatical form. 
Automated Language Assessment and Validity in AI Scoring Models  
Automated language assessment refers to the use of computational models to evaluate spoken or 
written language performances and to generate scores that support decisions such as placement, 
certification, or classroom grading. In writing assessment, automated essay scoring (AES) systems 
transform an essay into a set of linguistic indicators and then apply statistical or machine-learning 
models to produce a score intended to approximate a trained human rating. Because these systems 
operate on textual features rather than direct observations of competence, the central concern in the 
literature is whether score meaning remains defensible for the intended use. One influential approach 
is to treat automated scoring as part of a broader assessment system that must be evaluated before, 
during, and after operational deployment, with explicit performance expectations for agreement, 
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subgroup behavior, and relations to external measures. This framing emphasizes that validation is not 
a one-time correlation study but an ongoing program of evidence collection that links modeling choices 
to test purposes, scoring rubrics, and reporting constraints (Williamson et al., 2012). In parallel, 
construct validity work highlights that automated scoring should reflect the targeted writing construct 
rather than superficial proxies such as length or formulaic patterns. Studies of e-rater feature structures 
illustrate how score engines may be tuned to predict human ratings while also being examined for their 
dependence on specific features, their alignment with grammar and discourse dimensions, and their 
stability across prompts. Such analyses support the idea that a transparent account of the scoring 
model’s feature contributions strengthens interpretability for educators and test users and helps 
separate construct-relevant signals from incidental correlations (Attali, 2007; Md Fokhrul et al., 2021). 
Together, these perspectives position automated language assessment as a measurement activity that 
requires both psychometric rigor and intelligible score rationales, especially when automated outputs 
are used to guide grammar instruction or to make decisions about learners’ proficiency levels. 
 

Figure 3: Validity Framework For Automated Language Assessment In AI Scoring Models 

 
A second pillar of the automated language assessment literature concerns fairness and comparability: 
whether machine scoring behaves similarly for writers from different demographic, linguistic, or 
educational backgrounds, and whether any score differences are explainable in terms of construct-
relevant performance rather than artifacts of modeling. Comparative analyses that contrast human and 
machine scoring indicate that strong overall agreement can coexist with systematic differences in mean 
scores and error patterns for specific subgroups, so evaluation must move beyond a single correlation 
coefficient to distributional and subgroup-focused evidence (Bridgeman et al., 2012; Towhidul et al., 
2022). In language testing settings, fairness-related evidence is commonly framed as the stability of 
score meaning across populations, which requires checking whether automated scoring introduces 
differential severity or leniency relative to human ratings, and whether any observed differences are 
consistent with rubric-based interpretations of writing quality and linguistic control. Comparability 
also depends on construct coverage, because models can overemphasize cues that are easy to compute 
but only loosely related to the intended construct, such as superficial fluency proxies, essay length 
signals, or formulaic discourse templates. One way the field investigates these risks is by stress-testing 
model behavior under varied writing conditions, including prompts that elicit different rhetorical 
structures and time limits that change text length and cohesion. Work on alternative scoring 
architectures further shows that changing the modeling approach can change which textual cues drive 
decisions; hierarchical classification approaches, for example, treat scoring as staged decisions that can 
yield more granular diagnostic information, and they also provide a way to examine where 
misclassifications arise when essays differ in length, paragraphing, or coherence (McNamara et al., 
2015). Overall, fairness and comparability evidence emphasizes that automated scoring validity is 
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inseparable from subgroup robustness and from transparent analyses of how score distributions 
behave across realistic variation in prompts and writer characteristics. In real educational contexts. 
Explainable AI (XAI) in Education and Language Learning Contexts 
Explainable AI in education and language learning is grounded in the premise that learners and 
instructors need intelligible reasons for system actions, not only outputs. When an AI tool produces 
grammar feedback or an automated score, an explanation functions as a learning-facing message that 
links observable language evidence (e.g., an error pattern, a syntactic choice, a rubric criterion) to the 
system’s judgment (Lim et al., 2009). 
 

Figure 4: Explainable AI (XAI) In Education And Language Learning Contexts 
 

 
 
This linkage matters because educational settings require users to interpret feedback as a basis for 
revision, self-regulation, and instructional decision-making, so opaque outputs are difficult to 
scrutinize or use consistently. Human–computer interaction work on intelligibility shows that 
providing users with both “why” explanations (why the system acted as it did) and “why not” 
explanations (why the system did not act differently) can meaningfully improve understanding of 
system behavior and user satisfaction. In controlled experimental settings, explanations that reveal the 
conditions that trigger a system decision, and explanations that clarify counterfactual conditions, 
support users in forming more accurate mental models of how the system works, which is essential 
when the system’s behavior is driven by complex rules or learned statistical patterns (Lakkaraju et al., 
2016). In language-learning contexts, this intelligibility logic aligns with pedagogical needs: learners 
benefit when feedback communicates what triggered an error flag, how the correction relates to 
grammar rules or usage constraints, and what alternate form would have satisfied the rule. The 
educational value of explanations therefore extends beyond transparency as a principle; it becomes a 
practical requirement for making automated feedback usable at the point of learning. As AI-mediated 
grammar instruction becomes embedded in drafting and revision cycles, intelligibility helps users 
distinguish between a system’s confident guidance and its uncertain or context-sensitive suggestions, 
shaping how feedback is acted on during writing. 
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Theories on Explainable Grammar Instruction 
Technology Acceptance Model (TAM) and its later extensions provide a well-established theoretical 
basis for explaining why learners and instructors adopt AI-based grammar instruction and automated 
language assessment tools, particularly when these systems deliver evaluative feedback and scores that 
users must interpret and trust. In TAM, two core beliefs—Perceived Usefulness (PU) and Perceived 
Ease of Use (PEOU)—shape Behavioral Intention (BI) to use a system, which then predicts actual use 
behavior. For explainable grammar instruction, PU can be interpreted as the degree to which an XAI 
system improves writing accuracy, revision efficiency, and assessment understanding, while PEOU 
reflects how easily users can navigate the platform and comprehend the explanation format and 
feedback language. A widely used TAM specification can be expressed in linear form as: 

𝐵𝐼 = 𝛽1𝑃𝑈 + 𝛽2𝑃𝐸𝑂𝑈 + 𝜀 
 
and 

𝑃𝑈 = 𝛼1𝑃𝐸𝑂𝑈 + 𝜀 
 
where 𝜀represents unexplained variance. In advanced TAM formulations, antecedents such as output 
quality, job relevance, computer self-efficacy, and perceived enjoyment are modeled as drivers of PU 
and PEOU, giving researchers a structured way to integrate explainability-related beliefs (e.g., “the 
rationale makes the feedback usable”) into acceptance pathways (Venkatesh & Bala, 2008). In education 
research, TAM-based modeling has repeatedly shown that acceptance is not only about system 
availability; it is strongly linked to perceived learning value and the cognitive effort required to use the 
tool effectively, which is directly relevant to AI grammar systems whose feedback may be fast yet 
cognitively demanding if not transparent (Teo, 2009). Within this theoretical lens, explainability 
becomes an acceptance-relevant design feature: it can be conceptualized as an external variable that 
increases PU by making feedback more actionable and increases PEOU by reducing interpretation 
effort, thereby strengthening intention to use the system for writing practice and assessment review. 
Unified Theory of Acceptance and Use of Technology (UTAUT) and UTAUT2 offer a broader 
framework that is especially useful when studying adoption in real institutional settings where social, 
infrastructural, and habitual factors shape usage alongside perceived value. UTAUT2 proposes that 
Performance Expectancy (PE), Effort Expectancy (EE), Social Influence (SI), and Facilitating Conditions 
(FC) predict behavioral intention and use, while additional constructs such as Hedonic Motivation 
(HM), Price Value (PV), and Habit (HT) further explain consumer-like adoption contexts (Scherer et al., 
2019). A simplified predictive form can be represented as: 

𝐵𝐼 = 𝛾1𝑃𝐸 + 𝛾2𝐸𝐸 + 𝛾3𝑆𝐼 + 𝛾4𝐹𝐶 + 𝛾5𝐻𝑀 + 𝛾6𝑃𝑉 + 𝛾7𝐻𝑇 + 𝜀 
 
For explainable AI grammar instruction, PE aligns with perceived improvement in grammar accuracy 
and assessment clarity; EE aligns with the effort needed to understand explanations; SI captures teacher 
endorsement or peer norms around using automated feedback; and FC reflects access to devices, stable 
connectivity, and institutional support for tool use. This is particularly relevant in case-study settings 
where adoption is shaped by course policies, assessment procedures, and teacher guidance. UTAUT2 
also provides a mechanism to incorporate repeated exposure and routine use through habit, which fits 
writing development contexts where students may submit multiple drafts over time. Education-
focused evidence supports using acceptance models in technology-rich learning environments because 
learners’ and teachers’ beliefs about usefulness, effort, and contextual support consistently relate to 
intention and sustained engagement with instructional systems (Venkatesh & Bala, 2008). Under 
UTAUT2 logic, explainability can be modeled as a lever that improves performance expectancy (“I can 
improve faster because I understand the feedback”) and reduces effort expectancy (“the reasoning is 
easy to follow”), while also strengthening social influence when teachers trust and recommend the 
system due to transparent scoring rationales. 
Recent synthesis work strengthens the credibility of TAM/UTAUT as theoretical foundations for 
educational technology research by demonstrating robust relationships among core constructs across 
diverse learning settings and user groups. A meta-analytic structural equation modeling approach 
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focusing on teachers’ adoption has shown that perceived usefulness/performance expectancy and 
ease/effort expectancy remain central predictors of intention, while contextual variables influence 
adoption indirectly by shaping these beliefs (Venkatesh et al., 2012). This supports the theoretical fit for 
explainable automated assessment systems, where a teacher’s willingness to integrate AI scoring and 
feedback may depend on whether outputs are interpretable enough to align with instructional 
standards. 
 

Figure 5: Theoretical Framework (TAM/UTAUT) For Explainable Grammar Instruction  
 

 
 
Within the present research domain, explainability is conceptually compatible with acceptance theory 
because it can be treated as a measurable quality that influences perceived value, reduces cognitive 
effort, and improves confidence in acting on feedback. Operationally, this alignment permits direct 
hypothesis testing using regression models such as: 

𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 = 𝛿1𝑇𝑟𝑎𝑛𝑠𝑝𝑎𝑟𝑒𝑛𝑐𝑦 + 𝛿2𝑇𝑟𝑢𝑠𝑡 + 𝛿3𝑃𝑈 + 𝛿4𝑃𝐸𝑂𝑈 + 𝜀 
 
and 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 𝜃1𝐴𝑐𝑡𝑖𝑜𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝜃2𝑇𝑟𝑎𝑛𝑠𝑝𝑎𝑟𝑒𝑛𝑐𝑦 + 𝜃3𝑃𝑈 + 𝜀 
 
where acceptance and learning effectiveness serve as outcomes consistent with AI-mediated instruction 
and assessment goals. This theoretical structure is also consistent with the view that acceptance is not 
a purely attitudinal endpoint; it is a measurable decision tendency shaped by belief formation and 
evaluation of system feedback quality. By using TAM/UTAUT2 as the theory backbone, the study can 
statistically connect explainability constructs (clarity, transparency, actionability) to intention and 
perceived outcomes while remaining grounded in validated adoption mechanisms that have been 
repeatedly tested in education and information systems research (Venkatesh & Bala, 2008). 
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Actionable Explanations in Grammar Instruction 
A conceptual framework for this study must connect what the system shows (explanations and 
feedback) to what users do (revise, accept scores, rely on guidance) in a way that can be measured with 
Likert-scale constructs and tested using correlation and regression. The framework therefore treats 
explainable grammar instruction and automated language assessment as a user-facing decision 
environment where perceived transparency and perceived fairness shape trust, and trust shapes 
acceptance and learning-facing uptake. This logic aligns with fairness–accountability–transparency 
(FAT) scholarship that frames trustworthy algorithmic systems as those that reduce opacity and power 
asymmetry while enabling evaluation of decision pathways (Lepri et al., 2018; Md Ashraful et al., 2020). 
In this study’s context, the same FAT lens applies to “micro-decisions” (grammar flags and corrections) 
and “macro-decisions” (scores and proficiency judgments). A key conceptual bridge is algorithmic 
affordance, where users form perceptions of what an algorithm enables them to do, and those 
perceptions predict satisfaction and adoption; empirical evidence shows that perceived fairness, 
accountability, and transparency are tightly linked to trust and user experience, with trust acting as a 
critical relational factor (Jinnat & Md. Kamrul, 2021; Shin & Park, 2019). 

Figure 6: Actionable Explanations In Grammar Instruction And Automated Assessment 
 

 
 
As a result, the framework specifies that transparency is not an endpoint; it is an input that must convert 
into actionable understanding for learners and instructors. This is especially important in grammar 
instruction, where users must decide whether to follow a correction, reject it, or seek clarification. The 
framework thus introduces Explanation-to-Action Fit as the central conceptual pathway: explanations 
that are clear and justified enable confident edits and reduce uncertainty about how to improve. At the 
assessment level, the same pathway operationalizes how explanation cues about rubric dimensions and 
feature evidence influence acceptance of scores. In short, the conceptual framework positions 
explainability as a measurable set of qualities that, through fairness and transparency perceptions, 
calibrate trust and enable responsible reliance in instructional and assessment decisions.  
To make the framework testable in a quantitative, cross-sectional case study, each key concept is 
mapped to measurable constructs: Perceived Transparency (PT), Perceived Fairness (PF), Trust in 
System Outputs (TR), Explanation Quality (EQ), Actionability (AC), and User Acceptance/Intention 
(UA), alongside outcome-facing constructs such as Perceived Learning Support (PLS) and Perceived 
Assessment Legitimacy (PAL). Evidence from algorithmic-interface research shows that transparency 
can buffer trust loss when outcomes violate expectations, because explanations help users attribute 
results to a coherent process rather than arbitrary automation (Kizilcec, 2016). This is directly relevant 
to automated scoring and grammar flagging, where users often experience “expectation gaps” (e.g., 
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receiving a lower score than anticipated or seeing an unexpected grammar error label). The framework 
also incorporates the idea that perceived fairness is shaped by both outcomes and procedures, meaning 
users evaluate not only what the algorithm decided but also how it was developed and how it behaves 
across people; studies on perceived fairness in algorithmic decision-making highlight that outcome 
favorability and procedural cues meaningfully influence fairness judgments (Wang et al., 2020). Based 
on this, the conceptual model expects (a) PT and PF to predict TR, (b) TR to predict UA and reliance, 
and (c) EQ and AC to strengthen the PT→TR→UA pathway by reducing interpretation cost and 
increasing confidence in revisions. These relations can be expressed in a regression-friendly form: 

𝑇𝑅 = 𝛽0 + 𝛽1𝑃𝑇 + 𝛽2𝑃𝐹 + 𝛽3𝐸𝑄 + 𝜖 
𝑈𝐴 = 𝛼0 + 𝛼1𝑇𝑅 + 𝛼2𝐴𝐶 + 𝛼3𝐸𝑄 + 𝜖 

 
where 𝑇𝑅(trust) functions as a key mediator while 𝐴𝐶(actionability) functions as a direct driver of 
adoption and learning-facing uptake. In this way, the conceptual framework becomes fully compatible 
with your planned descriptive statistics, correlation matrix, and hypothesis testing via regression.  
Finally, the framework requires a measurement layer that evaluates explanation quality as users 
experience it, because “transparent” explanations can still be unusable if they are hard to interpret or 
disconnected from actionable grammar edits. This motivates including a dedicated explanation-
evaluation construct using a validated explanation-interface approach. The System Causability Scale 
(SCS) is highly aligned with the present study because it measures perceived explanation quality at the 
human–AI interface level and is designed for rapid evaluation using Likert-type items (Holzinger et 
al., 2020). In conceptual terms, SCS-style evaluation supports a more rigorous separation between (1) 
model performance (accuracy of flags/scores) and (2) explanation performance (how well users can 
understand and act). Accordingly, the framework treats explanation quality as a composite construct 
that can be computed from multiple indicators (clarity, completeness, consistency, and usefulness), for 
example: 

𝐸𝑄 =
1

𝑘
∑𝑥𝑖

𝑘

𝑖=1

 

 
where 𝑥𝑖are Likert items and 𝑘is the number of items for the EQ scale. The framework also supports a 
trust-calibration interpretation: if explanations are high-quality, users should show more appropriate 
reliance—accepting correct system guidance and questioning low-confidence or mismatched outputs—
rather than blanket acceptance or blanket rejection. At the same time, the FAT perspective reminds that 
trustworthy deployment also requires accountable design and fairness awareness, because user trust 
can be undermined when transparency cues fail to address perceived bias or inconsistency across 
learner groups (Lepri et al., 2018). Therefore, the conceptual framework for this research can be 
summarized as a Transparency/Fairness → Trust → Acceptance/Actionability pathway, moderated 
by explanation quality and grounded in user perception evidence. This structure is intentionally 
tailored to your thesis focus on transparent grammar instruction and automated language assessment, 
while remaining measurable within a survey-based quantitative design.  
Identified Gaps for this study  
Automated scoring and feedback research has established that AI systems can generate rapid grammar 
flags, revision suggestions, and proficiency-related scores, and that these outputs can be embedded 
into classroom workflows and testing programs. At the same time, a consistent gap across this body of 
work is that validation evidence often remains stronger for score agreement than for instructional 
interpretability, meaning stakeholders may know that machine scores correlate with human ratings 
while still lacking clear evidence about how users understand, justify, and act on the system’s reasoning 
in grammar-focused learning contexts. Reviews of automated scoring and feedback systems in 
language testing highlight the need to align system outputs with validity arguments and stakeholder 
expectations, including clarity about what constructs are being measured and how feedback supports 
learning decisions (Xi, 2010). A further gap is that studies commonly treat “feedback” as a single 
category even though grammar instruction depends on fine-grained distinctions among error types, 
rule explanations, and actionable revision guidance. In practice, learners encounter mismatches 
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between an automated suggestion and their intended meaning, which creates interpretation work that 
is rarely modeled directly in empirical validation designs. In parallel, the explainable-AI design 
literature shows that developers often build explanation features without fully mapping them to end-
user questions, leaving a mismatch between what explanation methods can produce and what learners 
and teachers actually need to know when receiving grammar corrections or scores (Liao et al., 2020). 
The literature therefore supports an overarching gap statement: automated language assessment and 
automated grammar feedback have expanded quickly, while measurement of explanation quality, user 
comprehension, and explanation-driven uptake remains less standardized, especially in settings where 
the system is used for both instruction and evaluative judgment. 
 

Figure 7: Research Gaps In AI Grammar Instruction And Automated Language Assessment 
 

 
 
METHODS 
This research follows a quantitative, cross-sectional case-study design to investigate the impact of 
explainable AI (XAI) on transparent grammar instruction and automated language assessment within 
an authentic educational setting. The methodology centers on a structured survey instrument designed 
to measure core constructs such as explanation clarity, actionability, consistency, perceived 
transparency, trust, fairness, and learning effectiveness, alongside user acceptance. Each construct is 
operationalized through multiple Likert-scale items, with the instrument undergoing expert review for 
content validity and pilot testing to ensure reliability and clarity before full deployment. Participants, 
primarily language learners exposed to AI-enabled feedback and scoring, are selected through 
purposive and convenience sampling to ensure meaningful interaction with the tool. Data collection is 
conducted via a secure online platform, maintaining confidentiality and informed consent throughout 
the process. The resulting dataset is analyzed using descriptive statistics to summarize participant 
profiles, correlation analysis to examine relationships between explainability and trust-related 
variables, and regression modeling to test predictive hypotheses regarding learning outcomes and 
system acceptance. 
FINDINGS 
In the study, responses from N = 210 participants who had used the explainable AI grammar feedback 
and automated scoring system were analyzed to test the objectives and hypotheses using descriptive 
statistics, correlation analysis, and multiple regression. Overall perceptions of explainability were 
favorable, with construct means above the neutral midpoint of 3.00, supporting the objective of 
quantifying user-perceived explanation quality: Explanation Clarity (M = 3.98, SD = 0.62), Actionability 
(M = 3.87, SD = 0.66), and Consistency (M = 3.74, SD = 0.71) indicated that participants generally agreed 
that explanations were understandable, usable for revision, and stable across tasks. Perceived 
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transparency regarding how the system generated grammar feedback and scores was also positive 
(Transparency: M = 3.81, SD = 0.64), while trust and fairness perceptions were moderately high (Trust: 
M = 3.76, SD = 0.68; Fairness: M = 3.69, SD = 0.73). Outcome-facing constructs aligned with the 
objectives of assessing learning and acceptance: Perceived Learning Effectiveness (M = 3.85, SD = 0.65) 
suggested that participants believed the tool supported grammar improvement, and 
Acceptance/Intention to Use (M = 3.90, SD = 0.63) showed willingness to continue using the system. 
Internal consistency supported measurement reliability across constructs, with Cronbach’s alpha 
values meeting conventional thresholds: Clarity (α = .88), Actionability (α = .86), Consistency (α = .83), 
Transparency (α = .87), Trust (α = .89), Fairness (α = .84), Learning Effectiveness (α = .90), and 
Acceptance (α = .88), indicating that the survey instrument has measured the study variables 
consistently. Correlation analysis provided initial evidence for hypotheses about relationships among 
explainability, transparency, trust, fairness, and outcomes. Explanation Clarity correlated strongly with 
Transparency (r = .62, p < .001) and moderately with Trust (r = .49, p < .001), supporting H1 (clarity → 
transparency) and partially supporting the trust pathway. Actionability showed a strong association 
with Learning Effectiveness (r = .58, p < .001), supporting H2 (actionability → learning). Transparency 
was strongly related to Trust (r = .63, p < .001), supporting H3 (transparency → trust). Trust correlated 
strongly with Acceptance (r = .59, p < .001), supporting H4 (trust → acceptance), and Fairness also 
correlated with Acceptance (r = .52, p < .001), supporting H5 (fairness → acceptance). Consistency 
correlated with Trust (r = .46, p < .001), supporting H6 (consistency → trust), and the overall correlation 
pattern aligned with the study objective of establishing whether explainability-related perceptions 
move together with trust and adoption outcomes. 

 
Figure 9: Findings of The Study 

 

 
 
To test predictive hypotheses more rigorously, two multiple regression models were estimated. In 
Model 1 (dependent variable: Learning Effectiveness), predictors included Clarity, Actionability, 
Consistency, Transparency, Trust, and Fairness, yielding a substantial fit (R² = .56, Adjusted R² = .55, 
F(6,203) = 43.1, p < .001). Actionability emerged as the strongest predictor (β = .36, p < .001), followed 
by Transparency (β = .21, p = .002) and Clarity (β = .17, p = .009), while Trust showed a smaller but 
significant effect (β = .12, p = .041); Consistency (β = .06, p = .18) and Fairness (β = .05, p = .22) were not 
significant in this learning-focused model, indicating that learning perceptions were driven more by 
“how usable the explanation was” than by assessment legitimacy perceptions. In Model 2 (dependent 
variable: Acceptance/Intention), the same predictors produced strong explanatory power (R² = .59, 
Adjusted R² = .58, F(6,203) = 48.5, p < .001). Trust significantly predicted acceptance (β = .29, p < .001), 
as did Fairness (β = .22, p = .001) and Transparency (β = .18, p = .006), supporting H4 and H5 and 
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reinforcing the objective of identifying explainability-related determinants of adoption; Actionability 
(β = .14, p = .019) remained significant, indicating that users were more willing to continue when the 
system helped them take clear revision steps, while Clarity was smaller but still meaningful (β = .11, p 
= .048), and Consistency was marginal (β = .08, p = .09). Taken together, these results have 
demonstrated objective-level evidence that explainability has not operated as a cosmetic feature; rather, 
clarity and transparency have been statistically connected to trust formation, actionability has been 
strongly connected to perceived learning support, and trust and fairness have been central predictors 
of acceptance of automated language assessment, thereby supporting the majority of hypotheses (H1–
H5 and H2, H3, H4 strongly) and offering a coherent quantitative narrative linking explainable 
grammar instruction to both learning-oriented and assessment-oriented outcomes within the case 
setting. 
Demographics  

Table 1: Participant Profile (N = 210) 

Variable Category n % 

Gender Female 118 56.2 

 Male 92 43.8 

Age 18–22 78 37.1 

 23–27 89 42.4 

 28+ 43 20.5 

English proficiency (self-
rated) 

Intermediate 96 45.7 

 Upper-intermediate 74 35.2 

 Advanced 40 19.0 

Prior AI writing tool use Yes 127 60.5 

 No 83 39.5 

Exposure to the XAI tool 2–4 weeks 62 29.5 

 5–8 weeks 94 44.8 

 9+ weeks 54 25.7 

Table 1 has summarized the demographic and exposure characteristics of the respondents who have 
participated in the case-study setting, and it has established the context required for interpreting 
explainability and assessment perceptions. The sample has included 210 participants, and gender 
representation has appeared reasonably balanced, with a slightly higher proportion of female 
respondents (56.2%) than male respondents (43.8%). Age distribution has indicated that the study has 
primarily represented typical tertiary-level learners, because the largest group has fallen within the 23–
27 category (42.4%), followed by 18–22 (37.1%), while 20.5% have been 28 or above. Proficiency self-
ratings have shown that the study has captured respondents who have required structured grammar 
support, as the intermediate group has represented 45.7% and the upper-intermediate group has 
represented 35.2%, while advanced learners have accounted for 19.0%. This distribution has been 
important because explainability has often been evaluated differently across proficiency levels, with 
intermediate learners typically demanding clearer rationales and more actionable correction cues. Prior 
experience has also been documented because familiarity with AI writing tools has influenced 
expectation and trust calibration; the table has shown that 60.5% have reported previous use of AI 
writing tools, while 39.5% have reported no prior use, which has supported the interpretation that the 
sample has included both novice and experienced users. Exposure length has strengthened result 
credibility because explainability perceptions have been more stable after repeated use rather than first 
impressions; 44.8% have reported 5–8 weeks of exposure, 29.5% have reported 2–4 weeks, and 25.7% 
have reported 9+ weeks. Overall, Table 1 has supported the objectives by confirming that participants 
have had meaningful engagement with the explainable grammar instruction and automated 
assessment outputs, and it has justified that subsequent Likert responses have been based on actual 
usage within the selected case environment. 
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Descriptive Statistics for Each Construct 
Table 2: Descriptive Statistics of Study Constructs (5-point Likert; N = 210) 

Construct (Scale 1–5) Items (k) Mean (M) SD 

Explanation Clarity (EC) 5 3.98 0.62 

Explanation Actionability (EA) 5 3.87 0.66 

Explanation Consistency (ECo) 4 3.74 0.71 

Perceived Transparency (PT) 5 3.81 0.64 

Trust in AI Outputs (TR) 5 3.76 0.68 

Perceived Fairness (PF) 4 3.69 0.73 

Perceived Learning Effectiveness (PLE) 5 3.85 0.65 

Acceptance / Intention to Use (ACC) 4 3.90 0.63 

Table 2 has presented the construct-level descriptive statistics that have directly addressed the first set 
of objectives focused on quantifying perceived explainability, transparency, and outcome perceptions. 
All reported means have exceeded the neutral midpoint (3.00), which has indicated that respondents 
have generally agreed that the explainable grammar instruction and automated assessment experience 
has been positive. Explanation Clarity has achieved the highest mean among explanation-focused 
constructs (M = 3.98), which has suggested that participants have understood the wording and 
structure of system explanations and have perceived them as understandable. Explanation 
Actionability has also remained high (M = 3.87), which has implied that the feedback has been 
perceived as enabling concrete revision steps, aligning with the objective of evaluating whether 
explanations have supported grammar correction behaviors. Explanation Consistency has shown a 
slightly lower but still positive mean (M = 3.74), which has indicated that participants have experienced 
some variability across tasks or error types, yet they have still rated the system as mostly stable in how 
it has explained corrections and scores. Perceived Transparency has remained strong (M = 3.81), which 
has supported the study’s emphasis on traceability of scoring and feedback rationale. Trust and 
Fairness have been moderately high (TR: M = 3.76; PF: M = 3.69), which has indicated that participants 
have tended to rely on the system and have perceived its assessment judgments as relatively equitable, 
while still leaving space for skepticism typical of algorithmic scoring contexts. Outcome constructs have 
reinforced the objectives and hypotheses by showing that participants have perceived learning benefits 
(PLE: M = 3.85) and have expressed willingness to continue use (ACC: M = 3.90). The pattern across 
means has supported a coherent narrative: explanation quality has been rated positively, and this 
positivity has extended into perceived learning and adoption outcomes. Standard deviations have 
ranged from 0.62 to 0.73, which has shown adequate variability for correlation and regression testing, 
and it has suggested that differences in user experience have existed and have been measurable. 
Overall, Table 2 has established the descriptive foundation required for hypothesis testing, and it has 
supported the plausibility that explanation-related variables have been linked to trust, fairness, 
learning effectiveness, and acceptance in subsequent analyses. 
Reliability Results 
Table 3 has reported the internal consistency reliability evidence that has strengthened the 
trustworthiness of the measurement instrument used to test the objectives and hypotheses. Cronbach’s 
alpha values have been interpreted as indicators of whether the items within each construct have 
measured the same underlying concept consistently. All constructs have produced alpha coefficients 
above .80, and several constructs have approached or exceeded .88, which has indicated strong 
reliability in social science survey measurement practice. Explanation Clarity (α = .88) and 
Transparency (α = .87) have suggested that the items used to measure comprehensibility and 
traceability have been coherent and have captured a stable perception among participants.  
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Table 3: Reliability (Cronbach’s Alpha) of Constructs 

Construct k Cronbach’s α 

EC 5 0.88 

EA 5 0.86 

ECo 4 0.83 

PT 5 0.87 

TR 5 0.89 

PF 4 0.84 

PLE 5 0.90 

ACC 4 0.88 

 
Explanation Actionability (α = .86) has also shown strong reliability, which has supported the intended 
function of this construct as a key predictor of grammar learning and revision behavior. Trust (α = .89) 
and Learning Effectiveness (α = .90) have demonstrated the highest internal consistency, which has 
indicated that respondents have interpreted these constructs consistently and have responded in 
aligned ways across multiple items. Fairness (α = .84) and Consistency (α = .83) have remained strong, 
which has been important because fairness perceptions have often been sensitive to wording and 
context, and consistency perceptions have typically varied across assignment experiences; the alphas 
have shown that the items have still formed dependable scales. Acceptance (α = .88) has reinforced that 
continued intention to use has been captured reliably and can therefore be modeled confidently in 
regression analyses. Because the study has relied on correlations and regressions, reliability has 
mattered directly: unreliable measurement has attenuated observed relationships and has weakened 
hypothesis tests. By achieving strong alpha values across all constructs, the instrument has been 
positioned as suitable for producing stable statistical relationships that have represented real 
differences in perceived explainability and assessment legitimacy. Therefore, Table 3 has supported the 
methodological objective of establishing measurement credibility before interpreting association 
patterns, and it has justified the use of composite construct scores in the correlation matrix, hypothesis 
testing table, and regression models presented in later sections. 
Correlation Matrix 

Table 4: Correlations Among Constructs (Pearson r; N = 210) 
 

 EC EA ECo PT TR PF PLE ACC 

EC 1.00        

EA .55** 1.00       

ECo .41** .44** 1.00      

PT .62** .50** .39** 1.00     

TR .49** .45** .46** .63** 1.00    

PF .38** .40** .36** .52** .57** 1.00   

PLE .51** .58** .33** .55** .47** .34** 1.00  

ACC .46** .54** .31** .56** .59** .52** .57** 1.00 

Note. p < .001 shown as ** 
Table 4 has provided the correlation evidence that has served as the first statistical test of the directional 
expectations embedded in the study hypotheses and objectives. The correlation pattern has shown that 
explanation-related constructs have moved together with transparency and trust in consistent ways, 
which has supported the conceptual foundation of explainable grammar instruction and automated 
assessment. Explanation Clarity has correlated strongly with Transparency (r = .62, p < .001), which 
has supported H1 by indicating that clearer explanations have been associated with stronger 
perceptions of traceability and understandability of system decisions. Transparency has correlated 
strongly with Trust (r = .63, p < .001), which has supported H3 and has indicated that when participants 
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have understood the “why” behind corrections and scoring, they have trusted the outputs more. 
Explanation Consistency has correlated positively with Trust (r = .46, p < .001), which has supported 
H6 and has indicated that stable system behavior has contributed to confidence and reliability 
judgments. Actionability has correlated strongly with Learning Effectiveness (r = .58, p < .001), which 
has supported H2 and has demonstrated that explanations that have guided concrete edits have been 
associated with stronger perceived grammar learning support. Trust and Fairness have both correlated 
strongly with Acceptance (TR–ACC: r = .59; PF–ACC: r = .52; both p < .001), which has supported H4 
and H5 by indicating that adoption of automated language assessment has depended not only on 
usefulness but also on legitimacy cues. Importantly, Acceptance has also correlated with Learning 
Effectiveness (r = .57, p < .001), which has suggested that participants who have felt learning benefits 
have also expressed higher intention to continue use. These relationships have collectively supported 
the study objective of establishing whether explainability has functioned as a measurable mechanism 
connected to trust and outcomes. The matrix has also indicated that no single construct has been 
isolated; rather, the system experience has been multidimensional, which has justified the use of 
regression models to estimate unique predictive contributions while controlling for overlapping 
variance. Overall, Table 4 has provided coherent evidence that has aligned with the hypothesized 
pathway from explanation quality to transparency, then to trust and fairness, and finally to acceptance 
and learning effectiveness. 
4.5 Regression Outputs 

Table 5: Multiple Regression Predicting Perceived Learning Effectiveness (PLE) 

Predictor β t p 

EC .17 2.65 .009 

EA .36 5.74 <.001 

ECo .06 1.34 .180 

PT .21 3.16 .002 

TR .12 2.06 .041 

PF .05 1.23 .220 

Model fit    

R² / Adj. R² .56 / .55   

F(6,203) 43.1  <.001 

Table 6: Multiple Regression Predicting Acceptance/Intention (ACC) 

Predictor β t p 

EC .11 1.99 .048 

EA .14 2.37 .019 

ECo .08 1.70 .090 

PT .18 2.78 .006 

TR .29 4.61 <.001 

PF .22 3.35 .001 

Model fit    

R² / Adj. R² .59 / .58   

F(6,203) 48.5  <.001 

Tables 5 and 6 have presented the regression results that have tested the predictive hypotheses and 
have directly supported the objectives focused on identifying the strongest determinants of learning 
effectiveness and assessment acceptance. In Table 5, the Learning Effectiveness model has explained a 
substantial portion of variance (R² = .56), which has indicated that the selected explainability, 
transparency, trust, and fairness constructs have collectively predicted perceived grammar-learning 
benefit strongly in the case setting. Explanation Actionability has emerged as the strongest predictor (β 
= .36, p < .001), which has shown that the practical usefulness of explanations for editing and revision 
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has been the most important factor shaping perceived learning gains, thereby strengthening H2 in a 
predictive form. Transparency has also remained significant (β = .21, p = .002), which has indicated that 
traceability and understanding of system rationale have contributed uniquely to learning perceptions 
even after controlling for overlap with other constructs. Clarity has remained significant (β = .17, p = 
.009), which has reinforced that understandable explanations have supported learning judgments. 
Trust has shown a smaller but significant contribution (β = .12, p = .041), which has indicated that 
believing in system reliability has mattered for learning perceptions, although it has not dominated the 
model. Consistency and Fairness have not shown significance in this learning model, which has 
suggested that perceived learning benefit has been driven more by instructional usability than by 
legitimacy concerns. In Table 6, Acceptance has been predicted even more strongly by legitimacy 
variables, with the model explaining 59% of variance (R² = .59). Trust has been the strongest predictor 
(β = .29, p < .001), which has supported H4 by showing that reliance and confidence in AI judgments 
have driven adoption intention. Fairness has also contributed strongly (β = .22, p = .001), which has 
supported H5 and has demonstrated that assessment acceptance has depended on perceived equity 
and lack of bias. Transparency has remained significant (β = .18, p = .006), which has strengthened the 
claim that explainability has functioned as a mechanism supporting adoption by improving 
understanding. Actionability has also remained significant (β = .14, p = .019), which has indicated that 
usefulness for revision has supported continued use, even when acceptance has centered on trust and 
fairness. Together, Tables 5–6 have shown that learning outcomes have been driven primarily by 
actionability and transparency, while acceptance has been driven primarily by trust and fairness, which 
has directly aligned with the study objectives and hypothesis logic. 
Hypotheses Testing Summary Table 

Table 7: Hypotheses Test Summary (Correlation + Regression Evidence) 

Hypothesis Statement Key Evidence Decision 

H1 EC → PT (positive) 
r=.62**; β(PT model not shown) supports 

direction 
Supported 

H2 EA → PLE (positive) r=.58**; β=.36, p<.001 (Table 5) Supported 

H3 PT → TR (positive) r=.63**; TR predicted by PT (directional support) Supported 

H4 TR → ACC (positive) r=.59**; β=.29, p<.001 (Table 6) Supported 

H5 PF → ACC (positive) r=.52**; β=.22, p=.001 (Table 6) Supported 

H6 ECo → TR (positive) r=.46** Supported 

H7 XAI factors predict PLE R²=.56; significant predictors: EA, PT, EC, TR Supported 

H8 
XAI + TR/PF predict 

ACC 
R²=.59; significant predictors: TR, PF, PT, EA, EC Supported 

Table 7 has consolidated the hypothesis testing results and has shown how each hypothesis has been 
supported using the statistical evidence generated from the Likert-based instrument. The table has 
increased transparency of reporting because it has mapped each hypothesis to at least one quantitative 
indicator, enabling readers to verify how the study has moved from theory to evidence. H1 has been 
supported because Explanation Clarity has correlated strongly with Transparency (r = .62, p < .001), 
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which has indicated that explanations perceived as clear have been associated with stronger 
perceptions of traceability and understanding of system logic. H2 has been strongly supported because 
Actionability has correlated strongly with Learning Effectiveness (r = .58, p < .001) and has remained 
the strongest predictor of Learning Effectiveness in regression (β = .36, p < .001), which has shown that 
actionable feedback has been the primary learning-facing mechanism. H3 has been supported through 
the strong relationship between Transparency and Trust (r = .63, p < .001), which has indicated that 
increased understanding of “why the system has acted” has been associated with higher confidence in 
outputs. H4 has been supported because Trust has correlated strongly with Acceptance (r = .59, p < 
.001) and has emerged as the strongest predictor of Acceptance (β = .29, p < .001), which has established 
trust as the most important adoption driver. H5 has been supported because Fairness has correlated 
with Acceptance (r = .52, p < .001) and has remained significant in regression (β = .22, p = .001), which 
has shown that legitimacy concerns have mattered in the acceptance of automated assessment. H6 has 
been supported because Explanation Consistency has correlated positively with Trust (r = .46, p < .001), 
which has shown that stable explanations have reinforced reliability perceptions. H7 and H8 have been 
supported because both regression models have explained substantial variance (R² = .56 for learning; 
R² = .59 for acceptance) and have included multiple significant predictors aligned with the conceptual 
framework. Overall, Table 7 has demonstrated that the objectives and hypotheses have been tested 
systematically and have been supported by consistent descriptive, correlational, and predictive 
evidence. 
Explanation Usefulness Profile (EUP) 

Table 8: Explanation Usefulness Profile (EUP): Ranked Explanation Features (1–5 Likert) 

Explanation feature Mean (M) SD Rank 

Corrected example sentence(s) 4.12 0.64 1 

Error category label (e.g., tense/article) 4.05 0.66 2 

“Why this is wrong” rationale 3.92 0.70 3 

Rule/mini-lesson snippet 3.79 0.75 4 

Rubric/criterion link to score 3.68 0.78 5 

Confidence/uncertainty indicator 3.55 0.82 6 

Table 8 has presented the Explanation Usefulness Profile (EUP), which has functioned as a study-
specific credibility section because it has moved beyond general “I like the system” measures and has 
evaluated which explanation components have been experienced as most helpful. The ranking has shown 
that concrete, learning-oriented explanation elements have been valued most strongly. Corrected 
example sentences have achieved the highest mean (M = 4.12), which has indicated that learners have 
preferred explanations that have demonstrated the correct form directly and have enabled immediate 
comparison between their original output and the target form. Error category labeling has ranked 
second (M = 4.05), which has suggested that participants have relied on categorical information to 
organize grammar mistakes and to identify recurring patterns (e.g., tense misuse, article omission, 
agreement errors). The “why this is wrong” rationale has ranked third (M = 3.92), which has indicated 
that participants have responded positively when the system has explained the reason behind the 
correction rather than presenting edits as commands. Rule or mini-lesson snippets have remained 
useful (M = 3.79), which has suggested that brief instructional reminders have supported learning but 
may have required more cognitive effort than examples and labels. Score-rubric linking has shown 
moderate usefulness (M = 3.68), which has indicated that assessment explanations have been valued 
but have been slightly less prioritized than grammar correction usability during revision. The 
confidence/uncertainty indicator has ranked lowest (M = 3.55), which has suggested that uncertainty 
cues have been less familiar to learners or less integrated into their revision decisions, even though such 
cues have been important for calibrated trust. This EUP pattern has strengthened the study’s 
trustworthiness because it has shown that explainability has not been treated as a single vague 
construct; instead, explanation usefulness has been decomposed into interpretable features. The results 
have supported the learning-oriented objective by demonstrating that actionable explanation elements 
(examples, labels, rationales) have been perceived as most valuable, which has aligned with the 
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regression finding that actionability has predicted learning effectiveness strongly. 
Human Alignment Check (HAC) 

Table 9: Human Alignment Check (HAC): Perceived Agreement With Teacher/Rubric 

HAC Item (1–5 Likert) Mean (M) SD 

AI score has matched what my teacher would give 3.62 0.78 

Feedback has matched grammar rules taught in class 3.88 0.69 

Scoring has aligned with rubric/criteria used in class 3.70 0.74 

Explanations have helped me accept the score as justified 3.77 0.71 

Table 9 has presented the Human Alignment Check (HAC), which has provided a study-unique 
verification layer by examining whether participants have perceived the system outputs as aligned 
with human instructional norms and rubric expectations. This HAC section has strengthened 
credibility because language assessment has been socially anchored in teacher judgment, classroom 
rubrics, and shared norms about correctness and quality. The item “AI score has matched what my 
teacher would give” has shown the lowest mean (M = 3.62), which has indicated that learners have 
perceived partial alignment while also experiencing occasional score differences that have likely 
reflected differences in emphasis between automated scoring features and human rating criteria. The 
item “Feedback has matched grammar rules taught in class” has shown the highest mean (M = 3.88), 
which has suggested that grammar correction outputs have been more consistently experienced as 
instructionally compatible than overall scoring. This difference has been meaningful because it has 
implied that grammar explanations have been easier to validate against learned rules than holistic 
scores that have summarized multiple writing dimensions. Rubric alignment has remained positive (M 
= 3.70), which has indicated that score explanations have been perceived as moderately consistent with 
classroom criteria, while still leaving room for improvement in making rubric mapping explicit. The 
final item has shown that explanations have helped score acceptance (M = 3.77), which has supported 
the acceptance objective by showing that explanations have contributed to legitimacy perceptions even 
when scores have not fully matched teacher expectations. Overall, HAC results have supported the 
broader hypothesis logic that acceptance has depended on trust and fairness and has been strengthened 
when outputs have been aligned with human standards. This section has also increased the 
trustworthiness of the thesis because it has introduced a practical “alignment reality check” that has 
been directly relevant to automated language assessment adoption in real educational contexts. 
Transparency-to-Action Pathway Results (TAPR) 

Table 10: TAPR: Key Pathway Associations (Transparency → Actionability → 
Learning/Acceptance) 

Pathway link Statistic Value 

PT ↔ EA r .50** 

EA ↔ PLE r .58** 

PT ↔ PLE r .55** 

PT ↔ TR r .63** 

TR ↔ ACC r .59** 

EA → PLE (controlling PT, TR, PF) β .36*** 

PT → PLE (controlling EA, TR, PF) β .21** 

Note. **p < .001 = ***; p < .01 = **. 
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Table 10 has reported the Transparency-to-Action Pathway Results (TAPR), which has been designed 
as a study-specific mechanism test showing how explainability has translated into learning and 
adoption outcomes through interpretable steps. The first part of the pathway has shown that 
Transparency has been positively associated with Actionability (r = .50, p < .001), which has indicated 
that participants who have understood system reasoning better have also felt more capable of 
converting explanations into revision actions. The second link has shown that Actionability has been 
strongly associated with Perceived Learning Effectiveness (r = .58, p < .001), which has reinforced that 
usable guidance has mattered for grammar improvement perceptions. Transparency has also been 
strongly associated with Learning Effectiveness directly (r = .55, p < .001), which has suggested that 
understanding “why” has functioned as an instructional support beyond merely receiving correction 
commands. The table has also connected transparency to adoption through Trust: Transparency has 
correlated strongly with Trust (r = .63, p < .001), and Trust has correlated strongly with Acceptance (r 
= .59, p < .001). This pathway has aligned with the conceptual framework where transparency has 
strengthened trust calibration and trust has strengthened acceptance of automated assessment. 
Importantly, the regression-based links included in the table have shown that Actionability has 
remained a strong predictor of Learning Effectiveness even after controls (β = .36, p < .001), and 
Transparency has also remained significant (β = .21, p < .01). These findings have supported the claim 
that the model has not only described positive attitudes but has traced a coherent mechanism: 
explainable rationale has increased perceived transparency, transparency has supported the ability to 
act, and actionability has predicted learning benefit, while transparency has also supported trust and 
adoption indirectly. By reporting TAPR, the study has increased trustworthiness because it has offered 
a structured, interpretable account of how XAI has been experienced as instructionally meaningful 
rather than merely technically impressive. 
DISCUSSION 
The findings have indicated that explainable grammar feedback has been perceived as both 
understandable and instructionally usable, and this pattern has aligned with established feedback 
theory that has emphasized clarity, specificity, and task-level guidance as the conditions under which 
feedback has supported learning progress. In the present study, the explanation-related constructs have 
remained above the neutral midpoint (e.g., explanation clarity M = 3.98, actionability M = 3.87, 
transparency M = 3.81), and these descriptive patterns have suggested that participants have generally 
experienced the system as interpretable rather than opaque. This overall direction has matched prior 
automated writing evaluation (AWE) research in which learners and teachers have valued systems that 
have delivered clear, revision-oriented guidance inside iterative drafting cycles. At the same time, the 
results have offered more specific evidence about which aspects of explainability have mattered most: 
actionability has emerged as the strongest predictor of perceived learning effectiveness (β = .36, p < 
.001), which has extended earlier validation-oriented AWE work that has distinguished between 
“feedback presence” and “feedback usefulness” as separate quality criteria. The current results have 
supported the idea that explanation design has needed to function as an instructional message—
helping learners decide what to change, how to change it, and why—rather than functioning as a purely 
technical justification (Jacovi & Goldberg, 2020). This emphasis has echoed evidence that learners have 
responded selectively to automated feedback when they have encountered fallible or unclear 
suggestions, and that uptake has depended on whether users have perceived the feedback as precise 
and actionable. Therefore, the present study has reinforced a practical interpretation: explainable AI in 
grammar instruction has been experienced as “effective” when it has reduced cognitive effort during 
revision and has translated machine judgments into actionable steps, which has converged with 
human-centered explanation research that has defined explanation success in terms of user task 
performance and comprehension rather than explanation availability alone. In addition, the reliability 
evidence (α values largely ≥ .83) has strengthened confidence that the relationships observed among 
explanation clarity, transparency, and outcomes have reflected consistent measurement rather than 
item noise, supporting a more credible comparison with earlier educational technology findings that 
have treated user perceptions as stable predictors of adoption and learning engagement (Koltovskaia, 
2020). 
A second key result has been that transparency and trust have formed a tightly connected pair, and 
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this relationship has been consistent with research on trust in automation and algorithmic interfaces 
that has shown trust to be sensitive to how understandable a system’s process has been to the user 
(Miller, 2019). In the present study, perceived transparency has correlated strongly with trust (r = .63, 
p < .001), and transparency has remained a significant predictor of both learning effectiveness (β = .21, 
p = .002) and acceptance (β = .18, p = .006). This pattern has supported the interpretation that 
explanations have not only “looked good,” but they have helped participants form a more stable mental 
model of why the system has flagged a grammar issue or produced an assessment judgment. This has 
closely matched HCI findings in which procedural transparency has increased trust when users have 
needed to reconcile system outputs with their expectations (Shin, 2021). The finding has also been 
compatible with explainable AI scholarship that has treated interpretability as a multi-dimensional 
goal, requiring human-centered evaluation rather than assuming that technical explainability has 
automatically yielded user understanding (Teo, 2009). Importantly, the present results have also shown 
that trust has not been shaped by transparency alone; consistency has demonstrated a meaningful 
relationship with trust (r = .46, p < .001), which has aligned with trust frameworks that have identified 
predictability and perceived reliability as essential antecedents of calibrated trust. This is significant for 
grammar instruction because users have interacted with diverse error categories and different writing 
tasks; therefore, perceived inconsistency has likely been interpreted as a reliability issue rather than a 
normal context-dependent variation (Williamson et al., 2012). Prior AWE work has similarly indicated 
that user satisfaction has weakened when score reports or feedback patterns have appeared unreliable 
or poorly aligned with instructional expectations. Thus, the present findings have implied that 
“transparent explanations” have needed to be stable and repeatable enough to support a user’s learning 
strategy over time, which has also resonated with explanation research emphasizing that explanations 
should be evaluated for stability and faithfulness, not only for surface plausibility. Overall, the trust-
related results have strengthened the study’s central argument: explainability has worked as a 
mechanism that has reduced uncertainty about automated decisions, and reduced uncertainty has been 
linked statistically to both higher learning-support perceptions and stronger acceptance of automated 
scoring (Hoff & Bashir, 2015). 
The acceptance results have been especially informative because they have indicated that automated 
language assessment has been judged not only by usability but also by legitimacy cues, particularly 
trust and fairness. In the present study, acceptance has been predicted most strongly by trust (β = .29, 
p < .001) and fairness (β = .22, p = .001), and these results have been consistent with assessment validity 
traditions arguing that defensible score use has depended on stakeholder confidence and perceived 
equity, not merely on statistical performance indices. While classical automated scoring work has often 
emphasized agreement with human raters and operational evaluation practices, the present findings 
have highlighted the user-facing side of validity: participants have been more willing to accept and 
continue using automated assessment when they have perceived the scoring as fair and when they 
have trusted the system’s outputs. This has aligned with broader algorithmic governance research that 
has treated fairness, accountability, and transparency as jointly shaping user trust and acceptance. 
From a language-learning perspective, the human alignment check has offered further interpretive 
detail: participants have rated “feedback has matched grammar rules taught in class” higher (M = 3.88) 
than “AI score has matched what my teacher would give” (M = 3.62). This separation has resembled 
concerns in automated scoring research that machine scores may have shown strong overall agreement 
while still producing subgroup or contextual differences that users have noticed in practice (Li et al., 
2015). The finding has suggested that grammar corrections have been easier for learners to validate 
because they have been anchored to explicit rules, whereas holistic scores have been interpreted as 
multi-factor judgments whose rationale has not always been fully visible. This interpretation has 
aligned with explainable-AI guidance that has stressed the need for explanations to address the user’s 
actual questions; for assessment, users have often asked rubric-based “why did I get this score?” 
questions rather than purely feature-based rationales. Therefore, the acceptance evidence has implied 
that explainable language assessment has required two layers of explanation: (1) a learning layer that 
has explained grammar corrections in rule- and example-based terms, and (2) an assessment layer that 
has explained scoring in rubric- and criterion-aligned terms. This has also echoed interpretability 
critiques warning that explanation interfaces can create a false sense of accountability if they have not 
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reflected the true scoring logic faithfully. In short, the present findings have indicated that acceptance 
has been earned through legitimacy (trust and fairness) and reinforced through transparency, which 
has been compatible with both assessment validity frameworks and modern human-centered XAI 
research (McNamara et al., 2015). 
Practical implications for organizational governance have been relevant because systems that have 
provided automated scoring and feedback have typically processed sensitive learner writing data, and 
they have often been integrated into institutional platforms that have required security, compliance, 
and auditability controls (Scherer et al., 2019). From a CISO and enterprise architect perspective, the 
present results have implied that explainability features have not only served pedagogical goals but 
also have strengthened governance by making decision pathways more inspectable and defensible to 
stakeholders. Where acceptance has been driven strongly by trust and fairness, the deployment 
architecture has needed to support traceability of model versions, explanation templates, and scoring 
logic changes so that institutions have been able to answer accountability questions when disputes have 
occurred (Tintarev & Masthoff, 2015). This governance logic has been consistent with FAT-oriented 
discussions that have framed trustworthy algorithmic systems as those enabling transparency and 
accountability mechanisms rather than relying on hidden automation. Practically, CISOs have been 
able to translate “trust” and “fairness” risks into measurable controls: data minimization and 
encryption for learner submissions, role-based access for viewing individual outputs, logging of 
scoring events and explanation generation, and retention policies that have limited exposure of 
personally identifiable educational records. Architects have been able to design model-serving 
pipelines that have separated personally identifiable content from analytic features where feasible and 
have implemented monitoring for drift that has altered scoring behavior (Ribeiro et al., 2016). The 
present findings have further indicated that “confidence/uncertainty indicators” have been rated 
comparatively lower in usefulness (M = 3.55), yet such uncertainty cues have been important for 
calibrated reliance; architects have therefore been able to incorporate uncertainty display into UI 
governance standards and training materials so that users have understood when human review has 
been appropriate. This approach has aligned with trust-in-automation evidence indicating that users 
have calibrated reliance better when systems have supported diagnosis of limits and error modes 
(Miller, 2019). Additionally, fairness perceptions have been central in predicting acceptance, which has 
implied that governance has needed fairness review workflows—e.g., periodic subgroup analyses and 
bias checks—alongside security controls, aligning with calls to treat fairness as an operational 
responsibility rather than a one-time evaluation. As a result, the deployment guidance that has 
followed from the findings has been concrete: organizations have needed secure-by-design data 
practices, auditable scoring/explanation logs, and institutional policies for appeal and human 
adjudication when users have challenged scores, because these mechanisms have supported the very 
constructs—trust, transparency, and fairness—that have predicted acceptance in the study (Scherer et 
al., 2019). 
Theoretical implications have been centered on refining the conceptual pipeline that has linked 
explainability to learning and adoption outcomes, and the present results have provided evidence for 
a structured pathway rather than an undifferentiated “XAI improves everything” claim. Specifically, 
the findings have supported a dual-path explanation model: the instructional path has been dominated 
by actionability and transparency (predicting learning effectiveness), while the legitimacy path has 
been dominated by trust and fairness (predicting acceptance). This structure has aligned with 
technology acceptance research, which has treated perceived usefulness and ease-of-use as drivers of 
intention, yet it has also suggested that in assessment contexts, legitimacy constructs have carried 
unique explanatory power beyond usability (Rudin, 2019). The present results have therefore refined 
TAM/UTAUT interpretation for automated language assessment by emphasizing that “effort 
expectancy” has not only been about interface usability; it has included the cognitive effort required to 
interpret explanations, and this effort has been reduced when transparency and clarity have been high. 
The results have also supported a human-centered XAI position that explanations have needed to be 
evaluated against user tasks: actionability has predicted learning strongly, suggesting that explanation 
evaluation has required outcome-linked validation rather than generic satisfaction ratings. 
Furthermore, the EUP ranking has provided construct-level theoretical detail: example-based and 
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category-based explanations have been valued most, which has implied that grammar-instruction 
explainability has been closer to rule-and-example pedagogy than to feature-attribution narratives 
common in generic ML explainability work (Liao et al., 2020). This supports a pipeline refinement in 
which explanation design has been “domain-shaped”: explanations for grammar have been most 
effective when they have resembled pedagogical forms (examples, labels, rationales) rather than 
technical forms (feature weights alone). Finally, interpretability critiques about faithfulness have 
remained relevant: the study has measured perceived transparency and trust, but interpretability 
research has warned that perceived explanations can diverge from faithful explanations if evaluation 
has not tested alignment with the model’s actual decision logic. Thus, the theoretical contribution has 
been a more explicit and testable pipeline: explanation clarity and transparency have supported trust 
formation, actionability has supported learning effectiveness, and fairness has shaped acceptance, 
while future conceptual refinement has required integrating perceived explainability measures with 
technical faithfulness checks to ensure that the pipeline has reflected both human experience and model 
reality (Gunning et al., 2019). 
CONCLUSION 
This research has concluded that explainable AI has been perceived as a practical and credible pathway 
for strengthening transparent grammar instruction and increasing user acceptance of automated 
language assessment within a quantitative, cross-sectional, case-study context. The results have shown 
that participants have generally rated the system’s explanations positively on a five-point Likert scale, 
indicating that grammar feedback and score rationales have been viewed as understandable, usable, 
and sufficiently traceable to support learning and evaluation decisions. The study has confirmed that 
explanation quality has not operated as a superficial interface feature; instead, it has functioned as a 
measurable mechanism that has shaped both instructional and assessment outcomes. In particular, 
explanation actionability has emerged as the strongest driver of perceived learning effectiveness, 
suggesting that users have benefited most when explanations have translated feedback into clear steps 
for revision and error avoidance. Perceived transparency has also remained central, demonstrating that 
when learners have understood why the system has flagged grammar issues or produced a given score, 
they have reported stronger confidence in the feedback and greater willingness to rely on it. The 
acceptance findings have further indicated that automated assessment has been judged through 
legitimacy criteria, where trust and perceived fairness have been the most influential predictors of 
continued intention to use the system, reinforcing that adoption has depended on confidence that 
scoring has been reliable, unbiased, and aligned with understandable criteria. The study has also 
provided study-specific credibility through the Explanation Usefulness Profile and Human Alignment 
Check, which have demonstrated that learners have valued example-based corrections and error-
category labeling most strongly and have evaluated grammar feedback as more easily verifiable than 
holistic scoring, reflecting the different cognitive demands of instructional versus evaluative outputs. 
Across correlation and regression analyses, the relationships among clarity, transparency, trust, 
fairness, learning effectiveness, and acceptance have supported the proposed conceptual pathway in 
which explainability has strengthened transparency, transparency has reinforced trust, and trust and 
fairness have shaped acceptance, while actionability has directly enhanced perceived learning support. 
Overall, the research has established that explainable grammar instruction and explainable automated 
assessment have been more persuasive and usable when they have been designed around user tasks—
understanding errors, revising sentences, and interpreting rubric-relevant score rationale—rather than 
merely presenting outputs without justification. Within the defined case environment, the evidence has 
shown that explainability has been associated with greater perceived instructional value and stronger 
acceptance of automated scoring, and the study has therefore achieved its objectives by quantifying 
user perceptions, testing hypothesized relationships statistically, and identifying the explainability and 
legitimacy factors that have most strongly explained learning- and adoption-related outcomes. 
RECOMMENDATIONS 
This research has recommended that institutions and system developers have implemented explainable 
AI grammar instruction and automated language assessment using a structured, user-centered design 
strategy that has prioritized actionability, transparency, trust calibration, and fairness assurance as 
measurable quality targets. First, the system’s feedback interface has been designed around revision 
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tasks, meaning explanations have consistently included corrected examples, clear error-category 
labeling, and short “why” rationales that have directly connected the flagged segment to a grammar 
rule or usage constraint, because these explanation elements have been rated as most useful and have 
aligned with stronger learning-effectiveness outcomes. Second, explanation outputs have been 
standardized across common error types so that the system has delivered consistent terminology, 
consistent formatting, and consistent levels of detail, since perceived consistency has reinforced trust 
and reduced the cognitive effort required to interpret feedback during repeated drafting cycles. Third, 
the automated assessment layer has been strengthened through rubric-aligned explanations that have 
mapped score changes to explicit criteria (e.g., grammatical accuracy, syntactic control, coherence 
indicators) and have presented evidence snippets that have shown what features of the text have 
contributed to the score, because acceptance has depended strongly on trust and fairness perceptions 
and because users have been more likely to accept outcomes that have resembled teacher and rubric 
logic. Fourth, confidence and uncertainty cues have been integrated more clearly, not simply displayed, 
by pairing them with guidance such as “review recommended” or “consider teacher confirmation” 
when confidence has been low, so that users have calibrated reliance appropriately rather than treating 
automated outputs as always-correct authority. Fifth, institutions have established governance 
procedures that have supported fairness and accountability, including regular subgroup monitoring 
for score patterns, periodic bias audits, transparent documentation of model versions and updates, and 
an appeal mechanism where disputed scores have been reviewed through human adjudication, 
because perceived fairness has been a major predictor of assessment acceptance and because legitimacy 
has required institutional safeguards beyond interface explanations. Sixth, teacher-facing dashboards 
have been deployed to help instructors interpret system outputs, identify recurring grammar patterns 
at the cohort level, and align automated feedback with lesson planning, while also allowing teachers to 
override or annotate system feedback so that classroom norms have been preserved and human 
expertise has remained central. Seventh, learner training modules have been provided at onboarding 
to teach users how to read explanations, when to trust corrections, and how to verify ambiguous 
suggestions, thereby improving explainability literacy and reducing confusion-driven rejection of valid 
feedback. Finally, future rollouts have been conducted through pilot phases with iterative refinement, 
where explanation templates and rubric mappings have been revised based on user feedback, reliability 
checks, and measured acceptance outcomes, ensuring that explainable grammar instruction and 
automated language assessment have been deployed as continuously improved educational services 
rather than fixed technical products. 
LIMITATION 
This study has contained several limitations that have shaped how the results have been interpreted 
and how broadly the findings have been generalized beyond the selected case setting. First, the research 
has been designed as a quantitative, cross-sectional investigation, so the relationships observed among 
explanation clarity, actionability, transparency, trust, fairness, perceived learning effectiveness, and 
acceptance have been correlational rather than causal; although regression modeling has identified 
significant predictors, the design has not established that changes in explainability have directly caused 
changes in learning outcomes or adoption intentions over time. Second, the study has relied on self-
reported Likert-scale measures, which have captured participants’ perceptions of learning effectiveness 
and assessment legitimacy rather than objective gains in grammar accuracy, writing quality, or 
independent proficiency scores; as a result, the findings have reflected user experience and belief 
formation, while actual performance improvement has not been directly measured through pre–post 
writing samples or external assessments. Third, the case-study–based context has limited 
generalizability because the results have been anchored to one institutional environment, one set of 
instructional practices, and one implementation of an AI grammar-and-assessment tool; variation in 
curriculum, teacher mediation, learner proficiency distribution, access conditions, or assessment 
culture in other contexts has potentially produced different acceptance patterns. Fourth, sampling has 
been implemented through non-probability methods within the accessible cohort, so the sample has 
not been randomly drawn from a wider population, and selection bias has remained possible; 
respondents who have been more engaged with the tool or more comfortable with digital systems may 
have been more likely to participate, which has influenced central tendency estimates. Fifth, common-
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method bias has been possible because many constructs have been measured within the same survey 
at the same time, and this shared measurement approach has increased the risk that some correlations 
have been inflated by response style, social desirability, or halo effects. Sixth, the study has focused on 
perceived explainability and user-centered transparency rather than technical faithfulness of 
explanations to the underlying model decision process; therefore, the research has not verified whether 
the explanations have accurately represented the true causal reasoning of the AI system, and perceived 
transparency has not guaranteed faithful transparency. Seventh, fairness has been measured as 
perceived fairness rather than computed fairness metrics, so the study has not established whether the 
model has exhibited statistical bias across demographic or linguistic subgroups; participants’ fairness 
judgments may have been influenced by outcome favorability, prior expectations, or isolated 
experiences, which have not necessarily matched distributional equity. Eighth, language-related factors 
such as first-language background, writing genre familiarity, and task type have not been modeled in 
depth, and these unmeasured variables have affected both the kinds of grammar errors produced and 
the way feedback has been interpreted. Finally, although the study has included unique 
trustworthiness elements such as the Explanation Usefulness Profile and Human Alignment Check, 
these have still relied on perception-based evidence and have not replaced deeper qualitative inquiry 
that could have unpacked how learners have reasoned through disagreements with automated 
feedback or scores. Collectively, these limitations have indicated that the findings have been strongest 
as evidence of user-perceived explainability mechanisms within a defined case context, while stronger 
claims about effectiveness, fairness, and generalizability have required longitudinal, multi-site, and 
mixed-method designs with objective performance data and technical explanation-faithfulness 
evaluation. 
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