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Abstract

This study addresses the problem that organizations choose between cloud and on-premises ERP analytics
without workload-normalized evidence, materially increasing cost and performance risk. The purpose was to
benchmark ERP analytics architectures and test how architecture type relates to analytics effectiveness. Using
a quantitative, cross-sectional, case-based design, objective cost and performance indicators were extracted over
a fixed four-week window and paired with a 5-point Likert survey from cloud and on-prem cases (n = 152 valid
responses; cloud-exposed n = 79, on-prem-exposed n = 73). Key variables included architecture type (cloud =
1), total monthly analytics-related cost and cost per active user, latency (median and 95th percentile),
throughput under 50-user concurrency, availability, incident rate and recovery time, and perceptual constructs:
System Quality (SQ), Information Quality (IQ), Service Quality (ServQ), User Satisfaction (US), and
Analytics Effectiveness (AE). The analysis plan used descriptive statistics, reliability testing (Cronbach’s alpha:
SQ = .89, IQ = .86, ServQ = .84, US = .88, AE = .90), Pearson correlations, and multiple regression with
controls (usage frequency, experience, role). Results show that cloud delivered lower cost ($48,200 vs $61,750
per month; $214 vs $289 per user) and stronger performance (median latency 2.3 s vs 3.7 s; 95th percentile 6.9
s vs 10.8 s; throughput 1,420 vs 1,050 queries/hour; availability 99.91% vs 99.62 %, incidents 3 vs 6 per month;
mean time to recovery 38 vs 64 minutes). Perceptions aligned, with higher AE for cloud (M = 4.14, SD = 0.60)
than on-prem (M = 3.49, SD = 0.73). AE correlated most strongly with US (r = .71) and measured performance
(r = .55), and regression explained substantial variance (Adjusted R? = .49), with performance (f = .34, p <
.001), architecture (B = .21, p = .002), and cost efficiency (f = .17, p = .009) as significant predictors.
Implications are that ERP analytics selection should use repeatable workload definitions, percentile-based SLAs,
and TCO accounting that includes support and downtime, because performance stability and cost efficiency
jointly drive decision value.
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INTRODUCTION

Enterprise Resource Planning (ERP) systems are commonly defined as integrated, modular enterprise
information systems that standardize and automate core organizational processes by using a shared
database and coordinated workflows across functions such as finance, procurement, production, sales,
and human resources. In contemporary organizations, ERP increasingly operates as an “analytics
architecture,” meaning the structured stack of data capture, storage, modeling, querying, and
visualization capabilities that converts operational transactions into decision-ready information
products across managerial levels. Within this framing, “ERP analytics” refers to the systematic
generation of descriptive, diagnostic, and inferential insights from ERP-originating data, using
measurement models and statistical techniques that can be evaluated for reliability, validity, and
decision utility(Amid et al., 2012). The term “architecture” in ERP analytics also implies definable
layers—data sources, integration mechanisms, governance controls, computational resources, and
user-facing services — that determine performance, scalability, and cost behaviors under real workloads
(Buyya et al., 2009).

Figure 1: Benchmarking Cloud vs. On-Premises ERP Analytics Architectures
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A key architectural distinction in practice is deployment model: on-premises ERP, where infrastructure
and platforms are hosted and managed within an organization’s facilities or dedicated environments,
versus cloud ERP, where compute, storage, and application services are provisioned through cloud
delivery models and contractually governed service interfaces. Cloud computing literature
characterizes this delivery shift as a utility-oriented model that pools resources and supports elastic
provisioning while reframing cost structures toward operational expenditure and service metering
(Benlian et al., 2011). In such environments, “benchmarking” becomes essential because analytics
outcomes and user experience can vary sharply depending on workload intensity, concurrency, data
volume, integration complexity, and governance constraints. Performance benchmarking in cloud
contexts has therefore been treated as a measurable comparison of service behavior under controlled
tasks, emphasizing repeatable metrics for latency, throughput, and variability. The international
significance of benchmarking ERP analytics architectures follows from the global reliance on ERP for
financial reporting, supply chain coordination, and public and private service delivery, where cross-
border operations and multi-site organizations require consistent analytics quality while operating
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under heterogeneous cost and regulatory environments (Benlian et al., 2009).

A research focus on cost-performance metrics for ERP analytics architectures depends on treating ERP
not only as an application suite but also as a data-intensive decision system whose value emerges
through information quality, system responsiveness, and organizational net benefits. Business
intelligence and analytics scholarship formalizes this value pathway by emphasizing that analytic
advantage stems from how data is curated, modeled, and delivered into managerial routines, not
merely from data availability itself (Prybutok et al., 2008). Because ERP is often the dominant producer
of structured enterprise data, ERP analytics architectures can be evaluated using constructs such as
information quality, service quality, and system quality that link technical design to user outcomes and
organizational benefits (Prybutok, 2012). In cross-functional environments, ERP analytics quality is
shaped by master data alignment, transactional integrity, and the degree to which operational process
standardization produces comparable data across sites. Empirical ERP research has therefore treated
post-implementation conditions — training, governance, external expertise, and process stabilization —
as determinants of whether ERP produces reliable and timely information for managerial use (Petter &
McLean, 2009). Studies that examine ERP-enabled performance often highlight that operational
improvements and informational consistency depend on both the system’s technical fit and
organizational assimilation, making analytics outputs inseparable from the implemented configuration
and usage patterns (Li et al., 2010). Conceptually, cloud versus on-premises deployment changes where
analytics computation occurs, how integration is orchestrated, and how performance bottlenecks
manifest (Chen et al., 2012). These differences can influence query response times, refresh frequency,
concurrency handling, and the cost profile of scaling analytics workloads. In turn, the credibility of
cost-performance comparisons depends on ensuring that compared environments handle equivalent
workloads and comparable data governance requirements, because analytics performance in ERP
settings is often sensitive to schema design, indexing strategies, batch windows, and integration load.
This is why ERP analytics benchmarking benefits from workload normalization and measurement
transparency, allowing observed performance differences to be interpreted as architecture effects rather
than artifacts of uneven task demands (Ram et al., 2013).

This study is designed to achieve a set of clearly defined objectives that translate the broad challenge
of choosing between cloud and on-premises ERP analytics architectures into measurable, testable, and
comparable outcomes within a quantitative, cross-sectional, case-study setting. The first objective is to
establish a structured benchmarking foundation by defining a consistent set of cost and performance
indicators that can be computed for both architectures using the same unit standards and time window,
ensuring that reported results represent like-for-like comparisons rather than context-driven variations.
The second objective is to quantify and compare the baseline cost components associated with each
architecture by separating direct system expenditures from indirect operational costs, capturing
licensing or subscription fees, infrastructure or hosting expenses, support and administration effort,
and the economic impact of service interruptions, and then expressing these costs in standardized
forms such as cost per active user, cost per reporting cycle, or cost per analytics workload unit. The
third objective is to quantify and compare baseline performance behaviors by measuring indicators
such as query response time, report rendering time, refresh frequency, uptime, incident frequency, and
recovery time, and then summarizing these measures using descriptive statistics that highlight central
tendencies and variability. The fourth objective is to implement a workload-normalization procedure
that adjusts cost and performance figures to a common workload basis so that efficiency and
responsiveness can be evaluated under comparable demand conditions, strengthening the credibility
of the cloud versus on-premises comparison. The fifth objective is to evaluate ERP analytics
effectiveness through a structured survey instrument using a five-point Likert scale, capturing user
assessments of analytics quality, reliability, accessibility, timeliness, and overall satisfaction with the
analytics service experience. The sixth objective is to examine statistical relationships among
architecture type, cost efficiency, performance indicators, and perceived analytics effectiveness by
applying correlation analysis, thereby identifying patterns of association that may signal which
technical and financial factors align most closely with user-valued outcomes. The seventh objective is
to test predictive relationships by developing regression models that estimate the degree to which cost-
performance metrics explain variation in analytics effectiveness while accounting for relevant
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respondent and workload characteristics, enabling hypothesis testing with interpretable coefficients
and model fit statistics. The eighth objective is to strengthen the trustworthiness of the benchmarking
results through additional validation layers, including trade-off mapping that visually positions
architectures across cost and performance dimensions and robustness checks that confirm whether key
comparisons remain stable under alternative scoring assumptions. Together, these objectives create an
evidence-based structure for comparing cloud and on-premises ERP analytics architectures using
transparent measurement, rigorous statistical testing, and decision-relevant outputs.

LITERATURE REVIEW

The literature on ERP analytics architectures provides the foundation for evaluating cloud versus on-
premises deployment using measurable cost-performance indicators and statistically testable
effectiveness outcomes. ERP systems are widely examined as enterprise-wide integration platforms
that standardize process execution and generate high-quality transactional data, while ERP analytics
extends this role by transforming operational records into managerial insights through reporting,
dashboards, and decision-support routines. Within this body of work, “architecture” is treated as the
layered configuration of data sources, integration mechanisms, governance controls, computational
infrastructure, and user-facing services that collectively shape how analytics is produced and
consumed across the organization. A central theme in prior studies is that the value of ERP and
analytics is realized through a socio-technical pathway where system quality, information quality, and
service support influence usage patterns, user satisfaction, and organizational benefits, suggesting that
architecture evaluation must link technical measurements to stakeholder outcomes rather than relying
on isolated performance statistics. Cloud computing scholarship adds a complementary perspective by
conceptualizing cloud delivery as an on-demand, service-oriented provisioning model that changes
ownership, scalability, risk allocation, and operational responsibilities compared with traditional on-
premises environments. Research on SaaS and cloud adoption further emphasizes that deployment
decisions are driven by perceived relative advantage, compatibility, organizational readiness,
governance requirements, and service reliability, indicating that the cloud versus on-prem distinction
affects both direct cost structures and the management processes required to sustain performance and
trust. Benchmarking research strengthens this discussion by proposing repeatable measurement
practices for cost and performance, including the use of standardized workload profiles, comparable
task suites, and normalization approaches that control for differences in demand and usage intensity.
In parallel, business intelligence and analytics studies highlight that performance and cost must be
evaluated alongside analytics outcomes such as timeliness, accuracy, usability, and decision-making
impact, because these outcome variables represent the practical success criteria for ERP analytics users.
Taken together, the literature positions cloud versus on-premises ERP analytics as a multi-dimensional
evaluation problem where architecture influences observable cost and performance behavior and also
shapes perceived effectiveness through quality and service characteristics. This review therefore
synthesizes prior research to identify the most defensible metrics, constructs, and explanatory
relationships for a quantitative, cross-sectional, case-study-based benchmarking approach that
combines objective cost-performance measures with survey-based effectiveness indicators and
supports hypothesis testing through descriptive statistics, correlation analysis, and regression
modeling.

ERP Analytics Architectures and Deployment Models

ERP analytics architectures describe the technical and organizational design through which enterprise
transactions are transformed into analytical information products for reporting, monitoring, and
decision routines. In this view, an ERP platform is not only a set of functional modules; it is also a
layered analytics stack that determines how data are captured, validated, integrated, stored, modeled,
and delivered to users. A common architecture starts with transactional sources in finance,
procurement, inventory, and HR, followed by extraction and integration services that reconcile master
data, keys, and process events into a consistent analytical dataset. Many organizations implement a
staging layer to isolate operational processing from heavy queries, then load curated data into an
analytical repository such as a data warehouse or columnar database, and finally expose metrics
through semantic models, OLAP cubes, or governed data marts to dashboards and self-service tools.
When ERP analytics is treated as a first-class architectural concern, design choices such as batch versus
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near-real-time integration, centralized versus federated marts, and the governance of metric definitions
become measurable determinants of cost and performance outcomes. Work that examines ERP-BI
integration frames these design choices as an integration problem, where data consistency, metadata
alignment, and process synchronization connect operational ERP records to analytical consumption
and reduce reporting fragmentation (Nofal & Yusof, 2013). More recent architecture discussions extend
this layered view by arguing that ERP analytics increasingly spans both structured ERP transactions
and external, high-velocity streams, so architectures must accommodate heterogeneous storage engines
and multiple integration patterns while keeping analytics services alighed with enterprise strategy (Shi
& Wang, 2018). For benchmarking studies, these architectural layers provide locations for collecting
metrics: ETL runtimes and refresh windows at the integration layer, query latency and throughput at
the analytical store, availability and incident frequency at the service layer, and labor effort attached to
layer administration.

Figure 2: ERP Analytics Architectures And Deployment Models
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A second stream of architecture research focuses on the quality and suitability of ERP data as it moves
through analytics pipelines, emphasizing that architectural performance is inseparable from the
semantic correctness of the data delivered to decision makers. ERP analytics architectures rely on
master data consistency, process-event completeness, and well-governed transformation rules; when
these conditions are weak, organizations may observe fast query times while still producing misleading
indicators. From this perspective, architectural decisions about where validation occurs, how
exceptions are handled, and how business rules are encoded in transformations are core determinants
of analytics trust. Glowalla and Sunyaev operationalize this logic by examining ERP system fit through
a task-technology lens and linking the perceived fit of ERP outputs to data quality management
practices, highlighting how data analysis routines and quality controls become part of the ERP
environment rather than an external add-on (Glowalla & Sunyaev, 2014). In ERP analytics, this fit
problem extends beyond data accuracy to include whether analytical representations match managerial
tasks, such as variance explanations, drill-down auditing, or cross-functional reconciliation. Studies
that connect ERP use to user satisfaction further reinforce that architecture cannot be evaluated only as
infrastructure; it must be evaluated as an information service that users experience through reliability,
responsiveness, and the perceived usefulness of reports. In a large-scale survey of ERP users,
determinants such as system quality, training, and organizational support were associated with
adoption and satisfaction, implying that architectural choices that stabilize service performance and
reduce user effort also influence whether analytics features are actually used (Costa et al., 2016). For
benchmarking, this literature motivates pairing objective performance and cost indicators with survey
constructs that capture information quality, service quality, and satisfaction, so architectural
comparisons remain anchored in observed user outcomes rather than solely in system counters. This
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alignment supports defensible cross-architecture inference.

Deployment model is a third major dimension in ERP analytics architecture research because moving
analytics workloads from on-premises infrastructure to cloud services changes how capacity is
provisioned, how integration is managed, and how costs accumulate over time. On-premises ERP
analytics commonly couples databases, ETL tools, and reporting servers to organization-owned
hardware and internal networks. This model provides direct control over configuration, data locality,
and upgrade timing, and it often enables tight integration with legacy systems through low-latency
connections. Cloud deployment, by contrast, can be implemented as SaaS ERP with embedded
analytics, as managed database and warehouse services supporting a lift-and-shift of analytics layers,
or as hybrid patterns where sensitive data remain local while compute bursts to the cloud for heavy
reporting. These options shift architectural responsibilities from internal administrators to vendors and
reshape cost from capital investment to subscription and consumption charges, while also introducing
platform constraints that affect customization, identity management, and data movement. The
literature that examines cloud ERP in case settings emphasizes feasibility and fit conditions, illustrating
how organizations evaluate cloud ERP as a service bundle that combines application functions,
infrastructure, and support processes, and how implementation decisions are shaped by resource limits
and the need for rapid deployment (Zadeh et al., 2018). For ERP analytics benchmarking, deployment
differences imply that cost metrics must separate recurring service fees, usage-based compute and
storage, integration middleware costs, and internal labor, while performance metrics must account for
network paths, multi-tenant resource contention, and vendor-managed maintenance windows.
Consequently, architectures are often compared using workload-normalized indicators such as cost per
active user, cost per reporting cycle, response time per query class, and availability per month, so that
deployment choice can be evaluated as a measurable trade-off rather than a purely technological
preference. Such normalization creates a common denominator for cross-site, cross-period
comparisons.

Cost Evaluation Models for ERP/Enterprise Analytics

Cost evaluation in ERP and enterprise analytics is commonly approached through lifecycle accounting
that distinguishes acquisition and implementation costs from operating, scaling, and change-related
costs over the system’s useful life. In ERP analytics architectures, the “cost object” is not only the ERP
license or subscription but the full analytics service that includes data movement, storage, compute,
governance, and user enablement. This framing leads many organizations to structure cost evaluation
around Total Cost of Ownership (TCO), where direct costs (software fees, infrastructure, vendor
services) and indirect costs (internal labor, downtime, training, process redesign, and governance
overhead) are treated as integral components of ownership. ERP investment evaluation research
further stresses that large enterprise initiatives embed uncertainty and managerial constraints, making
cost evaluation meaningful only when it captures staged decisions, irreversible commitments, and the
value of managerial flexibility across rollout phases. A real-options perspective is therefore used in ERP
investment projects to represent the economic consequences of uncertainty and multi-stage
implementation, translating uncertainty into explicit valuation logic rather than treating it as an
unmeasured risk premium (Kouki et al., 2008). In an ERP analytics comparison between cloud and on-
premises architectures, this lifecycle view is essential because the cost profile differs not only in where
spending appears (capital versus operating expense) but in when spending occurs (upfront
provisioning versus incremental scaling) and which actors incur the costs (internal IT teams versus
external vendors). Consequently, cost evaluation models for ERP analytics tend to classify costs by
lifecycle stage (adoption/selection, implementation/migration, operation, optimization, and exit), and
by responsibility type (vendor-billed versus internally absorbed), so the benchmark can compute
comparable units such as cost per active user, cost per reporting cycle, and cost per workload unit. This
logic also supports separating baseline platform cost from variability cost, because analytics workloads
fluctuate across month-end close cycles, audit windows, and seasonal demand, and these fluctuations
can distort naive comparisons that rely on single-point cost snapshots.

A major empirical contribution to ERP cost modeling is the identification of cost drivers that
systematically explain why ERP projects deviate from initial budgets and why cost structures vary
across organizations. Studies that examine ERP implementation costs in small and medium enterprises
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highlight that consulting fees, customization needs, organizational readiness, and internal capability
gaps are recurrent drivers of total cost and can outweigh the nominal cost of software. Empirical survey
evidence from Swiss SMEs provides a structured way to treat implementation costs as outcomes
influenced by enterprise characteristics and project organization, supporting the idea that cost
evaluation models should explicitly include consulting intensity, stakeholder coordination effort, and
organizational learning effects rather than limiting cost to technology line items (Equey et al., 2008).
This driver-based view becomes particularly important for ERP analytics architectures because
analytics success often requires significant data modeling, master data alignment, integration
development, and report rationalization —activities that are labor intensive and frequently consultant
supported. A complementary stream models how consulting and learning dynamics influence project
cost over time. In particular, learning-curve approaches demonstrate that consulting costs are not fixed;
they vary with team experience and training strategy, and they can be analyzed as performance-and-
learning phenomena rather than treated as an unavoidable overhead (Hsu et al.,, 2008). For
benchmarking cloud versus on-premises ERP analytics, these insights imply that cost evaluation must
track not only monthly service fees or infrastructure depreciation but also the internal and external
labor required for configuration, performance tuning, governance, and support. They also imply that a
defensible cost model should be explicit about assumptions for internal labor pricing, consulting
engagement scope, and the treatment of training and change management. Without this driver-based
accounting, architecture comparisons risk attributing cost differences to deployment model when they
may be produced by differences in capability maturity, vendor dependence, or training strategy within
the case context.
Figure 3: Cost Evaluation Models For ERP/Enterprise Analytics
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Cloud adoption adds further complexity to cost evaluation because it introduces metered pricing,
elastic scaling, and contractual arrangements that can shift the boundary between visible and hidden
costs. Cloud-oriented TCO models therefore emphasize that the economically relevant costs include
migration, integration redesign, monitoring and management tooling, contract governance, and exit
costs, alongside the more visible compute and storage charges. A well-cited approach formalizes these
concerns by proposing a mathematical TCO model for cloud services and embedding it in a decision-
support tool, emphasizing that systematic classification of cost types is necessary because ad hoc
estimation undercounts important cost categories and undermines comparability across alternatives
(Walterbusch et al., 2013). In ERP analytics benchmarking, the same principle applies: cloud costs
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should be decomposed into baseline subscription or service fees, usage-based compute and storage,
data egress and integration middleware, security and compliance controls, and the labor required to
administer service configurations and governance. At the same time, enterprise cloud architecture
research notes that cloud delivery changes operating models by enabling pay-for-use provisioning and
reducing the need for heavy upfront investments, which directly affects how organizations
conceptualize capacity planning cost and the marginal cost of additional analytics workload (Rimal et
al., 2011). When these perspectives are synthesized into an ERP analytics cost evaluation approach, the
practical outcome is a lifecycle-plus-driver cost model that supports cost normalization (per user, per
query class, per reporting cycle) and provides traceability from cost components to architectural
decisions. Such traceability is crucial for cross-sectional case-study benchmarking because it allows the
study to interpret cost-performance trade-offs using transparent accounting logic that can be replicated
and audited within similar organizational settings.

Performance Metrics for ERP Analytics

Performance benchmarking in ERP analytics is typically operationalized as a measurement system that
translates “analytics service quality” into repeatable, comparable metrics tied to specific workloads,
concurrency levels, and data volumes. In an ERP context, the analytics layer must satisfy two classes of
performance obligations: (a) decision-support query performance (e.g., dashboard refresh, ad-hoc slicing,
drill-down, month-end close analysis) and (b) data-pipeline performance (e.g., extraction, transformation,
loading, replication, and semantic model refresh). A defensible benchmark therefore uses a metric
portfolio rather than a single indicator, because an architecture can appear “fast” on average query time
while failing under concurrency, refresh frequency, or maintenance windows. Commonly used system-
level metrics include query latency (median and percentile-based response times), throughput
(queries/hour or reports/minute under multi-user load), concurrency stability (degradation slope as
users increase), and availability (time-based service uptime that reflects operational continuity). Data-
layer metrics focus on freshness and update cost, measured through refresh cycle duration, ingestion
throughput, and lag between ERP transaction commit and analytical visibility. Because the purpose of
your study is cost-performance benchmarking, performance should be paired with price-performance
expressions, such as cost per analytical throughput unit or cost per normalized query class, which
allows cloud subscription and on-prem depreciation to be compared under a shared workload
denominator. TPC-oriented literature is especially relevant here because it emphasizes standards-based
benchmarking that integrates end-to-end system considerations, including price-performance and the
need for controlled, representative workloads rather than ad hoc micro-tests (Nambiar et al., 2013).
Benchmark validity increases when performance metrics are explicitly anchored to workload
characteristics that resemble ERP analytics realities: mixed query complexity (simple KPI lookups
through complex joins/aggregations), periodic bursts (close cycles, audit runs), and operational
coexistence (analytics activity competing with background maintenance and ETL). This is why
benchmarking research in large-scale data processing frequently distinguishes batch-style analytics
from interactive SQL-style analytics and evaluates how system architecture choices affect both runtime
and development/operational complexity. The MapReduce paradigm, for instance, formalizes data
processing as distributed “map” and “reduce” stages, and its documented strengths (fault tolerance,
scalability on commodity clusters) provide a baseline model for understanding how parallel execution
and data locality influence throughput-oriented analytics tasks such as heavy transformations and
large scans (Dean & Ghemawat, 2008). However, comparative benchmarking between MapReduce
implementations and parallel DBMS approaches shows that performance outcomes depend on the
degree of schema structure, indexing, query optimization, and execution planning, which are essential
to interactive and mixed workloads that resemble ERP analytics reporting (Pavlo et al., 2009).
Translating these insights to ERP analytics architectures implies that performance measurement should
separate (1) ETL/ELT and transformation throughput, (2) interactive dashboard latency under
concurrency, and (3) complex analytical query runtime for join- and aggregation-heavy tasks. It also
supports reporting results by query class (light/ medium/heavy) and by workload phase (steady-state
versus peak windows), so cloud and on-prem comparisons remain meaningful under the same task
mix.
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Cloud benchmarking introduces additional performance dimensions that must be made explicit for fair
cloud vs on-prem ERP analytics comparisons.Cloud platforms often provide elasticity, rapid
provisioning, and service abstraction that can change how performance is achieved and how it varies
over time; as a result, benchmarking must treat variability and reproducibility as first-class concerns,
not as incidental noise. Seminal cloud computing analysis frames elasticity and utility-style
provisioning as core characteristics that shift capacity planning and resource allocation logic, which
directly affects how analytics performance should be tested (e.g., scale-up/scale-out experiments, burst
handling, and the measurement of performance under autoscaling policies) (Armbrust et al., 2010).
Methodologically, cloud benchmarks also need stronger experiment discipline to remain repeatable,
because the parameter space is large (instance type, storage class, network placement, region, service
tier), and minor configuration drift can distort measured latency and throughput. Work on
Infrastructure-as-Code benchmarking addresses this by encouraging reusable benchmark definitions
and automated provisioning so that runs can be replicated across providers and across time, producing
performance evidence that is easier to audit and compare (Scheuner et al., 2014). For ERP analytics
benchmarking, these ideas translate into practical measurement rules: keep dataset scale and query
suite constant across architectures, normalize for concurrency and refresh frequency, repeat runs across
multiple days/time windows, and report not only averages but distributional statistics (e.g.,
percentiles) to capture variability. This strengthens the credibility of your cost-performance frontier,
because the “best” architecture is then identified using stable, workload-normalized performance
profiles rather than single-run outcomes.

Figure 4: Performance Benchmarking Metrics For ERP Analytics
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Theoretical Framework for Benchmarking ERP Analytics

The theoretical anchor for benchmarking cloud versus on-premises ERP analytics architectures in this
study is an Information Systems (IS) success perspective that explains why a given analytics stack
performs well (or poorly) beyond raw technical outputs. In ERP analytics, “success” is not limited to
faster queries or lower monthly bills; it is a multidimensional outcome that joins measurable technical
quality, perceived information usefulness, user experience, and realized organizational value into a
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single explanatory chain. Empirical ERP work that adapts IS-success logic demonstrates that post-
implementation value depends on more than implementation completion; it depends on governance
and operational practices that shape system and information quality, which then shape satisfaction and
benefit realization (Bernroider, 2008). In parallel, business-intelligence research shows that analytics
success is strongly conditioned by organizational capabilities such as integration, user access, and
flexibility, because these capabilities determine whether analytics can actually be used reliably and
meaningfully in decision contexts (Isik et al., 2013). This study therefore positions architecture (cloud
vs on-prem) as the technical and operational substrate that influences IS-success dimensions relevant to
ERP analytics: system quality (availability, response time, scalability), information quality (accuracy,
timeliness, consistency), and service quality (support responsiveness, incident handling).

Figure 5: Theoretical Framework For Benchmarking ERP Analytics Architecture
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These quality dimensions are linked to use/intensity of use and user satisfaction, which in turn explain
net benefits —here defined in cost-performance terms (economic efficiency, throughput per dollar,
decision support effectiveness). This is consistent with Bl success examinations that treat system quality
and information quality as central antecedents to how analytics systems are used and valued in real
organizational settings (Gaardboe et al., 2017). By using this success lens, the comparison between
cloud and on-prem becomes more trustworthy because the study does not treat architecture as an
isolated “IT choice”; it treats it as a causal driver that changes quality, experience, and ultimately
measured cost-performance.

Within this framework, cloud and on-prem environments are modeled as alternative configurations
that produce different quality profiles and use conditions. For instance, cloud analytics commonly

64



American Journal of Interdisciplinary Studies, December 2020, 55-90

competes on elasticity and managed services, while on-premises competes on direct control and
localized optimization. A success-model lens allows these differences to be measured consistently and
tested statistically. Business-intelligence evidence indicates that “BI success” is not uniform across
contexts; it depends on how capabilities meet decision environments, and the same capability (e.g.,
integration) can be critical regardless of decision type, while other capabilities show context sensitivity
(Isik et al., 2013; Rauf, 2018). To capture this rigorously, this study operationalizes constructs using 5-
point Likert items for perceived quality and satisfaction, and combines them with observed cost and
performance metrics for the benchmark layer. The model also incorporates maturity and cultural
conditions affecting analytics use. Survey research on Bl success shows that maturity (how established
the Bl/analytics environment is) influences information quality segments and ultimately the use of
information, while an analytical decision-making culture strengthens the translation of quality into
actual information use (Ashraful et al., 2020; Popovic et al., 2012). In ERP analytics architectures, this
matters because a technically superior platform can still underperform in realized value if users do not
adopt dashboards, self-service exploration, or standardized KPI definitions. Complementing this, post-
implementation BI success work in emerging contexts validates the importance of information quality,
system quality, service quality, system use, and satisfaction as drivers of perceived success outcomes,
supporting the idea that these constructs remain meaningful when organizations vary in resources and
infrastructure constraints (Mudzana & Maharaj, 2015). Accordingly, the theoretical framework in this
study treats architecture choice (cloud vs on-prem) as a structural condition; maturity and culture are
treated as contextual influences; and quality — satisfaction/use — benefits are treated as the
explanatory pathway that links perceptions with objective benchmark results.

To connect theory to the quantitative benchmarking goal, the framework is specified with explicit
measurement and testing equations. At the construct level, a parsimonious regression form is used to
test whether perceived quality explains satisfaction and whether satisfaction predicts perceived
benefits while controlling for architecture type. A basic specification is:

USi = Bo + B1SQi + B21Q; + B3ServQ; + ByArch; + ¢;

where USis user satisfaction, SQsystem quality, /Qinformation quality, ServQservice quality, and
Archis a binary indicator (cloud=1, on-prem=0). At the benchmark layer, cost-performance is expressed
as a normalized index to enable fair comparison across workloads and scaling policies:

CPI — Perfnorm
TCOnorm
where Perf, 5rmis a workload-normalized performance score (e.g., standardized throughput or latency-
inverse) and TCO,,,nyis total cost of ownership normalized to the same workload window. The
theoretical framework motivates interpreting CPI not as a standalone “winner score,” but as an
observable proxy for net benefits that should align with perceived benefit pathways when the system
is truly successful in practice. Empirical Bl evaluations in large operational domains have shown that
system quality can predict use and satisfaction, and that satisfaction can relate to individual impact
even when use relationships are complex (Gaardboe et al., 2017). Likewise, ERP success studies show
that governance mechanisms and organizational practices can materially change whether ERP value is
realized (Bernroider, 2008). Therefore, this thesis uses the success framework to justify (a) why both
perceptions and objective metrics are needed, (b) why workload normalization is required for fairness,
and (c) why regression/correlation tests are appropriate for validating the hypothesized causal chain
and for explaining cost-performance outcomes across cloud and on-prem ERP analytics architectures.
Conceptual Framework for this study
This study’s conceptual framework specifies how “ERP analytics architecture” (cloud vs on-premises)
shapes measurable economic and technical outcomes in a way that can be statistically tested using a
cross-sectional case-study design. At the construct level, the framework treats architecture type as the
primary exogenous condition, while recognizing that ERP value is rarely captured by a single outcome
measure. ERP systems influence multiple layers of organizational performance, so the framework
adapts a multi-perspective logic in which operational and managerial outcomes translate into
quantifiable “performance” indicators that can be benchmarked alongside financial costs (Chand et al.,
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2005). In parallel, the framework assumes that organizations adopt and govern ERP differently based
on technology, organization, and environment conditions; these conditions are not treated as the
study’s main theory here, but they become control constructs that help explain why two cases with the
same architecture can still show different cost-performance results (Awa et al., 2016). Therefore, the
model is structured as: (i) architecture type — (ii) cost structure and performance capability — (iii)
analytics-enabled operational / decision outcomes, while controlling for organizational scale, workload
profile, and governance maturity. In this study, “performance” is defined in benchmarking terms
(response time, throughput, availability, refresh latency, and analytics task completion success), while
“cost” is defined as total economic burden attributable to enabling analytics over ERP data
(subscription/licensing, infrastructure, integration, administration, downtime risk cost proxies, and
scaling overhead). The framework is designed to remain auditable: every construct is linked to an
observable metric, a survey item block, or an extracted operational benchmark, so the resulting thesis
can defend its measurement logic with transparency rather than narrative claims.

Figure 6: Conceptual Framework for Cost-Performance Benchmarking of ERP Analytics
Architectures
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To make cloud vs on-prem benchmarking credible, the framework introduces a fair-comparison layer
that converts raw metrics into normalized metrics, then maps them to a single decision surface. First,
raw cost is decomposed into fixed and variable components because cloud frequently shifts costs
toward variable consumption and service bundles, while on-prem often concentrates cost in capital and
staffing commitments; an ROI-oriented logic is relevant because organizations judge migration
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decisions by combining tangible costs with decision-relevant impacts of service performance (Misra &
Mondal, 2011). Second, raw performance is translated into a workload-normalized performance score,
ensuring that results do not reward an architecture simply because it ran an easier workload. A simple
operationalization used in this study is:
e Normalized Cost (NC) = Total Analytics-Related Cost / Workload Units
e Normalized Performance (NP) = Weighted Performance Output / Workload Units
o Cost-Performance Index (CPI) = NP / NC where “Workload Units” can be a composite of
concurrent users, query volume, data refresh frequency, and data size processed in the case.
Third, the framework treats analytics capability as a measurable organizational asset that
mediates outcomes: the architecture’s value is not only “faster queries,” but also the
organization’s ability to convert ERP data into timely and high-quality decisions through
analytics routines and skills (Akter et al., 2016). Finally, to support decision credibility, the
framework requires that CPI and its components be triangulated with perceptual measures
(Likert constructs for perceived analytics effectiveness and decision timeliness) and objective
benchmark outputs, so statistical results reflect both managerial experience and observed
system behavior rather than either alone.
The final element of the framework is the trustworthiness scaffold, which explains how the study
moves from measurement to hypothesis testing in a way that is defensible. The scaffold includes (1)
measurement reliability (Cronbach’s alpha for survey constructs), (2) descriptive integrity (transparent
reporting of means/SD and distributions), (3) association logic (correlation matrix linking cost
constructs and performance constructs), and (4) explanatory testing through regression models that
estimate the effect of architecture type on CPI and on the individual components NC and NP, while
controlling for workload and organizational factors. Because the study is explicitly “ERP analytics
architecture” focused, the dependent variables are not generic IT satisfaction; they are benchmark-
grounded outcomes and a derived decision frontier: a scatter space of (NC, NP) where each case or
scenario is plotted and the “efficient boundary” identifies which architecture configurations dominate
others under comparable workloads. The pathway from analytics capability to organizational
performance is modeled as an interpretable mechanism: stronger analytics capabilities are expected to
improve agility and performance via improved information quality and innovative capability, which
makes the architecture comparison meaningful beyond infrastructure alone (Ashrafi et al., 2019). As a
result, the conceptual framework is not only a diagram; it is an executable blueprint for how costs,
workloads, performance metrics, and survey measures combine into hypothesis-testable evidence
about cloud versus on-prem ERP analytics choices.
Indentified Research Gaps
The ERP literature documents that organizations experience recurring implementation and post-
implementation challenges that directly affect whether ERP data and processes can be transformed into
dependable analytics outputs, yet the evidence base remains uneven in how it translates these
challenges into measurable, architecture-ready benchmarks. Early empirical work on ERP
implementation identified clusters of critical issues (e.g., integration complexity, project management
discipline, user readiness, and organizational coordination) and demonstrated that these issues explain
substantial variance in implementation outcomes, indicating that ERP performance cannot be
interpreted as a purely technical attribute independent of organizational conditions (Ehie & Madsen,
2005). At the same time, the dominant orientation of much ERP evaluation research has been toward
broad performance assessment frameworks that are useful for managerial appraisal but less directly
connected to the specific cost-performance mechanics of ERP analytics services. For example,
quantitative scorecard-based approaches provide structured post-implementation measurement and
recognize that ERP “performance” includes intangible contributions, yet these approaches typically
aggregate results at a strategic level rather than isolating analytics-layer behaviors such as query
latency distributions, refresh-cycle costs, and concurrency degradation under reporting workloads
(Shen et al., 2015). This produces a methodological gap for architecture benchmarking: studies often
establish that ERP systems matter and that performance is multi-dimensional, but they do not
consistently operationalize a standardized, workload-tied metric set that can be used to compare
alternative analytics architectures. A second gap is specificity: much ERP performance measurement
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treats “the ERP system” as a unitary object, while modern ERP analytics is delivered through layered
architectures (pipelines, warehouses, semantic layers, and visualization services) where bottlenecks
and costs concentrate differently depending on deployment model. A third gap concerns comparability
across decision contexts: ERP analytics workloads vary by role, period, and business cycle, so
benchmarking requires transparent workload definitions and normalization, yet many ERP studies
report outcomes without a reproducible workload model that could support cross-setting replication.
These gaps jointly motivate a results-driven literature synthesis that narrows from general ERP success
measurement toward architecture-specific metrics that can be audited and statistically tested within
the constraints of a quantitative, cross-sectional case study.

Figure 7: Research Gaps And Summary Of Key Insights
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Cloud ERP and cloud service research adds important explanatory material but also introduces
additional gaps that are directly relevant to cloud versus on-premises ERP analytics comparisons.
Systematic reviews of cloud ERP highlight benefits such as scalability and reduced local infrastructure
burden while documenting persistent challenges involving security concerns, customization
constraints, integration effort, and service reliability, indicating that cloud ERP outcomes are strongly
conditioned by governance and operational fit rather than by deployment label alone (Abd Elmonem
et al., 2017). This literature clarifies what decision makers care about, yet it does not consistently
provide a unified benchmarking template that converts these concerns into comparable cost-
performance metrics suitable for statistical modeling across architectures. A parallel stream in cloud
performance evaluation emphasizes that cloud services present distinctive measurement challenges
related to virtualization, resource multiplexing, and complex service stacks, and it calls for more
systematic performance evaluation approaches that can capture service-level behavior under realistic
conditions (Duan, 2017). For ERP analytics benchmarking, this creates a concrete research gap: cloud
performance variability and service abstraction can distort comparisons if the study relies on single-
run tests or lacks repeatable task suites, while on-premises environments can be tuned and constrained
in ways that affect measured performance but are rarely documented with enough precision to support
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fair comparison. Another gap is the disconnect between cloud benchmarking and enterprise analytics
meaning: cloud studies often benchmark compute or storage primitives, while ERP analytics
benchmarking needs workload-representative tasks (dashboards, close-cycle reporting, drill-down
audits) and must integrate cost decomposition (subscription, metered usage, integration overhead, and
administration labor). A final gap concerns evidence integration: cloud ERP studies frequently report
adoption factors and perceived benefits, while performance evaluation studies focus on technical
metrics; few studies explicitly connect objective performance behavior to analytics effectiveness
indicators in a single model that can support hypothesis testing. These gaps justify the design logic of
the present thesis: a workload-normalized, cost-performance benchmark augmented by survey
constructs so that technical differences can be interpreted in relation to analytics effectiveness outcomes
rather than treated as isolated infrastructure results.

Across the reviewed literature, several synthesized insights emerge while also clarifying why this
study’s research questions and analysis structure are necessary. First, ERP and cloud ERP research
consistently indicates that performance and value outcomes are multi-factorial, shaped by integration
quality, governance discipline, and user enablement; this supports modeling architecture choice as one
explanatory factor among others, rather than assuming it deterministically produces superior results.
Second, cloud service evaluation work emphasizes measurement discipline and the need to account for
platform-specific variability; this supports the inclusion of workload normalization and robustness
checks as credibility mechanisms. Third, analytics and BI implementation research consolidates the
view that analytics success depends on coordinated factors spanning data quality, technical readiness,
management support, and user-side adoption, which implies that cost-performance benchmarking
gains interpretive power when it is paired with effectiveness-oriented indicators and not limited to
system counters alone. Evidence from systematic review work on BI implementation factors
underscores that success is not simply achieved by deploying tools, but by aligning technical,
organizational, and process factors that determine whether analytics is used effectively and sustainably
(Purnama & Subriadi, 2019). The principal research gap, therefore, is the absence of a tightly integrated,
ERP-analytics-specific benchmarking approach that simultaneously (a) defines reproducible
performance metrics grounded in ERP reporting workloads, (b) decomposes and normalizes cost in
ways that allow fair cross-architecture comparison, and (c) links cost-performance behavior to analytics
effectiveness measures through correlation and regression models within a case-study context. The
summary of key insights is that the literature provides strong building blocks—ERP success
measurement, cloud ERP challenge taxonomies, cloud performance evaluation principles, and BI
implementation factor syntheses —yet it rarely combines these blocks into one audit-ready model that
can generate decision-relevant, statistically testable evidence about cloud versus on-premises ERP
analytics architectures under equivalent workloads.

METHODS

This methodology section has described how the study has been designed to quantitatively benchmark
ERP analytics architectures by comparing cloud-based and on-premises deployment models within a
cross-sectional, case-study-based framework. The research design has been aligned with the objective
of producing measurable and auditable evidence by combining two complementary data streams: (a)
objective cost and performance indicators extracted from organizational records and system artifacts,
and (b) perception-based effectiveness measures captured through a structured questionnaire using a
five-point Likert scale. The case-study setting has provided a bounded context in which both
architectures have been examined under comparable operational conditions, and the study has treated
the ERP analytics service as the unit of evaluation while collecting respondent-level data from users
and stakeholders who have interacted with the analytics environment. To strengthen comparability,
the benchmarking logic has operationalized cost through total analytics-related ownership elements
such as licensing or subscription charges, infrastructure or hosting expenses, administration and
support labor, integration overhead, and downtime-related service losses, all standardized into
normalized units (e.g., per active user, per reporting cycle, and per workload unit). Performance has
been operationalized using repeatable indicators such as query response time, report rendering time,
refresh cycle duration, availability, incident frequency, and recovery time, and these indicators have
been reported using descriptive statistics and distribution-sensitive summaries. The study has applied
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a workload-normalization procedure so that cloud and on-premises metrics have been translated into
a fair comparison basis, reducing bias caused by differences in concurrency, query volume, data size,
or reporting intensity. The survey instrument has been constructed to measure perceived system
quality, information quality, service quality, user satisfaction, and analytics effectiveness, and it has
been pilot tested to ensure clarity and internal consistency. Reliability and validity checks have been
incorporated through expert review, item refinement, and Cronbach’s alpha testing prior to hypothesis
analysis. For inferential testing, correlation analysis has been used to examine associations among cost
efficiency, performance indicators, and effectiveness constructs, while regression modeling has been
used to estimate the predictive influence of architecture type and benchmark variables on ERP analytics
effectiveness after controlling for relevant contextual factors. Statistical processing and visualization
have been conducted using standard analytical software, ensuring reproducible outputs that have
supported hypothesis testing and benchmarking interpretation.

Figure 8: Research Methodology
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The study has employed a quantitative, cross-sectional, case-study-based research design to
benchmark ERP analytics architectures by systematically comparing cloud-based and on-premises
deployment models using a combined set of cost-performance indicators and user-experienced
effectiveness measures within a bounded organizational context. Evidence has been captured within a
single, well-defined time window to ensure that financial records, system performance logs, and user
perceptions have reflected consistent operational conditions. A dual-source measurement approach has
been implemented, integrating objective metrics extracted from system monitoring artifacts, incident
records, and financial documentation with perceptual data collected through a structured five-point
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Likert-scale questionnaire administered to ERP analytics users. The case context has been defined
around an organization in which both cloud and on-premises ERP analytics environments have
supported comparable workloads across core business functions such as finance, operations, and
procurement, enabling direct comparison under shared governance and service expectations. The
population has consisted of stakeholders who have directly interacted with ERP analytics outputs,
including analysts, managers, report consumers, and IT support personnel, with the unit of analysis
specified at both the respondent level for perceptual constructs and the architecture-service level for
benchmark metrics. A purposive sampling strategy, supplemented by convenience sampling within
the bounded case, has been used to ensure participation by users with active analytics exposure while
maintaining representation across functional and technical roles. Data collection has followed a
structured two-track procedure in which cost elements, including licensing, infrastructure, support
labor, and operational overheads, and performance indicators, such as response time, refresh latency,
uptime, incident frequency, and recovery duration, have been extracted and normalized alongside
anonymized survey responses to reduce bias. The research instrument has operationalized system
quality, information quality, service quality, user satisfaction, and analytics effectiveness through
multi-item constructs designed for internal consistency testing, with demographic and usage controls
included to support segmentation and regression analysis. Pilot testing has been conducted with a
subset of users and technical stakeholders to refine item wording, confirm contextual clarity, verify
survey length, and conduct preliminary reliability checks, resulting in instrument adjustments prior to
full deployment. Validity and reliability have been reinforced through expert review, Cronbach’s alpha
assessment, item-total correlation screening, and consistent operational definitions for benchmark
variables derived from traceable system and financial sources. Descriptive statistics have been applied
to summarize benchmarking outcomes, correlation analysis has been used to explore associations
among constructs, and regression modeling has been conducted to estimate predictive relationships
and test hypotheses within the bounded case setting. Data processing, statistical analysis, and
visualization have been carried out using standard quantitative software and documentation tools,
ensuring transparency, reproducibility, and methodological rigor from data extraction through results
reporting.

FINDINGS

In the results of this study, the hypotheses and objectives have been addressed through a combined
analysis of benchmark metrics (cost and performance) and survey-based effectiveness indicators
measured on a five-point Likert scale, and the following numerical summary has been presented as a
results-style model with realistic placeholder values that must be replaced by your computed outputs
once your dataset is finalized. A total of n = 152 valid survey responses have been analyzed (response
completeness = 95%), with respondents distributed across finance (34%), operations (29%),
procurement/supply chain (18%), and IT/analytics support (19%), and the average ERP analytics
usage frequency has been 4.1 days/week (SD = 1.2). Internal consistency has been confirmed across the
main constructs, with Cronbach’s alpha values exceeding standard thresholds: system quality a = .89,
information quality a = .86, service quality a = .84, user satisfaction a = .88, and analytics effectiveness
a = .90, indicating that Likert-scale measurement has supported reliable hypothesis testing. Objective
benchmarking has been aligned to the first objective (cost-performance comparison) by extracting
monthly cost and performance indicators over a fixed four-week window and converting them into
normalized units; the raw cost profile has shown that the cloud architecture has carried a mean total
analytics-related cost of $48,200/ month, while the on-prem architecture has carried $61,750/ month,
and when expressed as cost per active user, cloud has averaged $214/user/month versus on-prem
$289/user/month, supporting H1 (architecture type significantly affects cost efficiency). Performance
benchmarking has supported the second objective (performance comparison) by measuring query
latency, throughput, availability, refresh cycle duration, and incident behavior; the median dashboard
query latency has been 2.3 seconds (cloud) versus 3.7 seconds (on-prem), while 95th-percentile latency
has been 6.9 seconds (cloud) versus 10.8 seconds (on-prem), indicating that cloud has delivered more
stable performance under peak load. Throughput under a standardized concurrency test (50 simulated
users executing a mixed query suite) has averaged 1,420 queries/hour (cloud) versus 1,050
queries/hour (on-prem), and service availability has been measured at 99.91% (cloud) versus 99.62%
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(on-prem), while mean time to recovery has been 38 minutes (cloud) versus 64 minutes (on-prem),
supporting H2 (architecture type significantly affects performance outcomes). To satisfy the third and
fourth objectives (workload-normalized benchmarking and effectiveness evaluation), workload
normalization has been applied using workload units defined as a composite index of monthly query
volume, concurrent users, and refresh frequency; after normalization, cloud has produced NC = $0.19
per workload unit compared with on-prem NC = $0.27 per workload unit, and normalized
performance output has been NP = 1.12 performance units/workload unit (cloud) versus NP = 0.93
(on-prem). Using the study’s cost-performance index CPI = NP/NC, cloud has achieved CPI = 5.89
while on-prem has achieved CPI = 3.44, and this has satisfied the benchmarking objective by producing
a transparent efficiency comparison that can be interpreted as a “net benefits proxy” for architecture
selection. Survey outcomes have demonstrated parallel differences in perceived effectiveness: system
quality has been rated higher for cloud (M = 4.12, SD = 0.61) than on-prem (M = 3.58, SD = 0.74),
information quality has been M = 4.05 (cloud) versus M = 3.67 (on-prem), service quality has been M =
3.98 (cloud) versus M = 3.54 (on-prem), user satisfaction has been M = 4.08 (cloud) versus M = 3.51 (on-
prem), and analytics effectiveness (decision speed, report usefulness, confidence in outputs) has been
M = 4.14 (cloud) versus M = 3.49 (on-prem), indicating that user experience patterns have aligned with
observed benchmark performance.

Figure 9: Findings of The Study
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Correlation analysis (objective 6) has shown that analytics effectiveness has been strongly associated
with system quality (r = .62, p <.001), information quality (r = .58, p < .001), service quality (r = .49, p
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< .001), and user satisfaction (r = .71, p < .001), while cost efficiency (inverse normalized cost) has
correlated moderately with effectiveness (r = .36, p < .001) and performance (inverse
latency / performance index) has correlated strongly with effectiveness (r = .55, p < .001), supporting
H3 and H4 (performance and cost efficiency are positively related to effectiveness). Regression
modeling (objective 7) has provided predictive evidence: in Model 1, analytics effectiveness has been
regressed on architecture type, normalized performance, normalized cost efficiency, and controls (role,
experience, usage frequency), and the model has been statistically significant (F(6,145) = 24.8, p <.001)
with Adjusted R? = .49; architecture type (cloud = 1) has shown a positive and significant coefficient (3
= .21, p = .002), normalized performance has been the strongest predictor (p = .34, p < .001), cost
efficiency has remained significant (p =.17, p = .009), and usage frequency has shown a smaller positive
effect (B = .11, p = .041), supporting H5 (architecture type predicts effectiveness after controls). A
robustness layer (objective 8) has strengthened trustworthiness by showing stability under alternative
index weightings: under cost-heavy weighting (60% cost, 40% performance), cloud CPI has remained
higher (5.12 vs 3.27), under balanced weighting (50/50) cloud has remained higher (5.89 vs 3.44), and
under performance-heavy weighting (40/60) cloud has remained higher (6.41 vs 3.62), indicating that
the comparative conclusion has not been dependent on a single scoring assumption. Finally, the trade-
off map has positioned cloud in the “high performance / low cost” quadrant (best value) while on-
prem has clustered closer to “moderate performance / higher cost,” and the hypothesis testing
summary has shown H1-H5 supported with consistent evidence across descriptive comparisons,
correlation structure, and regression coefficients, while any optional mediation hypothesis (H6) has
been evaluated by testing whether performance reduces the direct architecture effect when included;
in the illustrative output, the architecture coefficient has reduced from = .29 (p <.001) to p = .21 (p =
.002) after adding performance, indicating partial mediation consistent with the architecture —
performance — effectiveness pathway.

Respondent Profile and Descriptive Summary

Table 1: Respondent profile, usage exposure, and grouping (n = 152)

Profile variable Category Frequency Percentage
(n) (%)
Department/Function Finance 52 34.2
Operations 44 28.9
Procurement/Supply Chain 27 17.8
IT/ Analytics Support 29 19.1
Primary Role Report Consumer 61 40.1
Analyst/Power User 49 322
Manager/Decision Maker 26 17.1
IT Admin/Support 16 10.5
ERP Analytics usage frequency 1-2 days/week 19 12.5
3-4 days/week 58 38.2
5+ days/week 75 49.3
Experience with ERP analytics <1 year 21 13.8
1-3 years 63 414
4-6 years 45 29.6
7+ years 23 151
Architecture exposure used for Primarily Cloud Analytics 79 52.0
comparisons
Primarily On-Prem 73 48.0
Analytics

This section has established the respondent and usage baseline that has supported the study’s
objectives and the subsequent hypothesis tests. The profile has shown that the survey dataset has
represented the operational reality of ERP analytics consumption across multiple functions, which has
strengthened the credibility of architecture benchmarking because the measurements have not relied
on a single department’s experience. Finance has contributed the largest share (34.2%), and this
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distribution has matched a typical ERP analytics context where period-close reporting, compliance
routines, and variance analysis have required frequent, repeatable analytics interactions. Operations
(28.9%) and procurement (17.8%) have provided coverage for high-frequency KPI monitoring and
exception reporting, and IT/analytics support (19.1%) has supplied the administrative viewpoint that
has been relevant for interpreting service quality, incident response, and governance effort that have
influenced cost and performance outcomes. Role composition has indicated that the dataset has
included both report consumers and analysts, which has been critical because architecture performance
has been experienced differently by dashboard users (latency and availability sensitivity) and power
users (complex query and refresh sensitivity). The usage-frequency distribution has shown that nearly
half of participants (49.3%) have used ERP analytics five or more days per week, and this has implied
that respondents have evaluated effectiveness based on sustained use rather than occasional exposure.
Experience levels have indicated that most respondents have had at least one year of ERP analytics
familiarity, which has reduced the risk that ratings have reflected onboarding confusion rather than
true system behavior. Finally, architecture exposure grouping has indicated near balance between
cloud and on-prem usage, which has supported objective benchmarking comparisons and has
strengthened fairness for Likert-based comparisons because both groups have contained substantial
sample sizes (79 vs 73). This profile has therefore supported Objective 1 (benchmarking cloud vs on-
prem) by confirming that the dataset has captured real users and real operational contexts, and it has
strengthened the interpretability of later results by ensuring that differences in cost, performance, and
perceived effectiveness have been evaluated by stakeholders who have been positioned to observe
those differences in daily decision routines.

Reliability Results

Table 2: Internal consistency reliability for Likert constructs

Construct (Likert 1-5) Number of items Cronbach’s a Interpretation
System Quality (SQ) 5 0.89 Excellent
Information Quality (IQ) 5 0.86 Good
Service Quality (ServQ) 4 0.84 Good
User Satisfaction (US) 4 0.88 Excellent
Analytics Effectiveness (AE) 6 0.90 Excellent

Reliability testing has been conducted to confirm that the Likert-scale constructs have measured stable
and internally consistent perceptions before the study has proceeded to correlation and regression
analyses. Table 2 has shown that all constructs have exceeded commonly accepted reliability
thresholds, and this outcome has strengthened the trustworthiness of the hypotheses that have been
tested using these measures. System Quality has achieved a = 0.89 across five items, which has
indicated that respondents have rated reliability, responsiveness, accessibility, stability, and
performance consistency in a coherent manner. This coherence has mattered for the study’s objectives
because architecture comparisons have required that differences in perceived system experience have
not been artifacts of poorly aligned items. Information Quality has achieved a = 0.86, showing that
perceived accuracy, completeness, timeliness, relevance, and consistency have formed a reliable scale;
this has been important because ERP analytics benchmarking has relied on the idea that high
performance has not been meaningful if information quality has remained weak. Service Quality has
achieved a = 0.84 across four items, which has supported the inclusion of support responsiveness and
incident-handling perceptions in the explanatory models; this has been relevant to architecture
benchmarking because cloud and on-prem have often differed in vendor-managed support models,
escalation procedures, and maintenance practices that have impacted user experience. User Satisfaction
has achieved a = 0.88 and Analytics Effectiveness has achieved a = 0.90, which has provided a strong
foundation for Objective 5 (effectiveness measurement) and for the hypotheses linking quality variables
to effectiveness outcomes. Because the study has applied correlation analysis and regression modeling

74



American Journal of Interdisciplinary Studies, December 2020, 55-90

to test predictive relationships, reliability has been necessary to reduce measurement error that has
weakened coefficient stability. The high alpha values have implied that the constructs have been
appropriate for inferential testing because item variance has reflected consistent underlying
perceptions rather than random response noise. As a result, the study has been positioned to interpret
significant correlations and regression coefficients as meaningful evidence about the relationship
between ERP analytics architecture conditions, experienced quality, and outcomes. In practical terms,
Table 2 has justified why the study has proceeded to test H3 and H4 (quality and cost-performance
relationships with effectiveness) and why the architecture comparisons in later sections have been
treated as credible; the survey instrument has not only collected opinions, it has measured consistent
constructs that have behaved like reliable quantitative variables.

Construct Descriptive Statistics

Table 3: Likert construct means and standard deviations by architecture exposure

Construct Cloud (n=79) Cloud On-Prem On-Prem Mean Difference
Mean SD (n=73) Mean SD (Cloud-On-Prem)
System Quality (SQ) 412 0.61 3.58 0.74 0.54
Information Quality 4.05 0.63 3.67 0.69 0.38
(IQ)
Service Quality 3.98 0.66 3.54 0.71 0.44
(ServQ)
User Satisfaction (US) 4.08 0.62 3.51 0.76 0.57
Analytics 414 0.60 3.49 0.73 0.65

Effectiveness (AE)

Table 3 has provided the first direct perception-based evidence that has supported Objectives 1 and 5
and has aligned with the study’s hypotheses regarding architecture effects and effectiveness outcomes.
The descriptive results have shown that the cloud group has rated every construct higher than the on-
prem group, and the size of the differences has suggested that architecture conditions have been
reflected not only in objective metrics but also in the user experience of analytics service delivery.
System Quality has shown the largest and most foundational shift (mean difference = 0.54), which has
indicated that respondents have experienced cloud analytics as more reliable and responsive in the
study context. This pattern has mattered because the study has treated System Quality as a pathway
variable that has been expected to correlate strongly with satisfaction and effectiveness; the descriptive
advantage for cloud has therefore created a coherent basis for testing H3 (performance-related quality
has been associated with effectiveness). Information Quality has also been higher in the cloud group
(difference = 0.38), suggesting that respondents have perceived analytics outputs as more timely and
consistent; this has supported the study’s benchmarking logic because performance improvements
have been expected to coincide with improved refresh regularity and reduced reporting inconsistency.
Service Quality has shown a meaningful difference (0.44), which has suggested that the support model
and incident handling experience have been rated more favorably in the cloud condition; this has been
relevant to cost-performance interpretation because service quality issues have often translated into
hidden labor costs and downtime costs that have affected total ownership. User Satisfaction has
exhibited a difference of 0.57, and Analytics Effectiveness has shown the largest practical difference
(0.65), indicating that cloud analytics has been perceived as enabling faster decisions, higher reporting
usefulness, and stronger confidence in outputs. These descriptive patterns have supported the
objectives of quantifying effectiveness (Objective 5) and setting up the inferential tests (Objectives 6-7).
Importantly, the dispersion values (SDs) have remained moderate in both groups, indicating that
ratings have not been excessively polarized and have supported stable mean comparisons. Because the
study has been structured as hypothesis-driven benchmarking, Table 3 has served as early evidence
consistent with H2 (architecture effects on performance proxies) and H5 (architecture type has
predicted effectiveness), while also motivating the need for the objective benchmarking comparisons
in Sections 4.4-4.5 that have validated whether perceptions have aligned with measured cost and
performance.
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Raw Cloud vs On-Prem Cost and Performance Comparison

Table 4: Raw monthly cost and performance metrics

Metric category Metric (raw) Cloud On-Prem
Cost Total analytics-related cost (USD/month) 48,200 61,750
Cost Cost per active user (USD/user/month) 214 289

Performance Median dashboard/query latency (seconds) 2.3 3.7
Performance 95th percentile latency (seconds) 6.9 10.8
Performance Throughput @ 50 concurrent users (queries/hour) 1,420 1,050
Reliability Availability (% uptime/month) 99.91% 99.62%
Reliability Incident frequency (incidents/month) 3 6
Reliability Mean Time to Recovery (minutes) 38 64
Data pipeline Refresh cycle duration (minutes/run) 41 58
Data pipeline Refresh frequency (runs/day) 6 4

Table 4 has addressed Objective 1 and Objective 2 by presenting the raw, source-extracted cost and
performance evidence that has underpinned the architecture comparison prior to normalization. The
cost results have indicated that the cloud analytics architecture has carried a lower total monthly
burden ($48,200) than the on-prem analytics architecture ($61,750) during the same observation
window. When the study has expressed cost on a per-user basis to improve comparability, cloud has
remained less costly ($214 vs $289 per user per month), and this pattern has served as direct evidence
for H1, which has posited that architecture type has significantly affected cost efficiency. The
performance results have shown consistent cloud advantages across both central tendency and tail
behavior. Median query latency has been lower in cloud (2.3 seconds) than on-prem (3.7 seconds), while
the 95th percentile latency has been substantially lower in cloud (6.9 seconds) than on-prem (10.8
seconds). This distributional difference has mattered because ERP analytics success has often depended
on peak-time responsiveness, not only on average performance. Throughput under concurrency has
also been higher in cloud (1,420 queries/hour) than on-prem (1,050 queries/hour), indicating that cloud
has handled multi-user reporting demand more efficiently in the measured environment. Reliability
indicators have provided additional evidence aligned with H2, since uptime has been higher in cloud
(99.91%) than on-prem (99.62%), incident frequency has been lower (3 vs 6 incidents/month), and
recovery has been faster (38 vs 64 minutes). The data pipeline results have reinforced the performance
picture because refresh cycle duration has been shorter in cloud (41 minutes) than on-prem (58
minutes), and refresh frequency has been higher in cloud (6 vs 4 runs/day). This combination has
suggested that cloud has delivered fresher data visibility, which has supported the perceived
Information Quality difference shown earlier in Table 3. Because the study has been objective-driven,
Table 4 has served as the raw benchmark baseline that has justified the fairness layer introduced in the
next section. It has also created a coherent narrative alignment: the objective metrics have matched the
higher perceived effectiveness and satisfaction ratings recorded for cloud. As a result, this section has
provided measurable support for the cost-performance portion of the study’s objectives and has set up
the rationale for workload normalization to ensure that results have remained defensible even if
workload intensity has differed across the two environments.
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Workload-Normalized Benchmark Results

Table 5: Normalized cost, normalized performance, and Cost-Performance Index (CPI)

Normalized indicator Definition (reported unit) Cloud On-Prem
Normalized Cost (NC) USD per workload unit 0.19 0.27
Normalized Performance (NP) Performance units per workload unit 1.12 0.93
Cost-Performance Index (CPI) CPI=NP / NC 5.89 3.44
Normalized latency Seconds per standardized query class 0.78 1.00
Normalized throughput Queries per workload unit 1.18 0.89

Table 5 has operationalized the study’s key credibility mechanism by converting raw metrics into a fair,
workload-adjusted comparison, thereby directly addressing Objective 4 and strengthening the
trustworthiness of the architecture conclusions. The study has treated workload normalization as
essential because ERP analytics performance and cost have been highly sensitive to demand intensity,
concurrency, and refresh requirements. By defining a workload unit index that has combined query
volume, concurrent usage, refresh frequency, and dataset size, the study has ensured that the cloud
and on-prem results have been interpreted relative to comparable demand conditions rather than as
isolated monthly snapshots. Normalized Cost (NC) has shown that cloud has required $0.19 per
workload unit, while on-prem has required $0.27 per workload unit. This has indicated that even after
demand differences have been accounted for, cloud has remained more cost efficient, which has
reinforced H1 using a fairness-adjusted lens. Normalized Performance (NP) has shown that cloud has
delivered 1.12 performance units per workload unit compared with 0.93 for on-prem, indicating that
cloud has produced higher performance output relative to the same workload denominator. When the
study has combined these measures into the Cost-Performance Index using CPI = NP/NC, cloud has
achieved CPI = 5.89 while on-prem has achieved CPI = 3.44. This index has served as the study’s
benchmarking summary variable and has functioned as a quantitative proxy for cost-performance net
benefits, directly supporting Objective 1 and Objective 3 by providing a unified metric that has
integrated both cost and performance. Supporting normalized sub-indicators have also shown that
cloud has achieved better latency efficiency (0.78 vs 1.00 standardized seconds per query class) and
better throughput efficiency (1.18 vs 0.89 queries per workload unit). These results have strengthened
the argument that the observed advantage has not been driven by an easier workload, because the
normalization has explicitly reduced workload bias. In terms of hypothesis logic, Table 5 has provided
a bridge between objective benchmarking and survey outcomes, because higher normalized
performance and lower normalized cost have aligned with higher perceived effectiveness and
satisfaction in Table 3. This alignment has supported the later correlation and regression results by
making it plausible that cost and performance differences have explained variance in perceived
effectiveness. Overall, Table 5 has not only presented results; it has demonstrated methodological rigor
by showing that the study has controlled for workload comparability, thereby making the cloud versus
on-prem benchmarking conclusions more defensible and less vulnerable to alternative explanations.
Correlation Matrix

Table 6 has addressed Objective 6 by presenting the correlation structure that has linked the study’s
Likert-based outcomes to objective benchmarking drivers, and it has provided direct statistical support
for the hypotheses connecting quality, cost, and performance to analytics effectiveness. The matrix has
shown that Analytics Effectiveness (AE) has correlated strongly with User Satisfaction (US) (r = 0.71),
which has indicated that respondents who have experienced higher satisfaction with the ERP analytics
service have also reported stronger decision speed, reporting usefulness, and confidence in outputs.
AE has also correlated strongly with System Quality (SQ) (r = 0.62) and Information Quality (IQ) (r =
0.58), confirming that perceived responsiveness, reliability, and data quality have been tightly
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associated with effectiveness outcomes.

Table 6: Pearson correlations among benchmark drivers and Likert constructs (n = 152)

Variable SQ I1Q ServQ US AE Perf Cost

Index Efficiency
System Quality (SQ) 1.00 0.57 052 068  0.62 0.59 0.28
Information Quality (IQ) 0.57 1.00 049 063 058 0.46 0.24
Service Quality (ServQ) 0.52 0.49 1.00 0.60 049 0.41 0.21
User Satisfaction (US) 0.68 0.63 0.60 1.00 0.71 0.52 0.30
Analytics Effectiveness (AE) 0.62 0.58 0.49 0.71 1.00 0.55 0.36
Performance Index (objective) 0.59 0.46 0.41 052 055 1.00 0.33
Cost Efficiency (inverse NC) 0.28 0.24 0.21 030 036 0.33 1.00

All correlations 2 0.21 have been statistically significant at p < .01 in the study’s output.

This pattern has supported H3 by demonstrating that performance-related experience measures have
been positively related to effectiveness. Service Quality (ServQ) has shown a moderate relationship
with AE (r = 0.49), indicating that incident resolution and support responsiveness have been
meaningful contributors to effectiveness even if they have not dominated the relationship as strongly
as system and information quality. Importantly for the benchmarking objective, the objective
Performance Index has shown a strong positive relationship with AE (r = 0.55), which has established
that measurable technical performance has aligned with user-perceived effectiveness and has not been
decoupled from experience. Cost Efficiency has also correlated positively with AE (r = 0.36), providing
supportive evidence for H4 by showing that more efficient cost conditions (lower normalized cost per
workload unit) have been associated with better perceived outcomes. While the cost-efficiency
relationship has been smaller than the quality relationships, it has remained practically meaningful
because cost has been expected to influence governance decisions, scaling capacity, refresh scheduling,
and support resourcing that have shaped the analytics experience. The matrix has also shown coherent
inter-relationships among predictors: SQ has correlated strongly with US (r = 0.68), and IQ has
correlated strongly with US (r = 0.63), indicating that satisfaction has been a plausible pathway variable
that has transmitted quality effects into effectiveness outcomes. Objective Performance Index has
correlated with SQ (r = 0.59), indicating that the system-quality perception scale has reflected
measurable performance differences and has not functioned as purely subjective preference. Overall,
Table 6 has strengthened the study’s narrative consistency by showing that the benchmark variables
have behaved as expected within the hypothesized model: better performance and better cost efficiency
have co-occurred with stronger satisfaction and effectiveness outcomes, thereby supporting the study’s
objectives of linking architecture benchmarking evidence with decision-relevant analytics effectiveness
measures.

Regression Results

Table 7: Multiple regression predicting Analytics Effectiveness (AE) (n = 152)

Predictor Unstandardized Std. Error Standardized t P
B B

(Constant) 0.88 0.29 — 3.03 .003
Architecture Type (Cloud=1) 0.24 0.08 0.21 3.12 .002
Performance Index (objective) 0.31 0.07 0.34 443 <.001
Cost Efficiency (inverse NC) 0.15 0.06 0.17 2.65 .009
Usage Frequency (days/week) 0.07 0.03 0.11 2.06 .041
Experience (years) 0.02 0.02 0.05 1.06 292
Role (Manager/Decision=1) 0.06 0.05 0.06 1.21 228

Model fit: F(6,145) = 24.8, p < .001; Adjusted R? = 0.49
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Table 7 has addressed Objective 7 by quantifying predictive relationships and has provided hypothesis-
level evidence that has gone beyond associations to explain how architecture and benchmark drivers
have predicted analytics effectiveness. The model has been statistically significant and has achieved an
Adjusted R? of 0.49, indicating that nearly half of the variation in Analytics Effectiveness has been
explained by the included predictors. Architecture Type (cloud = 1) has remained significant ( = 0.21,
p = .002), demonstrating that cloud exposure has predicted higher effectiveness even after the model
has controlled for objective performance, cost efficiency, and respondent characteristics. This result has
supported H5 and has strengthened the study’s architecture comparison claim because it has shown
that the architecture effect has not disappeared when benchmark metrics have been included. The
objective Performance Index has been the strongest predictor ( = 0.34, p <.001), indicating that higher
measured performance has translated into higher effectiveness outcomes. This coefficient has aligned
with the study’s objective benchmarking logic because it has supported the claim that measurable
latency/throughput/availability improvements have mattered for decision speed and reporting
usefulness as experienced by users. Cost Efficiency has remained significant (3 = 0.17, p = .009),
confirming that cost conditions have had a meaningful influence on effectiveness after other variables
have been accounted for; this has supported H4 and has suggested that cost efficiency has likely
operated through mechanisms such as improved capacity provisioning, improved refresh scheduling,
or improved support resourcing that have enhanced the overall analytics service. Usage Frequency has
shown a smaller but significant effect (3 = 0.11, p = .041), indicating that respondents who have used
analytics more frequently have reported higher effectiveness, consistent with a familiarity and task-fit
interpretation. Experience and Role controls have not remained significant in this model, and this
pattern has indicated that the architecture, performance, and cost factors have explained effectiveness
more strongly than general tenure or role category within the case environment. Importantly, the
regression evidence has been consistent with the descriptive and correlation results presented earlier,
and the model has functioned as the study’s primary hypothesis-testing mechanism linking
architecture type and benchmark drivers to effectiveness outcomes. Because the study has emphasized
cost-performance benchmarking, Table 7 has represented the analytical bridge that has confirmed the
benchmarking outcomes have not only differed across architectures but have also predicted the
effectiveness outcomes that have served as the study’s dependent variable.

Cost-Performance Trade-off Map

Table 8: Trade-off positioning and quadrant classification

Architecture =~ Normalized Normalized CPI Quadrant Interpretation
Cost (NC) Performance (NP) (NP/NC) classification label
Cloud 0.19 1.12 5.89 High performance / Best value
Low cost
On-Prem 0.27 0.93 3.44 Moderate Cost-heavy
performance /
Higher cost

Table 8 has operationalized Objective 8's decision-support requirement by converting the
benchmarking results into a trade-off structure that has been easy to interpret and has been defensible
for managerial audiences. Instead of presenting cost and performance as separate lists, the study has
positioned each architecture as a point in a cost-performance space using the workload-normalized
values reported earlier. This has allowed the study to interpret cloud and on-prem not only by “which
is faster” or “which is cheaper” but by whether an architecture has delivered performance output
efficiently relative to cost under comparable workload conditions. Cloud has shown a lower
normalized cost (0.19) and a higher normalized performance (1.12), which has placed it in the high
performance / low cost quadrant and has justified the “best value” label. On-prem has shown a higher
normalized cost (0.27) and a lower normalized performance (0.93), which has placed it in a less efficient
quadrant characterized by cost heaviness. This map-based framing has strengthened trustworthiness
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because it has reduced the risk of selective interpretation: the results have not been presented as isolated
advantages that could be countered by alternative metrics; they have been expressed as a coherent
multi-criteria outcome. The CPI values have reinforced the trade-off interpretation by summarizing the
efficiency ratio; cloud has achieved CPI = 5.89 compared to 3.44 for on-prem, which has meant that
cloud has delivered substantially more normalized performance per unit normalized cost. This trade-
off representation has supported the study’s central objective of benchmarking and has aligned with
the hypothesis narrative: H1 has been supported because cost efficiency has favored cloud, and H2 has
been supported because performance capability has favored cloud, while H5 has later been supported
because architecture type has predicted effectiveness outcomes. The map has also complemented the
Likert results by providing a quantitative explanation for why respondents have rated cloud higher on
system quality, satisfaction, and effectiveness; the architecture that has delivered better value on the
trade-off surface has also been the architecture that has produced stronger user-reported outcomes. By
presenting the results in this quadrant format, the study has ensured that the benchmarking has
remained decision-relevant, replicable, and transparent to scrutiny.

Benchmark Robustness Checks

Table 9: Robustness checks: CPI stability under alternative weightings

Robustness test Cloud On-Prem Result stability
CPI CPI
Cost-heavy weighting (60% cost, 40% performance) 512 3.27 Stable (Cloud higher)
Balanced weighting (50% cost, 50% performance) 5.89 3.44 Stable (Cloud higher)
Performance-heavy weighting (40% cost, 60% 6.41 3.62 Stable (Cloud higher)
performance)
Median-based CPI (outlier resistant) 5.73 3.39 Stable (Cloud higher)

Table 9 has strengthened the credibility of the benchmarking conclusions by demonstrating that the
primary comparative outcome has remained stable under reasonable alternative assumptions. Because
composite indices can be sensitive to weighting choices, the study has tested whether cloud’s advantage
has depended on a single scoring approach. Under cost-heavy weighting (60% cost, 40% performance),
cloud has achieved CPI = 5.12 compared with 3.27 for on-prem, indicating that cloud has remained
superior even when the scoring logic has emphasized economic efficiency more strongly than
performance. Under balanced weighting (50/50), cloud has achieved CPI = 5.89 compared with 3.44
for on-prem, which has matched the study’s main CPI presentation and has confirmed internal
consistency. Under performance-heavy weighting (40% cost, 60% performance), cloud has achieved
CPI = 6.41 compared with 3.62 for on-prem, indicating that cloud’s advantage has not been reduced
when performance has been emphasized; instead, the gap has remained substantial. These results have
been important for trustworthiness because decision-makers can prioritize cost and performance
differently depending on organizational strategy and constraints. By showing stability across these
priority scenarios, the study has demonstrated that its benchmarking conclusion has not been a product
of arbitrary weighting. The table has also included a median-based CPI comparison, which has served
as an outlier-resistant check. This has been relevant because performance metrics such as latency and
incident recovery can contain extreme values that distort mean-based indices. The median-based CPI
has remained higher for cloud (5.73) than on-prem (3.39), confirming that the architecture comparison
has not been driven by a small number of extreme observations. Collectively, these robustness checks
have strengthened Objective 8 by providing a “stress test” that has increased confidence in the validity
of the architecture ranking. They have also indirectly reinforced H1 and H2 because the stability has
indicated that both cost efficiency and performance capability advantages have persisted across
multiple scoring treatments. By including this evidence, the study has shown that it has treated
benchmarking as a scientific measurement task rather than a one-off calculation, and it has provided a
defensible basis for interpreting the trade-off map and regression outputs as reliable indicators of real
architecture differences in the case environment.
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Hypothesis Testing
Table 10: Objectives and hypotheses evidence summary
Hypothesis/Objectives Statement tested Primary Key numeric Decision
link evidence evidence
sections
H1/Obj.1-4 Architecture type has Tables 4-5 Cost/user: 214 vs 289;  Supported
affected cost NC: 0.19 vs 0.27
efficiency
H2/ Obj.1-4 Architecture type has Table 4-5 Median latency: 2.3 vs ~ Supported
affected performance 3.7; Availability:
outcomes 99.91% vs 99.62%; NP:
1.12 vs 0.93
H3/ Obj.5-7 Performance-related Tables 3, 6, 7 AE-SQ r=0.62; AE- Supported
quality has related Perf 1=0.55; Perf
positively to [3=0.34
effectiveness
H4 / Obj.5-7 Cost efficiency has Tables 6-7 AE-CostEff r=0.36; Supported
related positively to CostEff p=0.17
effectiveness
H5/ Obj.7-8 Architecture type has Table 7 Arch p=0.21, p=.002; Supported
predicted Adj R?>=0.49
effectiveness after
controls
Obj.8 Findings have Tables 8-9 CPI stable across Achieved
remained stable weightings and
under robustness median check
checks

Table 10 has consolidated the study’s evidence into a single audit-ready summary that has explicitly
connected objectives, hypotheses, and the numerical results that have supported each decision. This
structure has been essential for demonstrating that the study has not simply reported metrics, but has
systematically tested defined statements using aligned evidence streams. H1 has been supported by
both raw and normalized cost outputs: cost per user has favored cloud ($214 vs $289), and normalized
cost has remained lower for cloud (0.19 vs 0.27). This alignment has indicated that the cost advantage
has been robust across measurement formats and has directly satisfied the cost benchmarking portion
of Objectives 1-4. H2 has been supported by consistent performance advantages for cloud, including
better median latency, better 95th percentile responsiveness, higher throughput, and higher
availability, and the normalized performance index has also favored cloud (1.12 vs 0.93). These results
have shown that performance differences have not been isolated to one metric and have provided a
multi-indicator basis for concluding architecture effects on performance. H3 has been supported by
convergent evidence across descriptive, correlation, and regression outputs: perceived system quality
and measured performance have both correlated strongly with analytics effectiveness (r values above
0.55), and the objective performance index has remained the strongest predictor in regression (§ = 0.34).
This combination has strengthened the claim that performance has been practically meaningful for
decision effectiveness. H4 has been supported by a positive association between cost efficiency and
effectiveness and by a significant regression coefficient, confirming that cost conditions have not been
irrelevant to outcomes. H5 has been supported because architecture type has remained significant after
controls, meaning the architecture signal has persisted even when performance and cost efficiency have
been considered jointly. Finally, Objective 8 has been marked achieved because the trade-off mapping
and robustness tests have shown stability across weighting scenarios and outlier-resistant checks,
which has increased confidence that the ranking has not been sensitive to arbitrary assumptions. By
presenting this integrated summary, the study has demonstrated methodological coherence: objectives
have been satisfied through measurable outputs, and hypotheses have been supported through
consistent statistical evidence.
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DISCUSSION

The results have been interpreted as evidence that cloud-based ERP analytics architecture has delivered
a more favorable cost-performance profile than the on-premises architecture in the bounded case
context, and this pattern has aligned with the study’s IS-success and analytics-success logic (Petter et
al., 2008). The workload-normalized Cost-Performance Index (CPI) has indicated that the cloud
configuration has produced greater performance output per unit of normalized cost, while the
descriptive and inferential tests have shown that objective performance and cost efficiency have related
positively to perceived analytics effectiveness (Petter & McLean, 2009). This alignment has been
consistent with IS success research that has treated system quality, information quality, and service
quality as central antecedents to satisfaction and net benefits, because the cloud option has
simultaneously exhibited higher uptime and lower latency while also receiving higher Likert ratings
for system quality, satisfaction, and effectiveness (Shi & Wang, 2018). The direction of the relationships
has also been consistent with Bl success findings that have emphasized the enabling role of data quality,
user access, and integration capabilities in producing successful analytics outcomes across decision
environments (Urbach et al., 2010). In practical terms, the regression evidence has reinforced that
architecture type has retained a significant association with effectiveness even after objective cost and
performance drivers have been included, which has suggested that “architecture” has not been a mere
label in the case but a bundle of operational characteristics (governance, scaling behavior, support
model, and refresh discipline) that has influenced user-perceived decision value (Petter & McLean,
2009). This interpretation has been compatible with ERP post-implementation evidence showing that
success has depended on governance and operational conditions rather than installation alone, and that
value has emerged through sustained fit between system capabilities and organizational routines. In
this sense, the study’s key result has not been that cloud has been universally “better,” but that —under
the observed workload and governance conditions—cloud has simultaneously achieved (a) better
technical performance metrics, (b) lower normalized cost burden, and (c) stronger user-rated analytics
outcomes, thereby satisfying the benchmarking objective and coherently mapping to established
quality—satisfaction—benefit pathways in the IS literature (Wixom & Todd, 2005).

The cost findings have been interpreted as evidence that cloud delivery has shifted the cost structure
toward more efficient scaling and lower total monthly analytics burden in the evaluated setting, and
this has converged with prior cloud economic arguments while also highlighting where ERP-specific
cost drivers have mattered (Li et al., 2010). Cloud computing has been widely framed as a utility-like
provisioning model that has reduced the need for large upfront capital expenditure while enabling pay-
for-use elasticity, which has implied potential economic advantages for variable analytics workloads
(Petter & McLean, 2009). In the present study’s benchmark, the lower cost per active user and the lower
normalized cost per workload unit have resembled the direction predicted by this literature,
particularly when workloads have fluctuated across reporting cycles and peak periods. At the same
time, ERP cost evaluation research has shown that implementation and ownership costs have been
driven by consulting intensity, customization, training, and organizational learning, which has meant
that the architecture’s cost outcome has depended on governance and capability maturity as much as
on pricing format. The observed cost advantage for cloud has therefore been interpreted as a combined
effect of pricing mechanics and operational load handling, rather than as a simple “subscription
cheaper than servers” narrative (Subashini & Kavitha, 2011). This interpretation has also been
consistent with cloud TCO modeling work that has argued for systematic inclusion of migration,
management overhead, and hidden operational costs in cloud evaluations, because the benchmark has
explicitly decomposed costs and normalized them to workload units (Urbach et al., 2010). The results
have also been framed against decision-support perspectives on cloud feasibility that have emphasized
managerial concerns and evaluation toolkits, because the cost advantage has remained meaningful only
insofar as service performance and governance constraints have been met. In other words, the results
have supported prior work suggesting that cloud economics have been most convincing when
measurement has been lifecycle-aware and workload-aware, and the study’s normalized CPI has
operationalized that principle by placing cost in a comparable denominator with performance. Overall,
the cost results have not contradicted earlier evidence; they have extended it by demonstrating a
measurable, workload-adjusted cost advantage in an ERP analytics case, while retaining visibility into
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the implementation and operational cost drivers that ERP research has treated as decisive in practice
(Mudzana & Maharaj, 2015).

Figure 10: Future for Cloud Vs On-Premises ERP Analytics
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The performance findings have been interpreted as evidence that the cloud architecture has provided
more stable responsiveness and higher throughput under concurrent load, and that these
improvements have been materially relevant to analytics effectiveness. This interpretation has aligned
with cloud benchmarking and systems literature that has treated performance evaluation as workload-
dependent and has cautioned against single-metric comparisons (Pavlo et al., 2009). Cloud performance
research has emphasized that variability and configuration choices can significantly shape measured
results, which has justified the study’s design choice to report median and tail latencies and to
normalize by workload rather than relying on a single average response time (Chand et al., 2005). The
observed improvement in 95th-percentile latency has been interpreted as especially important for ERP
analytics because period-close reporting, audit drill-downs, and high-concurrency dashboard usage
have often been constrained by tail performance rather than by mean performance; this reading has
been consistent with benchmarking roadmaps that have treated distributional performance, price-
performance, and repeatability as core features of trustworthy benchmarks (Abd Elmonem et al., 2017).
The study’s throughput advantage for cloud under controlled concurrency has also been interpreted
through the lens of elasticity and managed service design, where resource pooling and rapid
provisioning can reduce saturation effects during demand bursts (Awa et al., 2016). At the same time,
the results have been framed cautiously against systems evidence that different analytics execution
models (e.g., parallel DBMS vs distributed batch paradigms) can dominate performance depending on
query structure, indexing, and workload composition, which has reinforced the importance of defining
representative query suites and reporting by query class. In the ERP analytics context, this has meant
that performance has not been interpreted as “cloud faster” in the abstract, but as “cloud faster on the
measured ERP analytics task mix,” including dashboard queries, report rendering, and refresh
operations. The alignment between objective performance metrics and Likert-rated system quality has
strengthened the inference that users have perceived real performance differences rather than merely
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preferring a platform conceptually (Duan, 2017). This convergence has supported the study’s causal
logic that architecture influences system quality via measurable responsiveness and availability, which
then has influenced satisfaction and effectiveness, consistent with the measurement pathways used in
IS success and BI success research. Thus, the performance results have extended prior benchmarking
principles into an ERP analytics comparison by showing stable improvements across latency,
throughput, availability, and refresh behavior in one auditable case (Misra & Mondal, 2011).

The perceived-quality and effectiveness findings have been interpreted as reinforcing evidence that
objective benchmark gains have translated into user-relevant outcomes, and the pattern has matched
key theoretical expectations in IS success and BI success research. The strongest statistical relationships
have linked analytics effectiveness to user satisfaction and to system and information quality
constructs, which has been consistent with IS success synthesis work that has documented robust
relationships among quality dimensions, satisfaction, and net benefits (Low et al., 2011). The finding
that system quality has strongly associated with satisfaction and effectiveness has also paralleled BI
measurement work that has integrated user satisfaction and technology acceptance elements, where
perceived usefulness and satisfaction have helped explain the realized value of analytical systems.
Importantly, the study’s evidence has also been aligned with research emphasizing that BI/analytics
success depends on capabilities such as integration and data quality across decision environments,
suggesting that the observed effectiveness advantage for the cloud setting has plausibly reflected
stronger refresh discipline, improved accessibility, and more stable performance under load. The
presence of meaningful associations between objective performance indices and perceived system
quality has added interpretive weight, because it has reduced the likelihood that the effectiveness
differences have been purely perceptual (Purnama & Subriadi, 2019). At the same time, the study’s
results have been interpreted as consistent with ERP post-implementation evidence emphasizing that
governance, training, and external expertise shape how ERP capabilities become usable benefits;
cloud’s higher service quality and satisfaction ratings have plausibly reflected support and operational
practices that have been more effective within the case setting. The maturity-and-culture perspective
from BI success research has also helped interpret why effectiveness has not been explained by
performance alone: the architecture coefficient has remained significant even after objective metrics
have been included, which has suggested that organizational practices and analytic culture have likely
contributed to how the platform has been used and valued (Misra & Mondal, 2011). This finding has
not been surprising in light of ERP benefit research that has treated benefits as multi-dimensional and
dependent on assimilation and ongoing management rather than on technology features alone.
Consequently, the study’s discussion has treated the survey outcomes as more than “opinions”; they
have been interpreted as operationally meaningful indicators that have behaved in theoretically
consistent ways and have converged with objective performance and cost benchmarking, thereby
strengthening the credibility of the architecture comparison (Malaurent & Avison, 2015).

From a practical standpoint, the findings have carried actionable guidance for security leaders (CISO)
and enterprise architects who have been responsible for balancing analytics performance, cost
efficiency, and risk posture in ERP environments (Rimal et al., 2011). The cloud architecture’s higher
availability and lower incident frequency in the benchmark has suggested that managed service
operations and standardized maintenance processes can improve continuity, yet cloud security
literature has emphasized that service delivery introduces distinct security and governance issues —
multi-tenancy concerns, shared-responsibility boundaries, identity integration challenges, and
compliance monitoring overhead —that must be explicitly engineered rather than assumed (Scheuner
et al., 2014). Therefore, the practical implication has not been that cloud has eliminated risk; it has been
that the cost-performance advantage has been most defensible when paired with robust governance
controls that preserve ERP data integrity and reporting trust. For CISOs, the evidence that information
quality and service quality have strongly related to effectiveness has implied that security controls must
be designed to protect data quality (e.g., master data governance, access control consistency, audit
logging integrity) without introducing excessive friction that reduces system quality and user
satisfaction (Shi & Wang, 2018). For architects, the workload-normalized CPI and the tail-latency
improvements have suggested that architecture selection should be evaluated with realistic reporting
workloads and percentile-based SLAs, rather than with average response-time targets that can mask
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peak-period pain (Tsai et al., 2012). The cloud adoption decision literature has recommended structured
feasibility assessment toolkits that map organizational concerns to evaluation techniques; the study’s
benchmarking structure has operationalized this recommendation by translating concerns into
measurable indicators and by stress-testing results under alternative weighting scenarios (Tavakol &
Dennick, 2011). In architectural planning, this has supported guidance to formalize (a) workload
profiles (query mix, concurrency, refresh schedules), (b) cost accounting boundaries (including labor
and downtime costs), and (c) resilience and incident-response expectations as part of a repeatable
selection protocol. The observed alignment between objective performance indices and perceived
outcomes has also implied that investments in monitoring, capacity management, and refresh
orchestration can produce measurable user effectiveness gains, reinforcing the need for joint CISO-
architect governance that treats ERP analytics as a critical business service rather than as a back-office
IT add-on. In short, the practical implication has been a measurement-driven governance approach:
benchmark what users actually do, normalize costs to workload, enforce security and quality controls
that preserve trust, and evaluate vendors and internal platforms against tail-performance and
availability objectives rather than against marketing claims (Nofal & Yusof, 2013).

Theoretical implications have emerged from how the study has operationalized “net benefits” in a cost-
performance benchmarking context and from how the evidence has supported refinement of an ERP
analytics pipeline perspective (Gaardboe et al., 2017). First, the study has extended IS success logic by
treating workload-normalized cost-performance (CPI) as a quantitative proxy for a portion of net
benefits, then demonstrating that CPI-aligned performance and cost drivers have related to perceived
analytics effectiveness in expected directions (Hsu et al., 2008). This has been theoretically meaningful
because IS success literature has often measured net benefits in broad organizational terms, whereas
the present study has offered an operational metric that has tied benefits to measurable service behavior
and economic burden (Ifinedo, 2011). Second, the findings have suggested a refinement to the
“pipeline” conceptualization of ERP analytics architecture: rather than conceptualizing architecture as
a static deployment choice, the evidence has implied that architecture has acted as a bundle of pipeline
execution characteristics —refresh discipline, concurrency handling, resilience processes, and support
model —that jointly shape system quality and, downstream, satisfaction and effectiveness. This view
has been compatible with BI capability research emphasizing integration and data quality capabilities
as critical regardless of decision environment; the study’s results have supported the interpretation that
these capabilities have manifested through the measured pipeline and service metrics (Ifinedo, 2008).
Third, the robustness checks and trade-off mapping have offered a theoretical contribution in
measurement practice: they have treated architecture evaluation as a multi-criteria dominance problem
rather than a single dependent-variable comparison. This approach has aligned with benchmarking
scholarship that has emphasized representativeness, repeatability, and price-performance
perspectives. In addition, the partial reduction in the architecture coefficient when performance has
been introduced in regression has been interpreted as consistent with a mediated pathway architecture
— performance — effectiveness, which has been conceptually coherent with IS success causal logic
(quality influencing downstream outcomes). The contribution has not been the claim of a universal
mediation mechanism, but the demonstration that mediation-like behavior has been plausible when
objective performance has been included as a modeled pathway variable. Taken together, these
theoretical implications have indicated that ERP analytics architecture benchmarking can be
strengthened by explicitly modeling pipeline layers and by linking them to established success
constructs, thereby improving explanatory precision and offering a replicable template for future ERP
analytics architecture comparisons (Mudzana & Maharaj, 2015).

The study has revisited limitations in a way that has clarified boundary conditions for interpreting the
findings and has motivated targeted future research directions (Subashini & Kavitha, 2011). The cross-
sectional design has limited causal inference, because architecture exposure, service conditions, and
user perceptions have been measured within a bounded time window; IS success research has
emphasized that success relationships can vary over time as systems mature, meaning that longitudinal
evidence would be needed to confirm stability of the observed coefficients and to distinguish early-
adoption effects from steady-state effects (Urbach et al.,, 2010). The single-case context has also
constrained generalizability, because ERP configuration, integration complexity, and organizational
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governance maturity can differ markedly across industries and enterprises; ERP benefit research has
shown that realized value can vary with assimilation conditions and management practices, implying
that the same architecture can yield different outcomes across contexts (Ehie & Madsen, 2005).
Measurement limitations have also been relevant: the CPI and workload unit index have required
design choices about which workload components to include and how to weight them; benchmarking
research has shown that benchmark conclusions can shift if workloads are not representative, which
has justified the study’s robustness checks but has not eliminated the need for replication with
alternative task suites (Armbrust et al., 2010). In addition, the survey results have reflected self-reported
perceptions that can be influenced by recent incidents or local change events; although reliability has
been high, future work could strengthen validity by pairing survey constructs with richer behavioral
measures (actual dashboard usage logs, time-to-decision proxies, or report rework frequency). Future
research has therefore been indicated in several directions that remain consistent with the current
findings without extending beyond the study’s evidence: (1) multi-case replication across industries
and ERP vendors to test whether CPI dominance patterns persist; (2) longitudinal benchmarking across
business cycles to capture seasonal workload effects and maturity evolution; (3) deeper decomposition
of cost drivers (e.g., governance labor, security/compliance overhead, integration maintenance) to
refine the normalized cost model in line with TCO literature; (4) experimental benchmarking with
controlled query suites and infrastructure-as-code automation to strengthen reproducibility across
environments; and (5) security-governance extensions that explicitly model the relationship between
security controls, information quality, and analytics effectiveness in cloud ERP settings, consistent with
cloud security concerns documented in prior work (Abd Elmonem et al., 2017; Akter et al., 2016; Benlian
etal., 2009). These directions have indicated how the present evidence can be tested and extended while
recognizing that architecture outcomes remain contingent on workload realism, governance maturity,
and measurement discipline.

CONCLUSION

This study has concluded that quantitative benchmarking has provided a defensible basis for
evaluating cloud versus on-premises ERP analytics architectures when cost and performance evidence
has been measured transparently, normalized to workload, and linked to user-rated analytics
effectiveness through reliable Likert-scale constructs. The evidence has shown that the cloud
architecture has achieved a lower total analytics-related cost burden and a lower per-user cost than the
on-premises architecture during the defined observation window, and these differences have remained
consistent after workload normalization has been applied, confirming that the cost advantage has not
been attributable to uneven demand conditions. In parallel, the benchmark has shown that the cloud
architecture has produced superior performance outcomes across multiple indicators, including lower
median and tail query latencies, higher throughput under standardized concurrent load, higher
uptime, fewer incidents, shorter recovery time, and faster refresh cycles, which together have
demonstrated a more stable analytics service profile suitable for high-frequency decision routines. The
derived cost-performance index has then summarized these findings into a comparable efficiency
measure and has placed cloud in a best-value position on the cost-performance trade-off surface, while
robustness checks have confirmed that this ranking has remained stable across alternative weighting
scenarios and outlier-resistant calculations. Survey findings have further shown that respondents have
rated cloud ERP analytics higher on system quality, information quality, service quality, user
satisfaction, and analytics effectiveness, indicating that objective benchmark improvements have
translated into user-relevant experiences such as faster decision-making, greater confidence in reports,
and more consistent analytics delivery. Correlation results have established that analytics effectiveness
has been strongly associated with user satisfaction and with system and information quality, while also
being positively related to objective performance and cost efficiency, confirming that both technical
responsiveness and economic efficiency have been meaningful contributors to the perceived value of
ERP analytics services. Regression modeling has strengthened inference by showing that architecture
type has remained a significant predictor of analytics effectiveness after controlling for objective
benchmark drivers and respondent characteristics, while the objective performance index has emerged
as the strongest predictor, indicating that measurable responsiveness, stability, and availability have
been central mechanisms through which architecture choices have influenced outcomes in the case
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context. Taken together, these results have satisfied the study objectives by producing an audit-ready
benchmark, establishing fair workload-adjusted comparisons, validating measurement reliability, and
testing hypotheses through descriptive statistics, correlation analysis, and regression modeling,
thereby demonstrating that ERP analytics architecture evaluation can be conducted as a measurable
cost-performance decision problem rather than as a preference-based IT debate.
RECOMMENDATIONS

This study has recommended that organizations selecting between cloud and on-premises ERP
analytics architectures have adopted a measurement-governed decision process that has treated
analytics as a business-critical service and has institutionalized cost-performance benchmarking as a
routine governance activity rather than a one-time procurement exercise. First, decision makers have
been advised to define a standardized benchmarking pack that has included a representative ERP
analytics workload profile (query classes, concurrency targets, refresh schedules, and dataset scale), a
clear cost boundary (subscription/licensing, infrastructure, integration middleware, monitoring
tooling, support labor, and downtime cost proxies), and a minimal performance SLA set reported in
distributional terms (median and 95th percentile latency, throughput under defined concurrent loads,
availability, incident rate, and recovery time), and this pack has been applied consistently across
architecture candidates so comparisons have remained fair and reproducible. Second, architects and
analytics leads have been encouraged to operationalize workload normalization (cost per active user,
cost per reporting cycle, and cost per workload unit) and to compute a cost-performance index that
has been stress-tested using alternative weighting scenarios, because the study has shown that
conclusions have become more trustworthy when index stability has been demonstrated across cost-
heavy and performance-heavy priorities. Third, organizations have been advised to pair technical
benchmarking with user-centered measurement by deploying a short, reliability-tested Likert survey
at regular intervals that has captured system quality, information quality, service quality, user
satisfaction, and analytics effectiveness, since the study has shown that effectiveness outcomes have
aligned with both objective performance and cost efficiency and therefore have served as a credible
validation layer for architecture decisions. Fourth, for cloud deployments specifically, governance
teams have been recommended to formalize security and compliance controls that have protected
information quality without degrading responsiveness, including standardized identity and access
management policies, role-based entitlements aligned to ERP duties, auditable logging, and master
data governance rules that have preserved KPI consistency across dashboards and reports, because
analytics value has depended on trust in the correctness and timeliness of outputs. Fifth, on-premises
environments that have remained necessary for regulatory, latency, or data residency reasons have
been recommended to invest in performance stabilization and cost transparency by implementing
rigorous capacity management, refresh scheduling discipline, proactive monitoring, and standardized
incident response playbooks, while also applying chargeback or showback accounting that has exposed
the true cost of analytics consumption per user and per workload unit. Sixth, organizations have been
advised to adopt an architecture review cadence (quarterly or semiannual) where benchmark evidence
has been reviewed jointly by IT, security, finance, and business leadership to ensure that scaling
decisions, optimization work, and vendor governance have been aligned to measurable outcomes
rather than to assumptions about deployment models. Finally, the study has recommended that any
organization planning a migration or modernization initiative has documented a baseline benchmark
for the current state, has executed a controlled pilot benchmark for the target state using the same
workload suite, and has required that the final architecture selection has been justified through a
transparent comparison of normalized cost, normalized performance, user-rated effectiveness, and
robustness checks, ensuring that the chosen ERP analytics architecture has been defensible, auditable,
and aligned with operational decision requirements.

LIMITATION

This study has acknowledged several limitations that have constrained the scope of inference and have
shaped how the benchmarking results have been interpreted within the boundaries of a quantitative,
cross-sectional, case-study-based design. First, the cross-sectional nature of the data collection has
limited the ability to establish time-dependent stability in cost and performance behavior, because ERP
analytics workloads have often varied across fiscal periods, audit cycles, seasonal demand spikes, and
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organizational change events; as a result, the benchmark window has represented a snapshot rather
than a full life-cycle portrait of architecture behavior under all operational conditions. Second, the case-
study setting has limited generalizability, because configuration choices, ERP module mix, integration
complexity, database tuning practices, network topology, and governance maturity have differed
substantially across organizations and industries, and these contextual differences have influenced
both objective performance outcomes and user perceptions; therefore, the comparative advantage
observed in the evaluated context has not automatically translated into a universal claim about cloud
or on-premises superiority. Third, although the study has combined objective metrics with survey
evidence, the survey component has remained subject to self-report bias, because respondents’ ratings
have reflected perceived experience that can have been influenced by recent incidents, departmental
expectations, training quality, or familiarity with a specific interface; even with high reliability scores,
the survey measures have not fully eliminated the possibility that response tendencies or short-term
service events have affected mean differences. Fourth, measurement construction has introduced
limitations through operational definitions, since the workload-normalization index and the cost-
performance index have required design decisions about which workload elements to include and how
to weight them, and alternative choices could have produced different CPI magnitudes even if the
directional comparison remained stable; similarly, cost decomposition has depended on the
completeness and traceability of financial records and labor allocation estimates, which can have varied
in accuracy across departments and have affected normalized cost calculations. Fifth, the objective
performance metrics have depended on the availability and quality of monitoring data, incident logs,
and refresh records, and these sources have not always been collected with consistent granularity
across cloud and on-prem environments; where measurement instrumentation has differed, the study
has relied on standardization and triangulation, but residual measurement asymmetry has remained
possible. Sixth, the study has not exhaustively modeled all potential confounding variables, such as
vendor-specific service tiers, network routing variability, concurrent non-analytics workloads, and
differences in data model complexity between environments; although controls and normalization
have reduced bias, unobserved operational factors could have contributed to some portion of the
measured differences. Finally, the study has focused on cost and performance as central benchmarking
criteria and has treated security and compliance costs through indirect governance and downtime
proxies rather than through a full risk-quantification model, which has meant that the architecture
evaluation has not captured every risk-adjusted financial dimension that some organizations may
require for high-stakes deployment decisions.
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