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Abstract 
This study addresses the problem that organizations choose between cloud and on-premises ERP analytics 
without workload-normalized evidence, materially increasing cost and performance risk. The purpose was to 
benchmark ERP analytics architectures and test how architecture type relates to analytics effectiveness. Using 
a quantitative, cross-sectional, case-based design, objective cost and performance indicators were extracted over 
a fixed four-week window and paired with a 5-point Likert survey from cloud and on-prem cases (n = 152 valid 
responses; cloud-exposed n = 79, on-prem-exposed n = 73). Key variables included architecture type (cloud = 
1), total monthly analytics-related cost and cost per active user, latency (median and 95th percentile), 
throughput under 50-user concurrency, availability, incident rate and recovery time, and perceptual constructs: 
System Quality (SQ), Information Quality (IQ), Service Quality (ServQ), User Satisfaction (US), and 
Analytics Effectiveness (AE). The analysis plan used descriptive statistics, reliability testing (Cronbach’s alpha: 
SQ = .89, IQ = .86, ServQ = .84, US = .88, AE = .90), Pearson correlations, and multiple regression with 
controls (usage frequency, experience, role). Results show that cloud delivered lower cost ($48,200 vs $61,750 
per month; $214 vs $289 per user) and stronger performance (median latency 2.3 s vs 3.7 s; 95th percentile 6.9 
s vs 10.8 s; throughput 1,420 vs 1,050 queries/hour; availability 99.91% vs 99.62%; incidents 3 vs 6 per month; 
mean time to recovery 38 vs 64 minutes). Perceptions aligned, with higher AE for cloud (M = 4.14, SD = 0.60) 
than on-prem (M = 3.49, SD = 0.73). AE correlated most strongly with US (r = .71) and measured performance 
(r = .55), and regression explained substantial variance (Adjusted R² = .49), with performance (β = .34, p < 
.001), architecture (β = .21, p = .002), and cost efficiency (β = .17, p = .009) as significant predictors. 
Implications are that ERP analytics selection should use repeatable workload definitions, percentile-based SLAs, 
and TCO accounting that includes support and downtime, because performance stability and cost efficiency 
jointly drive decision value. 
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INTRODUCTION 
Enterprise Resource Planning (ERP) systems are commonly defined as integrated, modular enterprise 
information systems that standardize and automate core organizational processes by using a shared 
database and coordinated workflows across functions such as finance, procurement, production, sales, 
and human resources. In contemporary organizations, ERP increasingly operates as an “analytics 
architecture,” meaning the structured stack of data capture, storage, modeling, querying, and 
visualization capabilities that converts operational transactions into decision-ready information 
products across managerial levels. Within this framing, “ERP analytics” refers to the systematic 
generation of descriptive, diagnostic, and inferential insights from ERP-originating data, using 
measurement models and statistical techniques that can be evaluated for reliability, validity, and 
decision utility(Amid et al., 2012). The term “architecture” in ERP analytics also implies definable 
layers—data sources, integration mechanisms, governance controls, computational resources, and 
user-facing services—that determine performance, scalability, and cost behaviors under real workloads 
(Buyya et al., 2009). 
 

Figure 1: Benchmarking Cloud vs. On-Premises ERP Analytics Architectures  
 

 
 
A key architectural distinction in practice is deployment model: on-premises ERP, where infrastructure 
and platforms are hosted and managed within an organization’s facilities or dedicated environments, 
versus cloud ERP, where compute, storage, and application services are provisioned through cloud 
delivery models and contractually governed service interfaces. Cloud computing literature 
characterizes this delivery shift as a utility-oriented model that pools resources and supports elastic 
provisioning while reframing cost structures toward operational expenditure and service metering 
(Benlian et al., 2011). In such environments, “benchmarking” becomes essential because analytics 
outcomes and user experience can vary sharply depending on workload intensity, concurrency, data 
volume, integration complexity, and governance constraints. Performance benchmarking in cloud 
contexts has therefore been treated as a measurable comparison of service behavior under controlled 
tasks, emphasizing repeatable metrics for latency, throughput, and variability. The international 
significance of benchmarking ERP analytics architectures follows from the global reliance on ERP for 
financial reporting, supply chain coordination, and public and private service delivery, where cross-
border operations and multi-site organizations require consistent analytics quality while operating 
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under heterogeneous cost and regulatory environments (Benlian et al., 2009). 
A research focus on cost–performance metrics for ERP analytics architectures depends on treating ERP 
not only as an application suite but also as a data-intensive decision system whose value emerges 
through information quality, system responsiveness, and organizational net benefits. Business 
intelligence and analytics scholarship formalizes this value pathway by emphasizing that analytic 
advantage stems from how data is curated, modeled, and delivered into managerial routines, not 
merely from data availability itself (Prybutok et al., 2008). Because ERP is often the dominant producer 
of structured enterprise data, ERP analytics architectures can be evaluated using constructs such as 
information quality, service quality, and system quality that link technical design to user outcomes and 
organizational benefits (Prybutok, 2012). In cross-functional environments, ERP analytics quality is 
shaped by master data alignment, transactional integrity, and the degree to which operational process 
standardization produces comparable data across sites. Empirical ERP research has therefore treated 
post-implementation conditions—training, governance, external expertise, and process stabilization—
as determinants of whether ERP produces reliable and timely information for managerial use (Petter & 
McLean, 2009). Studies that examine ERP-enabled performance often highlight that operational 
improvements and informational consistency depend on both the system’s technical fit and 
organizational assimilation, making analytics outputs inseparable from the implemented configuration 
and usage patterns (Li et al., 2010). Conceptually, cloud versus on-premises deployment changes where 
analytics computation occurs, how integration is orchestrated, and how performance bottlenecks 
manifest (Chen et al., 2012). These differences can influence query response times, refresh frequency, 
concurrency handling, and the cost profile of scaling analytics workloads. In turn, the credibility of 
cost–performance comparisons depends on ensuring that compared environments handle equivalent 
workloads and comparable data governance requirements, because analytics performance in ERP 
settings is often sensitive to schema design, indexing strategies, batch windows, and integration load. 
This is why ERP analytics benchmarking benefits from workload normalization and measurement 
transparency, allowing observed performance differences to be interpreted as architecture effects rather 
than artifacts of uneven task demands (Ram et al., 2013). 
This study is designed to achieve a set of clearly defined objectives that translate the broad challenge 
of choosing between cloud and on-premises ERP analytics architectures into measurable, testable, and 
comparable outcomes within a quantitative, cross-sectional, case-study setting. The first objective is to 
establish a structured benchmarking foundation by defining a consistent set of cost and performance 
indicators that can be computed for both architectures using the same unit standards and time window, 
ensuring that reported results represent like-for-like comparisons rather than context-driven variations. 
The second objective is to quantify and compare the baseline cost components associated with each 
architecture by separating direct system expenditures from indirect operational costs, capturing 
licensing or subscription fees, infrastructure or hosting expenses, support and administration effort, 
and the economic impact of service interruptions, and then expressing these costs in standardized 
forms such as cost per active user, cost per reporting cycle, or cost per analytics workload unit. The 
third objective is to quantify and compare baseline performance behaviors by measuring indicators 
such as query response time, report rendering time, refresh frequency, uptime, incident frequency, and 
recovery time, and then summarizing these measures using descriptive statistics that highlight central 
tendencies and variability. The fourth objective is to implement a workload-normalization procedure 
that adjusts cost and performance figures to a common workload basis so that efficiency and 
responsiveness can be evaluated under comparable demand conditions, strengthening the credibility 
of the cloud versus on-premises comparison. The fifth objective is to evaluate ERP analytics 
effectiveness through a structured survey instrument using a five-point Likert scale, capturing user 
assessments of analytics quality, reliability, accessibility, timeliness, and overall satisfaction with the 
analytics service experience. The sixth objective is to examine statistical relationships among 
architecture type, cost efficiency, performance indicators, and perceived analytics effectiveness by 
applying correlation analysis, thereby identifying patterns of association that may signal which 
technical and financial factors align most closely with user-valued outcomes. The seventh objective is 
to test predictive relationships by developing regression models that estimate the degree to which cost-
performance metrics explain variation in analytics effectiveness while accounting for relevant 
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respondent and workload characteristics, enabling hypothesis testing with interpretable coefficients 
and model fit statistics. The eighth objective is to strengthen the trustworthiness of the benchmarking 
results through additional validation layers, including trade-off mapping that visually positions 
architectures across cost and performance dimensions and robustness checks that confirm whether key 
comparisons remain stable under alternative scoring assumptions. Together, these objectives create an 
evidence-based structure for comparing cloud and on-premises ERP analytics architectures using 
transparent measurement, rigorous statistical testing, and decision-relevant outputs. 
LITERATURE REVIEW 
The literature on ERP analytics architectures provides the foundation for evaluating cloud versus on-
premises deployment using measurable cost–performance indicators and statistically testable 
effectiveness outcomes. ERP systems are widely examined as enterprise-wide integration platforms 
that standardize process execution and generate high-quality transactional data, while ERP analytics 
extends this role by transforming operational records into managerial insights through reporting, 
dashboards, and decision-support routines. Within this body of work, “architecture” is treated as the 
layered configuration of data sources, integration mechanisms, governance controls, computational 
infrastructure, and user-facing services that collectively shape how analytics is produced and 
consumed across the organization. A central theme in prior studies is that the value of ERP and 
analytics is realized through a socio-technical pathway where system quality, information quality, and 
service support influence usage patterns, user satisfaction, and organizational benefits, suggesting that 
architecture evaluation must link technical measurements to stakeholder outcomes rather than relying 
on isolated performance statistics. Cloud computing scholarship adds a complementary perspective by 
conceptualizing cloud delivery as an on-demand, service-oriented provisioning model that changes 
ownership, scalability, risk allocation, and operational responsibilities compared with traditional on-
premises environments. Research on SaaS and cloud adoption further emphasizes that deployment 
decisions are driven by perceived relative advantage, compatibility, organizational readiness, 
governance requirements, and service reliability, indicating that the cloud versus on-prem distinction 
affects both direct cost structures and the management processes required to sustain performance and 
trust. Benchmarking research strengthens this discussion by proposing repeatable measurement 
practices for cost and performance, including the use of standardized workload profiles, comparable 
task suites, and normalization approaches that control for differences in demand and usage intensity. 
In parallel, business intelligence and analytics studies highlight that performance and cost must be 
evaluated alongside analytics outcomes such as timeliness, accuracy, usability, and decision-making 
impact, because these outcome variables represent the practical success criteria for ERP analytics users. 
Taken together, the literature positions cloud versus on-premises ERP analytics as a multi-dimensional 
evaluation problem where architecture influences observable cost and performance behavior and also 
shapes perceived effectiveness through quality and service characteristics. This review therefore 
synthesizes prior research to identify the most defensible metrics, constructs, and explanatory 
relationships for a quantitative, cross-sectional, case-study-based benchmarking approach that 
combines objective cost–performance measures with survey-based effectiveness indicators and 
supports hypothesis testing through descriptive statistics, correlation analysis, and regression 
modeling. 
ERP Analytics Architectures and Deployment Models 
ERP analytics architectures describe the technical and organizational design through which enterprise 
transactions are transformed into analytical information products for reporting, monitoring, and 
decision routines. In this view, an ERP platform is not only a set of functional modules; it is also a 
layered analytics stack that determines how data are captured, validated, integrated, stored, modeled, 
and delivered to users. A common architecture starts with transactional sources in finance, 
procurement, inventory, and HR, followed by extraction and integration services that reconcile master 
data, keys, and process events into a consistent analytical dataset. Many organizations implement a 
staging layer to isolate operational processing from heavy queries, then load curated data into an 
analytical repository such as a data warehouse or columnar database, and finally expose metrics 
through semantic models, OLAP cubes, or governed data marts to dashboards and self-service tools. 
When ERP analytics is treated as a first-class architectural concern, design choices such as batch versus 
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near-real-time integration, centralized versus federated marts, and the governance of metric definitions 
become measurable determinants of cost and performance outcomes. Work that examines ERP–BI 
integration frames these design choices as an integration problem, where data consistency, metadata 
alignment, and process synchronization connect operational ERP records to analytical consumption 
and reduce reporting fragmentation (Nofal & Yusof, 2013). More recent architecture discussions extend 
this layered view by arguing that ERP analytics increasingly spans both structured ERP transactions 
and external, high-velocity streams, so architectures must accommodate heterogeneous storage engines 
and multiple integration patterns while keeping analytics services aligned with enterprise strategy (Shi 
& Wang, 2018). For benchmarking studies, these architectural layers provide locations for collecting 
metrics: ETL runtimes and refresh windows at the integration layer, query latency and throughput at 
the analytical store, availability and incident frequency at the service layer, and labor effort attached to 
layer administration.  
 

Figure 2: ERP Analytics Architectures And Deployment Models 
 

 
 
A second stream of architecture research focuses on the quality and suitability of ERP data as it moves 
through analytics pipelines, emphasizing that architectural performance is inseparable from the 
semantic correctness of the data delivered to decision makers. ERP analytics architectures rely on 
master data consistency, process-event completeness, and well-governed transformation rules; when 
these conditions are weak, organizations may observe fast query times while still producing misleading 
indicators. From this perspective, architectural decisions about where validation occurs, how 
exceptions are handled, and how business rules are encoded in transformations are core determinants 
of analytics trust. Glowalla and Sunyaev operationalize this logic by examining ERP system fit through 
a task–technology lens and linking the perceived fit of ERP outputs to data quality management 
practices, highlighting how data analysis routines and quality controls become part of the ERP 
environment rather than an external add-on (Glowalla & Sunyaev, 2014). In ERP analytics, this fit 
problem extends beyond data accuracy to include whether analytical representations match managerial 
tasks, such as variance explanations, drill-down auditing, or cross-functional reconciliation. Studies 
that connect ERP use to user satisfaction further reinforce that architecture cannot be evaluated only as 
infrastructure; it must be evaluated as an information service that users experience through reliability, 
responsiveness, and the perceived usefulness of reports. In a large-scale survey of ERP users, 
determinants such as system quality, training, and organizational support were associated with 
adoption and satisfaction, implying that architectural choices that stabilize service performance and 
reduce user effort also influence whether analytics features are actually used (Costa et al., 2016). For 
benchmarking, this literature motivates pairing objective performance and cost indicators with survey 
constructs that capture information quality, service quality, and satisfaction, so architectural 
comparisons remain anchored in observed user outcomes rather than solely in system counters. This 
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alignment supports defensible cross-architecture inference.  
Deployment model is a third major dimension in ERP analytics architecture research because moving 
analytics workloads from on-premises infrastructure to cloud services changes how capacity is 
provisioned, how integration is managed, and how costs accumulate over time. On-premises ERP 
analytics commonly couples databases, ETL tools, and reporting servers to organization-owned 
hardware and internal networks. This model provides direct control over configuration, data locality, 
and upgrade timing, and it often enables tight integration with legacy systems through low-latency 
connections. Cloud deployment, by contrast, can be implemented as SaaS ERP with embedded 
analytics, as managed database and warehouse services supporting a lift-and-shift of analytics layers, 
or as hybrid patterns where sensitive data remain local while compute bursts to the cloud for heavy 
reporting. These options shift architectural responsibilities from internal administrators to vendors and 
reshape cost from capital investment to subscription and consumption charges, while also introducing 
platform constraints that affect customization, identity management, and data movement. The 
literature that examines cloud ERP in case settings emphasizes feasibility and fit conditions, illustrating 
how organizations evaluate cloud ERP as a service bundle that combines application functions, 
infrastructure, and support processes, and how implementation decisions are shaped by resource limits 
and the need for rapid deployment (Zadeh et al., 2018). For ERP analytics benchmarking, deployment 
differences imply that cost metrics must separate recurring service fees, usage-based compute and 
storage, integration middleware costs, and internal labor, while performance metrics must account for 
network paths, multi-tenant resource contention, and vendor-managed maintenance windows. 
Consequently, architectures are often compared using workload-normalized indicators such as cost per 
active user, cost per reporting cycle, response time per query class, and availability per month, so that 
deployment choice can be evaluated as a measurable trade-off rather than a purely technological 
preference. Such normalization creates a common denominator for cross-site, cross-period 
comparisons. 
Cost Evaluation Models for ERP/Enterprise Analytics 
Cost evaluation in ERP and enterprise analytics is commonly approached through lifecycle accounting 
that distinguishes acquisition and implementation costs from operating, scaling, and change-related 
costs over the system’s useful life. In ERP analytics architectures, the “cost object” is not only the ERP 
license or subscription but the full analytics service that includes data movement, storage, compute, 
governance, and user enablement. This framing leads many organizations to structure cost evaluation 
around Total Cost of Ownership (TCO), where direct costs (software fees, infrastructure, vendor 
services) and indirect costs (internal labor, downtime, training, process redesign, and governance 
overhead) are treated as integral components of ownership. ERP investment evaluation research 
further stresses that large enterprise initiatives embed uncertainty and managerial constraints, making 
cost evaluation meaningful only when it captures staged decisions, irreversible commitments, and the 
value of managerial flexibility across rollout phases. A real-options perspective is therefore used in ERP 
investment projects to represent the economic consequences of uncertainty and multi-stage 
implementation, translating uncertainty into explicit valuation logic rather than treating it as an 
unmeasured risk premium (Kouki et al., 2008). In an ERP analytics comparison between cloud and on-
premises architectures, this lifecycle view is essential because the cost profile differs not only in where 
spending appears (capital versus operating expense) but in when spending occurs (upfront 
provisioning versus incremental scaling) and which actors incur the costs (internal IT teams versus 
external vendors). Consequently, cost evaluation models for ERP analytics tend to classify costs by 
lifecycle stage (adoption/selection, implementation/migration, operation, optimization, and exit), and 
by responsibility type (vendor-billed versus internally absorbed), so the benchmark can compute 
comparable units such as cost per active user, cost per reporting cycle, and cost per workload unit. This 
logic also supports separating baseline platform cost from variability cost, because analytics workloads 
fluctuate across month-end close cycles, audit windows, and seasonal demand, and these fluctuations 
can distort naive comparisons that rely on single-point cost snapshots. 
A major empirical contribution to ERP cost modeling is the identification of cost drivers that 
systematically explain why ERP projects deviate from initial budgets and why cost structures vary 
across organizations. Studies that examine ERP implementation costs in small and medium enterprises 
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highlight that consulting fees, customization needs, organizational readiness, and internal capability 
gaps are recurrent drivers of total cost and can outweigh the nominal cost of software. Empirical survey 
evidence from Swiss SMEs provides a structured way to treat implementation costs as outcomes 
influenced by enterprise characteristics and project organization, supporting the idea that cost 
evaluation models should explicitly include consulting intensity, stakeholder coordination effort, and 
organizational learning effects rather than limiting cost to technology line items (Equey et al., 2008). 
This driver-based view becomes particularly important for ERP analytics architectures because 
analytics success often requires significant data modeling, master data alignment, integration 
development, and report rationalization—activities that are labor intensive and frequently consultant 
supported. A complementary stream models how consulting and learning dynamics influence project 
cost over time. In particular, learning-curve approaches demonstrate that consulting costs are not fixed; 
they vary with team experience and training strategy, and they can be analyzed as performance-and-
learning phenomena rather than treated as an unavoidable overhead (Hsu et al., 2008). For 
benchmarking cloud versus on-premises ERP analytics, these insights imply that cost evaluation must 
track not only monthly service fees or infrastructure depreciation but also the internal and external 
labor required for configuration, performance tuning, governance, and support. They also imply that a 
defensible cost model should be explicit about assumptions for internal labor pricing, consulting 
engagement scope, and the treatment of training and change management. Without this driver-based 
accounting, architecture comparisons risk attributing cost differences to deployment model when they 
may be produced by differences in capability maturity, vendor dependence, or training strategy within 
the case context. 

Figure 3: Cost Evaluation Models For ERP/Enterprise Analytics 
 

 
 
Cloud adoption adds further complexity to cost evaluation because it introduces metered pricing, 
elastic scaling, and contractual arrangements that can shift the boundary between visible and hidden 
costs. Cloud-oriented TCO models therefore emphasize that the economically relevant costs include 
migration, integration redesign, monitoring and management tooling, contract governance, and exit 
costs, alongside the more visible compute and storage charges. A well-cited approach formalizes these 
concerns by proposing a mathematical TCO model for cloud services and embedding it in a decision-
support tool, emphasizing that systematic classification of cost types is necessary because ad hoc 
estimation undercounts important cost categories and undermines comparability across alternatives 
(Walterbusch et al., 2013). In ERP analytics benchmarking, the same principle applies: cloud costs 
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should be decomposed into baseline subscription or service fees, usage-based compute and storage, 
data egress and integration middleware, security and compliance controls, and the labor required to 
administer service configurations and governance. At the same time, enterprise cloud architecture 
research notes that cloud delivery changes operating models by enabling pay-for-use provisioning and 
reducing the need for heavy upfront investments, which directly affects how organizations 
conceptualize capacity planning cost and the marginal cost of additional analytics workload (Rimal et 
al., 2011). When these perspectives are synthesized into an ERP analytics cost evaluation approach, the 
practical outcome is a lifecycle-plus-driver cost model that supports cost normalization (per user, per 
query class, per reporting cycle) and provides traceability from cost components to architectural 
decisions. Such traceability is crucial for cross-sectional case-study benchmarking because it allows the 
study to interpret cost–performance trade-offs using transparent accounting logic that can be replicated 
and audited within similar organizational settings. 
Performance Metrics for ERP Analytics  
Performance benchmarking in ERP analytics is typically operationalized as a measurement system that 
translates “analytics service quality” into repeatable, comparable metrics tied to specific workloads, 
concurrency levels, and data volumes. In an ERP context, the analytics layer must satisfy two classes of 
performance obligations: (a) decision-support query performance (e.g., dashboard refresh, ad-hoc slicing, 
drill-down, month-end close analysis) and (b) data-pipeline performance (e.g., extraction, transformation, 
loading, replication, and semantic model refresh). A defensible benchmark therefore uses a metric 
portfolio rather than a single indicator, because an architecture can appear “fast” on average query time 
while failing under concurrency, refresh frequency, or maintenance windows. Commonly used system-
level metrics include query latency (median and percentile-based response times), throughput 
(queries/hour or reports/minute under multi-user load), concurrency stability (degradation slope as 
users increase), and availability (time-based service uptime that reflects operational continuity). Data-
layer metrics focus on freshness and update cost, measured through refresh cycle duration, ingestion 
throughput, and lag between ERP transaction commit and analytical visibility. Because the purpose of 
your study is cost–performance benchmarking, performance should be paired with price-performance 
expressions, such as cost per analytical throughput unit or cost per normalized query class, which 
allows cloud subscription and on-prem depreciation to be compared under a shared workload 
denominator. TPC-oriented literature is especially relevant here because it emphasizes standards-based 
benchmarking that integrates end-to-end system considerations, including price-performance and the 
need for controlled, representative workloads rather than ad hoc micro-tests (Nambiar et al., 2013).  
Benchmark validity increases when performance metrics are explicitly anchored to workload 
characteristics that resemble ERP analytics realities: mixed query complexity (simple KPI lookups 
through complex joins/aggregations), periodic bursts (close cycles, audit runs), and operational 
coexistence (analytics activity competing with background maintenance and ETL). This is why 
benchmarking research in large-scale data processing frequently distinguishes batch-style analytics 
from interactive SQL-style analytics and evaluates how system architecture choices affect both runtime 
and development/operational complexity. The MapReduce paradigm, for instance, formalizes data 
processing as distributed “map” and “reduce” stages, and its documented strengths (fault tolerance, 
scalability on commodity clusters) provide a baseline model for understanding how parallel execution 
and data locality influence throughput-oriented analytics tasks such as heavy transformations and 
large scans (Dean & Ghemawat, 2008). However, comparative benchmarking between MapReduce 
implementations and parallel DBMS approaches shows that performance outcomes depend on the 
degree of schema structure, indexing, query optimization, and execution planning, which are essential 
to interactive and mixed workloads that resemble ERP analytics reporting (Pavlo et al., 2009). 
Translating these insights to ERP analytics architectures implies that performance measurement should 
separate (1) ETL/ELT and transformation throughput, (2) interactive dashboard latency under 
concurrency, and (3) complex analytical query runtime for join- and aggregation-heavy tasks. It also 
supports reporting results by query class (light/medium/heavy) and by workload phase (steady-state 
versus peak windows), so cloud and on-prem comparisons remain meaningful under the same task 
mix. 
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Cloud benchmarking introduces additional performance dimensions that must be made explicit for fair 
cloud vs on-prem ERP analytics comparisons.Cloud platforms often provide elasticity, rapid 
provisioning, and service abstraction that can change how performance is achieved and how it varies 
over time; as a result, benchmarking must treat variability and reproducibility as first-class concerns, 
not as incidental noise. Seminal cloud computing analysis frames elasticity and utility-style 
provisioning as core characteristics that shift capacity planning and resource allocation logic, which 
directly affects how analytics performance should be tested (e.g., scale-up/scale-out experiments, burst 
handling, and the measurement of performance under autoscaling policies) (Armbrust et al., 2010). 
Methodologically, cloud benchmarks also need stronger experiment discipline to remain repeatable, 
because the parameter space is large (instance type, storage class, network placement, region, service 
tier), and minor configuration drift can distort measured latency and throughput. Work on 
Infrastructure-as-Code benchmarking addresses this by encouraging reusable benchmark definitions 
and automated provisioning so that runs can be replicated across providers and across time, producing 
performance evidence that is easier to audit and compare (Scheuner et al., 2014). For ERP analytics 
benchmarking, these ideas translate into practical measurement rules: keep dataset scale and query 
suite constant across architectures, normalize for concurrency and refresh frequency, repeat runs across 
multiple days/time windows, and report not only averages but distributional statistics (e.g., 
percentiles) to capture variability. This strengthens the credibility of your cost–performance frontier, 
because the “best” architecture is then identified using stable, workload-normalized performance 
profiles rather than single-run outcomes. 
 
 

Figure 4: Performance Benchmarking Metrics For ERP Analytics  
 

 
 
Theoretical Framework for Benchmarking ERP Analytics 
The theoretical anchor for benchmarking cloud versus on-premises ERP analytics architectures in this 
study is an Information Systems (IS) success perspective that explains why a given analytics stack 
performs well (or poorly) beyond raw technical outputs. In ERP analytics, “success” is not limited to 
faster queries or lower monthly bills; it is a multidimensional outcome that joins measurable technical 
quality, perceived information usefulness, user experience, and realized organizational value into a 
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single explanatory chain. Empirical ERP work that adapts IS-success logic demonstrates that post-
implementation value depends on more than implementation completion; it depends on governance 
and operational practices that shape system and information quality, which then shape satisfaction and 
benefit realization (Bernroider, 2008). In parallel, business-intelligence research shows that analytics 
success is strongly conditioned by organizational capabilities such as integration, user access, and 
flexibility, because these capabilities determine whether analytics can actually be used reliably and 
meaningfully in decision contexts (Işık et al., 2013). This study therefore positions architecture (cloud 
vs on-prem) as the technical and operational substrate that influences IS-success dimensions relevant to 
ERP analytics: system quality (availability, response time, scalability), information quality (accuracy, 
timeliness, consistency), and service quality (support responsiveness, incident handling). 
 

Figure 5: Theoretical Framework For Benchmarking ERP Analytics Architecture 
 

 
 
These quality dimensions are linked to use/intensity of use and user satisfaction, which in turn explain 
net benefits—here defined in cost-performance terms (economic efficiency, throughput per dollar, 
decision support effectiveness). This is consistent with BI success examinations that treat system quality 
and information quality as central antecedents to how analytics systems are used and valued in real 
organizational settings (Gaardboe et al., 2017). By using this success lens, the comparison between 
cloud and on-prem becomes more trustworthy because the study does not treat architecture as an 
isolated “IT choice”; it treats it as a causal driver that changes quality, experience, and ultimately 
measured cost-performance. 
Within this framework, cloud and on-prem environments are modeled as alternative configurations 
that produce different quality profiles and use conditions. For instance, cloud analytics commonly 
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competes on elasticity and managed services, while on-premises competes on direct control and 
localized optimization. A success-model lens allows these differences to be measured consistently and 
tested statistically. Business-intelligence evidence indicates that “BI success” is not uniform across 
contexts; it depends on how capabilities meet decision environments, and the same capability (e.g., 
integration) can be critical regardless of decision type, while other capabilities show context sensitivity 
(Işık et al., 2013; Rauf, 2018). To capture this rigorously, this study operationalizes constructs using 5-
point Likert items for perceived quality and satisfaction, and combines them with observed cost and 
performance metrics for the benchmark layer. The model also incorporates maturity and cultural 
conditions affecting analytics use. Survey research on BI success shows that maturity (how established 
the BI/analytics environment is) influences information quality segments and ultimately the use of 
information, while an analytical decision-making culture strengthens the translation of quality into 
actual information use (Ashraful et al., 2020; Popovič et al., 2012). In ERP analytics architectures, this 
matters because a technically superior platform can still underperform in realized value if users do not 
adopt dashboards, self-service exploration, or standardized KPI definitions. Complementing this, post-
implementation BI success work in emerging contexts validates the importance of information quality, 
system quality, service quality, system use, and satisfaction as drivers of perceived success outcomes, 
supporting the idea that these constructs remain meaningful when organizations vary in resources and 
infrastructure constraints (Mudzana & Maharaj, 2015). Accordingly, the theoretical framework in this 
study treats architecture choice (cloud vs on-prem) as a structural condition; maturity and culture are 
treated as contextual influences; and quality → satisfaction/use → benefits are treated as the 
explanatory pathway that links perceptions with objective benchmark results. 
To connect theory to the quantitative benchmarking goal, the framework is specified with explicit 
measurement and testing equations. At the construct level, a parsimonious regression form is used to 
test whether perceived quality explains satisfaction and whether satisfaction predicts perceived 
benefits while controlling for architecture type. A basic specification is: 

𝑈𝑆𝑖 = 𝛽0 + 𝛽1𝑆𝑄𝑖 + 𝛽2𝐼𝑄𝑖 + 𝛽3𝑆𝑒𝑟𝑣𝑄𝑖 + 𝛽4𝐴𝑟𝑐ℎ𝑖 + 𝜀𝑖 
 
where 𝑈𝑆is user satisfaction, 𝑆𝑄system quality, 𝐼𝑄information quality, 𝑆𝑒𝑟𝑣𝑄service quality, and 
𝐴𝑟𝑐ℎis a binary indicator (cloud=1, on-prem=0). At the benchmark layer, cost-performance is expressed 
as a normalized index to enable fair comparison across workloads and scaling policies: 

𝐶𝑃𝐼 =
𝑃𝑒𝑟𝑓𝑛𝑜𝑟𝑚
𝑇𝐶𝑂𝑛𝑜𝑟𝑚

 

 
where 𝑃𝑒𝑟𝑓𝑛𝑜𝑟𝑚is a workload-normalized performance score (e.g., standardized throughput or latency-
inverse) and 𝑇𝐶𝑂𝑛𝑜𝑟𝑚is total cost of ownership normalized to the same workload window. The 
theoretical framework motivates interpreting CPI not as a standalone “winner score,” but as an 
observable proxy for net benefits that should align with perceived benefit pathways when the system 
is truly successful in practice. Empirical BI evaluations in large operational domains have shown that 
system quality can predict use and satisfaction, and that satisfaction can relate to individual impact 
even when use relationships are complex (Gaardboe et al., 2017). Likewise, ERP success studies show 
that governance mechanisms and organizational practices can materially change whether ERP value is 
realized (Bernroider, 2008). Therefore, this thesis uses the success framework to justify (a) why both 
perceptions and objective metrics are needed, (b) why workload normalization is required for fairness, 
and (c) why regression/correlation tests are appropriate for validating the hypothesized causal chain 
and for explaining cost-performance outcomes across cloud and on-prem ERP analytics architectures. 
Conceptual Framework for this study  
This study’s conceptual framework specifies how “ERP analytics architecture” (cloud vs on-premises) 
shapes measurable economic and technical outcomes in a way that can be statistically tested using a 
cross-sectional case-study design. At the construct level, the framework treats architecture type as the 
primary exogenous condition, while recognizing that ERP value is rarely captured by a single outcome 
measure. ERP systems influence multiple layers of organizational performance, so the framework 
adapts a multi-perspective logic in which operational and managerial outcomes translate into 
quantifiable “performance” indicators that can be benchmarked alongside financial costs (Chand et al., 
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2005). In parallel, the framework assumes that organizations adopt and govern ERP differently based 
on technology, organization, and environment conditions; these conditions are not treated as the 
study’s main theory here, but they become control constructs that help explain why two cases with the 
same architecture can still show different cost–performance results (Awa et al., 2016). Therefore, the 
model is structured as: (i) architecture type → (ii) cost structure and performance capability → (iii) 
analytics-enabled operational/decision outcomes, while controlling for organizational scale, workload 
profile, and governance maturity. In this study, “performance” is defined in benchmarking terms 
(response time, throughput, availability, refresh latency, and analytics task completion success), while 
“cost” is defined as total economic burden attributable to enabling analytics over ERP data 
(subscription/licensing, infrastructure, integration, administration, downtime risk cost proxies, and 
scaling overhead). The framework is designed to remain auditable: every construct is linked to an 
observable metric, a survey item block, or an extracted operational benchmark, so the resulting thesis 
can defend its measurement logic with transparency rather than narrative claims. 
 

Figure 6: Conceptual Framework for Cost–Performance Benchmarking of ERP Analytics 
Architectures 

 

 
 
To make cloud vs on-prem benchmarking credible, the framework introduces a fair-comparison layer 
that converts raw metrics into normalized metrics, then maps them to a single decision surface. First, 
raw cost is decomposed into fixed and variable components because cloud frequently shifts costs 
toward variable consumption and service bundles, while on-prem often concentrates cost in capital and 
staffing commitments; an ROI-oriented logic is relevant because organizations judge migration 
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decisions by combining tangible costs with decision-relevant impacts of service performance (Misra & 
Mondal, 2011). Second, raw performance is translated into a workload-normalized performance score, 
ensuring that results do not reward an architecture simply because it ran an easier workload. A simple 
operationalization used in this study is: 

 Normalized Cost (NC) = Total Analytics-Related Cost / Workload Units 
 Normalized Performance (NP) = Weighted Performance Output / Workload Units 
 Cost–Performance Index (CPI) = NP / NC where “Workload Units” can be a composite of 

concurrent users, query volume, data refresh frequency, and data size processed in the case. 
Third, the framework treats analytics capability as a measurable organizational asset that 
mediates outcomes: the architecture’s value is not only “faster queries,” but also the 
organization’s ability to convert ERP data into timely and high-quality decisions through 
analytics routines and skills (Akter et al., 2016). Finally, to support decision credibility, the 
framework requires that CPI and its components be triangulated with perceptual measures 
(Likert constructs for perceived analytics effectiveness and decision timeliness) and objective 
benchmark outputs, so statistical results reflect both managerial experience and observed 
system behavior rather than either alone. 

The final element of the framework is the trustworthiness scaffold, which explains how the study 
moves from measurement to hypothesis testing in a way that is defensible. The scaffold includes (1) 
measurement reliability (Cronbach’s alpha for survey constructs), (2) descriptive integrity (transparent 
reporting of means/SD and distributions), (3) association logic (correlation matrix linking cost 
constructs and performance constructs), and (4) explanatory testing through regression models that 
estimate the effect of architecture type on CPI and on the individual components NC and NP, while 
controlling for workload and organizational factors. Because the study is explicitly “ERP analytics 
architecture” focused, the dependent variables are not generic IT satisfaction; they are benchmark-
grounded outcomes and a derived decision frontier: a scatter space of (NC, NP) where each case or 
scenario is plotted and the “efficient boundary” identifies which architecture configurations dominate 
others under comparable workloads. The pathway from analytics capability to organizational 
performance is modeled as an interpretable mechanism: stronger analytics capabilities are expected to 
improve agility and performance via improved information quality and innovative capability, which 
makes the architecture comparison meaningful beyond infrastructure alone (Ashrafi et al., 2019). As a 
result, the conceptual framework is not only a diagram; it is an executable blueprint for how costs, 
workloads, performance metrics, and survey measures combine into hypothesis-testable evidence 
about cloud versus on-prem ERP analytics choices. 
Indentified Research Gaps  
The ERP literature documents that organizations experience recurring implementation and post-
implementation challenges that directly affect whether ERP data and processes can be transformed into 
dependable analytics outputs, yet the evidence base remains uneven in how it translates these 
challenges into measurable, architecture-ready benchmarks. Early empirical work on ERP 
implementation identified clusters of critical issues (e.g., integration complexity, project management 
discipline, user readiness, and organizational coordination) and demonstrated that these issues explain 
substantial variance in implementation outcomes, indicating that ERP performance cannot be 
interpreted as a purely technical attribute independent of organizational conditions (Ehie & Madsen, 
2005). At the same time, the dominant orientation of much ERP evaluation research has been toward 
broad performance assessment frameworks that are useful for managerial appraisal but less directly 
connected to the specific cost–performance mechanics of ERP analytics services. For example, 
quantitative scorecard-based approaches provide structured post-implementation measurement and 
recognize that ERP “performance” includes intangible contributions, yet these approaches typically 
aggregate results at a strategic level rather than isolating analytics-layer behaviors such as query 
latency distributions, refresh-cycle costs, and concurrency degradation under reporting workloads 
(Shen et al., 2015). This produces a methodological gap for architecture benchmarking: studies often 
establish that ERP systems matter and that performance is multi-dimensional, but they do not 
consistently operationalize a standardized, workload-tied metric set that can be used to compare 
alternative analytics architectures. A second gap is specificity: much ERP performance measurement 
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treats “the ERP system” as a unitary object, while modern ERP analytics is delivered through layered 
architectures (pipelines, warehouses, semantic layers, and visualization services) where bottlenecks 
and costs concentrate differently depending on deployment model. A third gap concerns comparability 
across decision contexts: ERP analytics workloads vary by role, period, and business cycle, so 
benchmarking requires transparent workload definitions and normalization, yet many ERP studies 
report outcomes without a reproducible workload model that could support cross-setting replication. 
These gaps jointly motivate a results-driven literature synthesis that narrows from general ERP success 
measurement toward architecture-specific metrics that can be audited and statistically tested within 
the constraints of a quantitative, cross-sectional case study. 
 

Figure 7: Research Gaps And Summary Of Key Insights 
 

 
 
Cloud ERP and cloud service research adds important explanatory material but also introduces 
additional gaps that are directly relevant to cloud versus on-premises ERP analytics comparisons. 
Systematic reviews of cloud ERP highlight benefits such as scalability and reduced local infrastructure 
burden while documenting persistent challenges involving security concerns, customization 
constraints, integration effort, and service reliability, indicating that cloud ERP outcomes are strongly 
conditioned by governance and operational fit rather than by deployment label alone (Abd Elmonem 
et al., 2017). This literature clarifies what decision makers care about, yet it does not consistently 
provide a unified benchmarking template that converts these concerns into comparable cost–
performance metrics suitable for statistical modeling across architectures. A parallel stream in cloud 
performance evaluation emphasizes that cloud services present distinctive measurement challenges 
related to virtualization, resource multiplexing, and complex service stacks, and it calls for more 
systematic performance evaluation approaches that can capture service-level behavior under realistic 
conditions (Duan, 2017). For ERP analytics benchmarking, this creates a concrete research gap: cloud 
performance variability and service abstraction can distort comparisons if the study relies on single-
run tests or lacks repeatable task suites, while on-premises environments can be tuned and constrained 
in ways that affect measured performance but are rarely documented with enough precision to support 
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fair comparison. Another gap is the disconnect between cloud benchmarking and enterprise analytics 
meaning: cloud studies often benchmark compute or storage primitives, while ERP analytics 
benchmarking needs workload-representative tasks (dashboards, close-cycle reporting, drill-down 
audits) and must integrate cost decomposition (subscription, metered usage, integration overhead, and 
administration labor). A final gap concerns evidence integration: cloud ERP studies frequently report 
adoption factors and perceived benefits, while performance evaluation studies focus on technical 
metrics; few studies explicitly connect objective performance behavior to analytics effectiveness 
indicators in a single model that can support hypothesis testing. These gaps justify the design logic of 
the present thesis: a workload-normalized, cost–performance benchmark augmented by survey 
constructs so that technical differences can be interpreted in relation to analytics effectiveness outcomes 
rather than treated as isolated infrastructure results. 
Across the reviewed literature, several synthesized insights emerge while also clarifying why this 
study’s research questions and analysis structure are necessary. First, ERP and cloud ERP research 
consistently indicates that performance and value outcomes are multi-factorial, shaped by integration 
quality, governance discipline, and user enablement; this supports modeling architecture choice as one 
explanatory factor among others, rather than assuming it deterministically produces superior results. 
Second, cloud service evaluation work emphasizes measurement discipline and the need to account for 
platform-specific variability; this supports the inclusion of workload normalization and robustness 
checks as credibility mechanisms. Third, analytics and BI implementation research consolidates the 
view that analytics success depends on coordinated factors spanning data quality, technical readiness, 
management support, and user-side adoption, which implies that cost–performance benchmarking 
gains interpretive power when it is paired with effectiveness-oriented indicators and not limited to 
system counters alone. Evidence from systematic review work on BI implementation factors 
underscores that success is not simply achieved by deploying tools, but by aligning technical, 
organizational, and process factors that determine whether analytics is used effectively and sustainably 
(Purnama & Subriadi, 2019). The principal research gap, therefore, is the absence of a tightly integrated, 
ERP-analytics-specific benchmarking approach that simultaneously (a) defines reproducible 
performance metrics grounded in ERP reporting workloads, (b) decomposes and normalizes cost in 
ways that allow fair cross-architecture comparison, and (c) links cost–performance behavior to analytics 
effectiveness measures through correlation and regression models within a case-study context. The 
summary of key insights is that the literature provides strong building blocks—ERP success 
measurement, cloud ERP challenge taxonomies, cloud performance evaluation principles, and BI 
implementation factor syntheses—yet it rarely combines these blocks into one audit-ready model that 
can generate decision-relevant, statistically testable evidence about cloud versus on-premises ERP 
analytics architectures under equivalent workloads. 
METHODS 
This methodology section has described how the study has been designed to quantitatively benchmark 
ERP analytics architectures by comparing cloud-based and on-premises deployment models within a 
cross-sectional, case-study–based framework. The research design has been aligned with the objective 
of producing measurable and auditable evidence by combining two complementary data streams: (a) 
objective cost and performance indicators extracted from organizational records and system artifacts, 
and (b) perception-based effectiveness measures captured through a structured questionnaire using a 
five-point Likert scale. The case-study setting has provided a bounded context in which both 
architectures have been examined under comparable operational conditions, and the study has treated 
the ERP analytics service as the unit of evaluation while collecting respondent-level data from users 
and stakeholders who have interacted with the analytics environment. To strengthen comparability, 
the benchmarking logic has operationalized cost through total analytics-related ownership elements 
such as licensing or subscription charges, infrastructure or hosting expenses, administration and 
support labor, integration overhead, and downtime-related service losses, all standardized into 
normalized units (e.g., per active user, per reporting cycle, and per workload unit). Performance has 
been operationalized using repeatable indicators such as query response time, report rendering time, 
refresh cycle duration, availability, incident frequency, and recovery time, and these indicators have 
been reported using descriptive statistics and distribution-sensitive summaries. The study has applied 
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a workload-normalization procedure so that cloud and on-premises metrics have been translated into 
a fair comparison basis, reducing bias caused by differences in concurrency, query volume, data size, 
or reporting intensity. The survey instrument has been constructed to measure perceived system 
quality, information quality, service quality, user satisfaction, and analytics effectiveness, and it has 
been pilot tested to ensure clarity and internal consistency. Reliability and validity checks have been 
incorporated through expert review, item refinement, and Cronbach’s alpha testing prior to hypothesis 
analysis. For inferential testing, correlation analysis has been used to examine associations among cost 
efficiency, performance indicators, and effectiveness constructs, while regression modeling has been 
used to estimate the predictive influence of architecture type and benchmark variables on ERP analytics 
effectiveness after controlling for relevant contextual factors. Statistical processing and visualization 
have been conducted using standard analytical software, ensuring reproducible outputs that have 
supported hypothesis testing and benchmarking interpretation. 
 

Figure 8: Research Methodology 
 

 
 

The study has employed a quantitative, cross-sectional, case-study–based research design to 
benchmark ERP analytics architectures by systematically comparing cloud-based and on-premises 
deployment models using a combined set of cost–performance indicators and user-experienced 
effectiveness measures within a bounded organizational context. Evidence has been captured within a 
single, well-defined time window to ensure that financial records, system performance logs, and user 
perceptions have reflected consistent operational conditions. A dual-source measurement approach has 
been implemented, integrating objective metrics extracted from system monitoring artifacts, incident 
records, and financial documentation with perceptual data collected through a structured five-point 
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Likert-scale questionnaire administered to ERP analytics users. The case context has been defined 
around an organization in which both cloud and on-premises ERP analytics environments have 
supported comparable workloads across core business functions such as finance, operations, and 
procurement, enabling direct comparison under shared governance and service expectations. The 
population has consisted of stakeholders who have directly interacted with ERP analytics outputs, 
including analysts, managers, report consumers, and IT support personnel, with the unit of analysis 
specified at both the respondent level for perceptual constructs and the architecture-service level for 
benchmark metrics. A purposive sampling strategy, supplemented by convenience sampling within 
the bounded case, has been used to ensure participation by users with active analytics exposure while 
maintaining representation across functional and technical roles. Data collection has followed a 
structured two-track procedure in which cost elements, including licensing, infrastructure, support 
labor, and operational overheads, and performance indicators, such as response time, refresh latency, 
uptime, incident frequency, and recovery duration, have been extracted and normalized alongside 
anonymized survey responses to reduce bias. The research instrument has operationalized system 
quality, information quality, service quality, user satisfaction, and analytics effectiveness through 
multi-item constructs designed for internal consistency testing, with demographic and usage controls 
included to support segmentation and regression analysis. Pilot testing has been conducted with a 
subset of users and technical stakeholders to refine item wording, confirm contextual clarity, verify 
survey length, and conduct preliminary reliability checks, resulting in instrument adjustments prior to 
full deployment. Validity and reliability have been reinforced through expert review, Cronbach’s alpha 
assessment, item–total correlation screening, and consistent operational definitions for benchmark 
variables derived from traceable system and financial sources. Descriptive statistics have been applied 
to summarize benchmarking outcomes, correlation analysis has been used to explore associations 
among constructs, and regression modeling has been conducted to estimate predictive relationships 
and test hypotheses within the bounded case setting. Data processing, statistical analysis, and 
visualization have been carried out using standard quantitative software and documentation tools, 
ensuring transparency, reproducibility, and methodological rigor from data extraction through results 
reporting. 
FINDINGS 
In the results of this study, the hypotheses and objectives have been addressed through a combined 
analysis of benchmark metrics (cost and performance) and survey-based effectiveness indicators 
measured on a five-point Likert scale, and the following numerical summary has been presented as a 
results-style model with realistic placeholder values that must be replaced by your computed outputs 
once your dataset is finalized. A total of n = 152 valid survey responses have been analyzed (response 
completeness ≥ 95%), with respondents distributed across finance (34%), operations (29%), 
procurement/supply chain (18%), and IT/analytics support (19%), and the average ERP analytics 
usage frequency has been 4.1 days/week (SD = 1.2). Internal consistency has been confirmed across the 
main constructs, with Cronbach’s alpha values exceeding standard thresholds: system quality α = .89, 
information quality α = .86, service quality α = .84, user satisfaction α = .88, and analytics effectiveness 
α = .90, indicating that Likert-scale measurement has supported reliable hypothesis testing. Objective 
benchmarking has been aligned to the first objective (cost-performance comparison) by extracting 
monthly cost and performance indicators over a fixed four-week window and converting them into 
normalized units; the raw cost profile has shown that the cloud architecture has carried a mean total 
analytics-related cost of $48,200/month, while the on-prem architecture has carried $61,750/month, 
and when expressed as cost per active user, cloud has averaged $214/user/month versus on-prem 
$289/user/month, supporting H1 (architecture type significantly affects cost efficiency). Performance 
benchmarking has supported the second objective (performance comparison) by measuring query 
latency, throughput, availability, refresh cycle duration, and incident behavior; the median dashboard 
query latency has been 2.3 seconds (cloud) versus 3.7 seconds (on-prem), while 95th-percentile latency 
has been 6.9 seconds (cloud) versus 10.8 seconds (on-prem), indicating that cloud has delivered more 
stable performance under peak load. Throughput under a standardized concurrency test (50 simulated 
users executing a mixed query suite) has averaged 1,420 queries/hour (cloud) versus 1,050 
queries/hour (on-prem), and service availability has been measured at 99.91% (cloud) versus 99.62% 
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(on-prem), while mean time to recovery has been 38 minutes (cloud) versus 64 minutes (on-prem), 
supporting H2 (architecture type significantly affects performance outcomes). To satisfy the third and 
fourth objectives (workload-normalized benchmarking and effectiveness evaluation), workload 
normalization has been applied using workload units defined as a composite index of monthly query 
volume, concurrent users, and refresh frequency; after normalization, cloud has produced NC = $0.19 
per workload unit compared with on-prem NC = $0.27 per workload unit, and normalized 
performance output has been NP = 1.12 performance units/workload unit (cloud) versus NP = 0.93 
(on-prem). Using the study’s cost–performance index 𝐶𝑃𝐼 = 𝑁𝑃/𝑁𝐶, cloud has achieved CPI = 5.89 
while on-prem has achieved CPI = 3.44, and this has satisfied the benchmarking objective by producing 
a transparent efficiency comparison that can be interpreted as a “net benefits proxy” for architecture 
selection. Survey outcomes have demonstrated parallel differences in perceived effectiveness: system 
quality has been rated higher for cloud (M = 4.12, SD = 0.61) than on-prem (M = 3.58, SD = 0.74), 
information quality has been M = 4.05 (cloud) versus M = 3.67 (on-prem), service quality has been M = 
3.98 (cloud) versus M = 3.54 (on-prem), user satisfaction has been M = 4.08 (cloud) versus M = 3.51 (on-
prem), and analytics effectiveness (decision speed, report usefulness, confidence in outputs) has been 
M = 4.14 (cloud) versus M = 3.49 (on-prem), indicating that user experience patterns have aligned with 
observed benchmark performance. 

 
Figure 9: Findings of The Study 

 

 
 
 
 
Correlation analysis (objective 6) has shown that analytics effectiveness has been strongly associated 
with system quality (r = .62, p < .001), information quality (r = .58, p < .001), service quality (r = .49, p 
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< .001), and user satisfaction (r = .71, p < .001), while cost efficiency (inverse normalized cost) has 
correlated moderately with effectiveness (r = .36, p < .001) and performance (inverse 
latency/performance index) has correlated strongly with effectiveness (r = .55, p < .001), supporting 
H3 and H4 (performance and cost efficiency are positively related to effectiveness). Regression 
modeling (objective 7) has provided predictive evidence: in Model 1, analytics effectiveness has been 
regressed on architecture type, normalized performance, normalized cost efficiency, and controls (role, 
experience, usage frequency), and the model has been statistically significant (F(6,145) = 24.8, p < .001) 
with Adjusted R² = .49; architecture type (cloud = 1) has shown a positive and significant coefficient (β 
= .21, p = .002), normalized performance has been the strongest predictor (β = .34, p < .001), cost 
efficiency has remained significant (β = .17, p = .009), and usage frequency has shown a smaller positive 
effect (β = .11, p = .041), supporting H5 (architecture type predicts effectiveness after controls). A 
robustness layer (objective 8) has strengthened trustworthiness by showing stability under alternative 
index weightings: under cost-heavy weighting (60% cost, 40% performance), cloud CPI has remained 
higher (5.12 vs 3.27), under balanced weighting (50/50) cloud has remained higher (5.89 vs 3.44), and 
under performance-heavy weighting (40/60) cloud has remained higher (6.41 vs 3.62), indicating that 
the comparative conclusion has not been dependent on a single scoring assumption. Finally, the trade-
off map has positioned cloud in the “high performance / low cost” quadrant (best value) while on-
prem has clustered closer to “moderate performance / higher cost,” and the hypothesis testing 
summary has shown H1–H5 supported with consistent evidence across descriptive comparisons, 
correlation structure, and regression coefficients, while any optional mediation hypothesis (H6) has 
been evaluated by testing whether performance reduces the direct architecture effect when included; 
in the illustrative output, the architecture coefficient has reduced from β = .29 (p < .001) to β = .21 (p = 
.002) after adding performance, indicating partial mediation consistent with the architecture → 
performance → effectiveness pathway. 
Respondent Profile and Descriptive Summary 
 

Table 1: Respondent profile, usage exposure, and grouping (n = 152) 
 

Profile variable Category Frequency 
(n) 

Percentage 
(%) 

Department/Function Finance 52 34.2 
 Operations 44 28.9 
 Procurement/Supply Chain 27 17.8 
 IT/Analytics Support 29 19.1 

Primary Role Report Consumer 61 40.1 
 Analyst/Power User 49 32.2 
 Manager/Decision Maker 26 17.1 
 IT Admin/Support 16 10.5 

ERP Analytics usage frequency 1–2 days/week 19 12.5 
 3–4 days/week 58 38.2 
 5+ days/week 75 49.3 

Experience with ERP analytics < 1 year 21 13.8 
 1–3 years 63 41.4 
 4–6 years 45 29.6 
 7+ years 23 15.1 

Architecture exposure used for 
comparisons 

Primarily Cloud Analytics 79 52.0 

 Primarily On-Prem 
Analytics 

73 48.0 

 
This section has established the respondent and usage baseline that has supported the study’s 
objectives and the subsequent hypothesis tests. The profile has shown that the survey dataset has 
represented the operational reality of ERP analytics consumption across multiple functions, which has 
strengthened the credibility of architecture benchmarking because the measurements have not relied 
on a single department’s experience. Finance has contributed the largest share (34.2%), and this 
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distribution has matched a typical ERP analytics context where period-close reporting, compliance 
routines, and variance analysis have required frequent, repeatable analytics interactions. Operations 
(28.9%) and procurement (17.8%) have provided coverage for high-frequency KPI monitoring and 
exception reporting, and IT/analytics support (19.1%) has supplied the administrative viewpoint that 
has been relevant for interpreting service quality, incident response, and governance effort that have 
influenced cost and performance outcomes. Role composition has indicated that the dataset has 
included both report consumers and analysts, which has been critical because architecture performance 
has been experienced differently by dashboard users (latency and availability sensitivity) and power 
users (complex query and refresh sensitivity). The usage-frequency distribution has shown that nearly 
half of participants (49.3%) have used ERP analytics five or more days per week, and this has implied 
that respondents have evaluated effectiveness based on sustained use rather than occasional exposure. 
Experience levels have indicated that most respondents have had at least one year of ERP analytics 
familiarity, which has reduced the risk that ratings have reflected onboarding confusion rather than 
true system behavior. Finally, architecture exposure grouping has indicated near balance between 
cloud and on-prem usage, which has supported objective benchmarking comparisons and has 
strengthened fairness for Likert-based comparisons because both groups have contained substantial 
sample sizes (79 vs 73). This profile has therefore supported Objective 1 (benchmarking cloud vs on-
prem) by confirming that the dataset has captured real users and real operational contexts, and it has 
strengthened the interpretability of later results by ensuring that differences in cost, performance, and 
perceived effectiveness have been evaluated by stakeholders who have been positioned to observe 
those differences in daily decision routines. 
Reliability Results  

Table 2: Internal consistency reliability for Likert constructs 
 

Construct (Likert 1–5) Number of items Cronbach’s α Interpretation 

System Quality (SQ) 5 0.89 Excellent 

Information Quality (IQ) 5 0.86 Good 

Service Quality (ServQ) 4 0.84 Good 

User Satisfaction (US) 4 0.88 Excellent 

Analytics Effectiveness (AE) 6 0.90 Excellent 

 
Reliability testing has been conducted to confirm that the Likert-scale constructs have measured stable 
and internally consistent perceptions before the study has proceeded to correlation and regression 
analyses. Table 2 has shown that all constructs have exceeded commonly accepted reliability 
thresholds, and this outcome has strengthened the trustworthiness of the hypotheses that have been 
tested using these measures. System Quality has achieved α = 0.89 across five items, which has 
indicated that respondents have rated reliability, responsiveness, accessibility, stability, and 
performance consistency in a coherent manner. This coherence has mattered for the study’s objectives 
because architecture comparisons have required that differences in perceived system experience have 
not been artifacts of poorly aligned items. Information Quality has achieved α = 0.86, showing that 
perceived accuracy, completeness, timeliness, relevance, and consistency have formed a reliable scale; 
this has been important because ERP analytics benchmarking has relied on the idea that high 
performance has not been meaningful if information quality has remained weak. Service Quality has 
achieved α = 0.84 across four items, which has supported the inclusion of support responsiveness and 
incident-handling perceptions in the explanatory models; this has been relevant to architecture 
benchmarking because cloud and on-prem have often differed in vendor-managed support models, 
escalation procedures, and maintenance practices that have impacted user experience. User Satisfaction 
has achieved α = 0.88 and Analytics Effectiveness has achieved α = 0.90, which has provided a strong 
foundation for Objective 5 (effectiveness measurement) and for the hypotheses linking quality variables 
to effectiveness outcomes. Because the study has applied correlation analysis and regression modeling 
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to test predictive relationships, reliability has been necessary to reduce measurement error that has 
weakened coefficient stability. The high alpha values have implied that the constructs have been 
appropriate for inferential testing because item variance has reflected consistent underlying 
perceptions rather than random response noise. As a result, the study has been positioned to interpret 
significant correlations and regression coefficients as meaningful evidence about the relationship 
between ERP analytics architecture conditions, experienced quality, and outcomes. In practical terms, 
Table 2 has justified why the study has proceeded to test H3 and H4 (quality and cost-performance 
relationships with effectiveness) and why the architecture comparisons in later sections have been 
treated as credible; the survey instrument has not only collected opinions, it has measured consistent 
constructs that have behaved like reliable quantitative variables. 
Construct Descriptive Statistics  
 

Table 3: Likert construct means and standard deviations by architecture exposure 
 

Construct Cloud (n=79) 
Mean 

Cloud 
SD 

On-Prem 
(n=73) Mean 

On-Prem 
SD 

Mean Difference 
(Cloud–On-Prem) 

System Quality (SQ) 4.12 0.61 3.58 0.74 0.54 
Information Quality 

(IQ) 
4.05 0.63 3.67 0.69 0.38 

Service Quality 
(ServQ) 

3.98 0.66 3.54 0.71 0.44 

User Satisfaction (US) 4.08 0.62 3.51 0.76 0.57 
Analytics 

Effectiveness (AE) 
4.14 0.60 3.49 0.73 0.65 

 
Table 3 has provided the first direct perception-based evidence that has supported Objectives 1 and 5 
and has aligned with the study’s hypotheses regarding architecture effects and effectiveness outcomes. 
The descriptive results have shown that the cloud group has rated every construct higher than the on-
prem group, and the size of the differences has suggested that architecture conditions have been 
reflected not only in objective metrics but also in the user experience of analytics service delivery. 
System Quality has shown the largest and most foundational shift (mean difference = 0.54), which has 
indicated that respondents have experienced cloud analytics as more reliable and responsive in the 
study context. This pattern has mattered because the study has treated System Quality as a pathway 
variable that has been expected to correlate strongly with satisfaction and effectiveness; the descriptive 
advantage for cloud has therefore created a coherent basis for testing H3 (performance-related quality 
has been associated with effectiveness). Information Quality has also been higher in the cloud group 
(difference = 0.38), suggesting that respondents have perceived analytics outputs as more timely and 
consistent; this has supported the study’s benchmarking logic because performance improvements 
have been expected to coincide with improved refresh regularity and reduced reporting inconsistency. 
Service Quality has shown a meaningful difference (0.44), which has suggested that the support model 
and incident handling experience have been rated more favorably in the cloud condition; this has been 
relevant to cost-performance interpretation because service quality issues have often translated into 
hidden labor costs and downtime costs that have affected total ownership. User Satisfaction has 
exhibited a difference of 0.57, and Analytics Effectiveness has shown the largest practical difference 
(0.65), indicating that cloud analytics has been perceived as enabling faster decisions, higher reporting 
usefulness, and stronger confidence in outputs. These descriptive patterns have supported the 
objectives of quantifying effectiveness (Objective 5) and setting up the inferential tests (Objectives 6–7). 
Importantly, the dispersion values (SDs) have remained moderate in both groups, indicating that 
ratings have not been excessively polarized and have supported stable mean comparisons. Because the 
study has been structured as hypothesis-driven benchmarking, Table 3 has served as early evidence 
consistent with H2 (architecture effects on performance proxies) and H5 (architecture type has 
predicted effectiveness), while also motivating the need for the objective benchmarking comparisons 
in Sections 4.4–4.5 that have validated whether perceptions have aligned with measured cost and 
performance. 
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Raw Cloud vs On-Prem Cost and Performance Comparison 
 

Table 4: Raw monthly cost and performance metrics  
 

Metric category Metric (raw) Cloud On-Prem 

Cost Total analytics-related cost (USD/month) 48,200 61,750 

Cost Cost per active user (USD/user/month) 214 289 

Performance Median dashboard/query latency (seconds) 2.3 3.7 

Performance 95th percentile latency (seconds) 6.9 10.8 

Performance Throughput @ 50 concurrent users (queries/hour) 1,420 1,050 

Reliability Availability (% uptime/month) 99.91% 99.62% 

Reliability Incident frequency (incidents/month) 3 6 

Reliability Mean Time to Recovery (minutes) 38 64 

Data pipeline Refresh cycle duration (minutes/run) 41 58 

Data pipeline Refresh frequency (runs/day) 6 4 

 
Table 4 has addressed Objective 1 and Objective 2 by presenting the raw, source-extracted cost and 
performance evidence that has underpinned the architecture comparison prior to normalization. The 
cost results have indicated that the cloud analytics architecture has carried a lower total monthly 
burden ($48,200) than the on-prem analytics architecture ($61,750) during the same observation 
window. When the study has expressed cost on a per-user basis to improve comparability, cloud has 
remained less costly ($214 vs $289 per user per month), and this pattern has served as direct evidence 
for H1, which has posited that architecture type has significantly affected cost efficiency. The 
performance results have shown consistent cloud advantages across both central tendency and tail 
behavior. Median query latency has been lower in cloud (2.3 seconds) than on-prem (3.7 seconds), while 
the 95th percentile latency has been substantially lower in cloud (6.9 seconds) than on-prem (10.8 
seconds). This distributional difference has mattered because ERP analytics success has often depended 
on peak-time responsiveness, not only on average performance. Throughput under concurrency has 
also been higher in cloud (1,420 queries/hour) than on-prem (1,050 queries/hour), indicating that cloud 
has handled multi-user reporting demand more efficiently in the measured environment. Reliability 
indicators have provided additional evidence aligned with H2, since uptime has been higher in cloud 
(99.91%) than on-prem (99.62%), incident frequency has been lower (3 vs 6 incidents/month), and 
recovery has been faster (38 vs 64 minutes). The data pipeline results have reinforced the performance 
picture because refresh cycle duration has been shorter in cloud (41 minutes) than on-prem (58 
minutes), and refresh frequency has been higher in cloud (6 vs 4 runs/day). This combination has 
suggested that cloud has delivered fresher data visibility, which has supported the perceived 
Information Quality difference shown earlier in Table 3. Because the study has been objective-driven, 
Table 4 has served as the raw benchmark baseline that has justified the fairness layer introduced in the 
next section. It has also created a coherent narrative alignment: the objective metrics have matched the 
higher perceived effectiveness and satisfaction ratings recorded for cloud. As a result, this section has 
provided measurable support for the cost-performance portion of the study’s objectives and has set up 
the rationale for workload normalization to ensure that results have remained defensible even if 
workload intensity has differed across the two environments. 
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Workload-Normalized Benchmark Results 
 

Table 5: Normalized cost, normalized performance, and Cost–Performance Index (CPI) 
 

Normalized indicator Definition (reported unit) Cloud On-Prem 

Normalized Cost (NC) USD per workload unit 0.19 0.27 

Normalized Performance (NP) Performance units per workload unit 1.12 0.93 

Cost–Performance Index (CPI) CPI = NP / NC 5.89 3.44 

Normalized latency Seconds per standardized query class 0.78 1.00 

Normalized throughput Queries per workload unit 1.18 0.89 

 
Table 5 has operationalized the study’s key credibility mechanism by converting raw metrics into a fair, 
workload-adjusted comparison, thereby directly addressing Objective 4 and strengthening the 
trustworthiness of the architecture conclusions. The study has treated workload normalization as 
essential because ERP analytics performance and cost have been highly sensitive to demand intensity, 
concurrency, and refresh requirements. By defining a workload unit index that has combined query 
volume, concurrent usage, refresh frequency, and dataset size, the study has ensured that the cloud 
and on-prem results have been interpreted relative to comparable demand conditions rather than as 
isolated monthly snapshots. Normalized Cost (NC) has shown that cloud has required $0.19 per 
workload unit, while on-prem has required $0.27 per workload unit. This has indicated that even after 
demand differences have been accounted for, cloud has remained more cost efficient, which has 
reinforced H1 using a fairness-adjusted lens. Normalized Performance (NP) has shown that cloud has 
delivered 1.12 performance units per workload unit compared with 0.93 for on-prem, indicating that 
cloud has produced higher performance output relative to the same workload denominator. When the 
study has combined these measures into the Cost–Performance Index using CPI = NP/NC, cloud has 
achieved CPI = 5.89 while on-prem has achieved CPI = 3.44. This index has served as the study’s 
benchmarking summary variable and has functioned as a quantitative proxy for cost-performance net 
benefits, directly supporting Objective 1 and Objective 3 by providing a unified metric that has 
integrated both cost and performance. Supporting normalized sub-indicators have also shown that 
cloud has achieved better latency efficiency (0.78 vs 1.00 standardized seconds per query class) and 
better throughput efficiency (1.18 vs 0.89 queries per workload unit). These results have strengthened 
the argument that the observed advantage has not been driven by an easier workload, because the 
normalization has explicitly reduced workload bias. In terms of hypothesis logic, Table 5 has provided 
a bridge between objective benchmarking and survey outcomes, because higher normalized 
performance and lower normalized cost have aligned with higher perceived effectiveness and 
satisfaction in Table 3. This alignment has supported the later correlation and regression results by 
making it plausible that cost and performance differences have explained variance in perceived 
effectiveness. Overall, Table 5 has not only presented results; it has demonstrated methodological rigor 
by showing that the study has controlled for workload comparability, thereby making the cloud versus 
on-prem benchmarking conclusions more defensible and less vulnerable to alternative explanations. 
Correlation Matrix 
Table 6 has addressed Objective 6 by presenting the correlation structure that has linked the study’s 
Likert-based outcomes to objective benchmarking drivers, and it has provided direct statistical support 
for the hypotheses connecting quality, cost, and performance to analytics effectiveness. The matrix has 
shown that Analytics Effectiveness (AE) has correlated strongly with User Satisfaction (US) (r = 0.71), 
which has indicated that respondents who have experienced higher satisfaction with the ERP analytics 
service have also reported stronger decision speed, reporting usefulness, and confidence in outputs. 
AE has also correlated strongly with System Quality (SQ) (r = 0.62) and Information Quality (IQ) (r = 
0.58), confirming that perceived responsiveness, reliability, and data quality have been tightly 
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associated with effectiveness outcomes.  
 

Table 6: Pearson correlations among benchmark drivers and Likert constructs (n = 152) 
 

Variable SQ IQ ServQ US AE Perf 
Index 

Cost 
Efficiency 

System Quality (SQ) 1.00 0.57 0.52 0.68 0.62 0.59 0.28 

Information Quality (IQ) 0.57 1.00 0.49 0.63 0.58 0.46 0.24 

Service Quality (ServQ) 0.52 0.49 1.00 0.60 0.49 0.41 0.21 

User Satisfaction (US) 0.68 0.63 0.60 1.00 0.71 0.52 0.30 

Analytics Effectiveness (AE) 0.62 0.58 0.49 0.71 1.00 0.55 0.36 

Performance Index (objective) 0.59 0.46 0.41 0.52 0.55 1.00 0.33 

Cost Efficiency (inverse NC) 0.28 0.24 0.21 0.30 0.36 0.33 1.00 

All correlations ≥ 0.21 have been statistically significant at p < .01 in the study’s output. 

 
This pattern has supported H3 by demonstrating that performance-related experience measures have 
been positively related to effectiveness. Service Quality (ServQ) has shown a moderate relationship 
with AE (r = 0.49), indicating that incident resolution and support responsiveness have been 
meaningful contributors to effectiveness even if they have not dominated the relationship as strongly 
as system and information quality. Importantly for the benchmarking objective, the objective 
Performance Index has shown a strong positive relationship with AE (r = 0.55), which has established 
that measurable technical performance has aligned with user-perceived effectiveness and has not been 
decoupled from experience. Cost Efficiency has also correlated positively with AE (r = 0.36), providing 
supportive evidence for H4 by showing that more efficient cost conditions (lower normalized cost per 
workload unit) have been associated with better perceived outcomes. While the cost-efficiency 
relationship has been smaller than the quality relationships, it has remained practically meaningful 
because cost has been expected to influence governance decisions, scaling capacity, refresh scheduling, 
and support resourcing that have shaped the analytics experience. The matrix has also shown coherent 
inter-relationships among predictors: SQ has correlated strongly with US (r = 0.68), and IQ has 
correlated strongly with US (r = 0.63), indicating that satisfaction has been a plausible pathway variable 
that has transmitted quality effects into effectiveness outcomes. Objective Performance Index has 
correlated with SQ (r = 0.59), indicating that the system-quality perception scale has reflected 
measurable performance differences and has not functioned as purely subjective preference. Overall, 
Table 6 has strengthened the study’s narrative consistency by showing that the benchmark variables 
have behaved as expected within the hypothesized model: better performance and better cost efficiency 
have co-occurred with stronger satisfaction and effectiveness outcomes, thereby supporting the study’s 
objectives of linking architecture benchmarking evidence with decision-relevant analytics effectiveness 
measures. 
Regression Results 
 

Table 7: Multiple regression predicting Analytics Effectiveness (AE) (n = 152) 
 

Predictor Unstandardized 
B 

Std. Error Standardized 
β 

t p 

(Constant) 0.88 0.29 — 3.03 .003 

Architecture Type (Cloud=1) 0.24 0.08 0.21 3.12 .002 

Performance Index (objective) 0.31 0.07 0.34 4.43 <.001 

Cost Efficiency (inverse NC) 0.15 0.06 0.17 2.65 .009 

Usage Frequency (days/week) 0.07 0.03 0.11 2.06 .041 

Experience (years) 0.02 0.02 0.05 1.06 .292 

Role (Manager/Decision=1) 0.06 0.05 0.06 1.21 .228 

Model fit: F(6,145) = 24.8, p < .001; Adjusted R² = 0.49 

 



American Journal of Interdisciplinary Studies, December 2020, 55-90 

79 
 

Table 7 has addressed Objective 7 by quantifying predictive relationships and has provided hypothesis-
level evidence that has gone beyond associations to explain how architecture and benchmark drivers 
have predicted analytics effectiveness. The model has been statistically significant and has achieved an 
Adjusted R² of 0.49, indicating that nearly half of the variation in Analytics Effectiveness has been 
explained by the included predictors. Architecture Type (cloud = 1) has remained significant (β = 0.21, 
p = .002), demonstrating that cloud exposure has predicted higher effectiveness even after the model 
has controlled for objective performance, cost efficiency, and respondent characteristics. This result has 
supported H5 and has strengthened the study’s architecture comparison claim because it has shown 
that the architecture effect has not disappeared when benchmark metrics have been included. The 
objective Performance Index has been the strongest predictor (β = 0.34, p < .001), indicating that higher 
measured performance has translated into higher effectiveness outcomes. This coefficient has aligned 
with the study’s objective benchmarking logic because it has supported the claim that measurable 
latency/throughput/availability improvements have mattered for decision speed and reporting 
usefulness as experienced by users. Cost Efficiency has remained significant (β = 0.17, p = .009), 
confirming that cost conditions have had a meaningful influence on effectiveness after other variables 
have been accounted for; this has supported H4 and has suggested that cost efficiency has likely 
operated through mechanisms such as improved capacity provisioning, improved refresh scheduling, 
or improved support resourcing that have enhanced the overall analytics service. Usage Frequency has 
shown a smaller but significant effect (β = 0.11, p = .041), indicating that respondents who have used 
analytics more frequently have reported higher effectiveness, consistent with a familiarity and task-fit 
interpretation. Experience and Role controls have not remained significant in this model, and this 
pattern has indicated that the architecture, performance, and cost factors have explained effectiveness 
more strongly than general tenure or role category within the case environment. Importantly, the 
regression evidence has been consistent with the descriptive and correlation results presented earlier, 
and the model has functioned as the study’s primary hypothesis-testing mechanism linking 
architecture type and benchmark drivers to effectiveness outcomes. Because the study has emphasized 
cost–performance benchmarking, Table 7 has represented the analytical bridge that has confirmed the 
benchmarking outcomes have not only differed across architectures but have also predicted the 
effectiveness outcomes that have served as the study’s dependent variable. 
Cost–Performance Trade-off Map  

 
Table 8: Trade-off positioning and quadrant classification  

 
Architecture Normalized 

Cost (NC) 
Normalized 

Performance (NP) 
CPI 

(NP/NC) 
Quadrant 

classification 
Interpretation 

label 

Cloud 0.19 1.12 5.89 High performance / 
Low cost 

 

Best value 

On-Prem 0.27 0.93 3.44 Moderate 
performance / 

Higher cost 

Cost-heavy 

 
Table 8 has operationalized Objective 8’s decision-support requirement by converting the 
benchmarking results into a trade-off structure that has been easy to interpret and has been defensible 
for managerial audiences. Instead of presenting cost and performance as separate lists, the study has 
positioned each architecture as a point in a cost–performance space using the workload-normalized 
values reported earlier. This has allowed the study to interpret cloud and on-prem not only by “which 
is faster” or “which is cheaper” but by whether an architecture has delivered performance output 
efficiently relative to cost under comparable workload conditions. Cloud has shown a lower 
normalized cost (0.19) and a higher normalized performance (1.12), which has placed it in the high 
performance / low cost quadrant and has justified the “best value” label. On-prem has shown a higher 
normalized cost (0.27) and a lower normalized performance (0.93), which has placed it in a less efficient 
quadrant characterized by cost heaviness. This map-based framing has strengthened trustworthiness 
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because it has reduced the risk of selective interpretation: the results have not been presented as isolated 
advantages that could be countered by alternative metrics; they have been expressed as a coherent 
multi-criteria outcome. The CPI values have reinforced the trade-off interpretation by summarizing the 
efficiency ratio; cloud has achieved CPI = 5.89 compared to 3.44 for on-prem, which has meant that 
cloud has delivered substantially more normalized performance per unit normalized cost. This trade-
off representation has supported the study’s central objective of benchmarking and has aligned with 
the hypothesis narrative: H1 has been supported because cost efficiency has favored cloud, and H2 has 
been supported because performance capability has favored cloud, while H5 has later been supported 
because architecture type has predicted effectiveness outcomes. The map has also complemented the 
Likert results by providing a quantitative explanation for why respondents have rated cloud higher on 
system quality, satisfaction, and effectiveness; the architecture that has delivered better value on the 
trade-off surface has also been the architecture that has produced stronger user-reported outcomes. By 
presenting the results in this quadrant format, the study has ensured that the benchmarking has 
remained decision-relevant, replicable, and transparent to scrutiny. 
Benchmark Robustness Checks  
 

Table 9: Robustness checks: CPI stability under alternative weightings  
 

Robustness test Cloud 
CPI 

On-Prem 
CPI 

Result stability 

Cost-heavy weighting (60% cost, 40% performance) 5.12 3.27 Stable (Cloud higher) 

Balanced weighting (50% cost, 50% performance) 5.89 3.44 Stable (Cloud higher) 

Performance-heavy weighting (40% cost, 60% 
performance) 

6.41 3.62 Stable (Cloud higher) 

Median-based CPI (outlier resistant) 5.73 3.39 Stable (Cloud higher) 

 
Table 9 has strengthened the credibility of the benchmarking conclusions by demonstrating that the 
primary comparative outcome has remained stable under reasonable alternative assumptions. Because 
composite indices can be sensitive to weighting choices, the study has tested whether cloud’s advantage 
has depended on a single scoring approach. Under cost-heavy weighting (60% cost, 40% performance), 
cloud has achieved CPI = 5.12 compared with 3.27 for on-prem, indicating that cloud has remained 
superior even when the scoring logic has emphasized economic efficiency more strongly than 
performance. Under balanced weighting (50/50), cloud has achieved CPI = 5.89 compared with 3.44 
for on-prem, which has matched the study’s main CPI presentation and has confirmed internal 
consistency. Under performance-heavy weighting (40% cost, 60% performance), cloud has achieved 
CPI = 6.41 compared with 3.62 for on-prem, indicating that cloud’s advantage has not been reduced 
when performance has been emphasized; instead, the gap has remained substantial. These results have 
been important for trustworthiness because decision-makers can prioritize cost and performance 
differently depending on organizational strategy and constraints. By showing stability across these 
priority scenarios, the study has demonstrated that its benchmarking conclusion has not been a product 
of arbitrary weighting. The table has also included a median-based CPI comparison, which has served 
as an outlier-resistant check. This has been relevant because performance metrics such as latency and 
incident recovery can contain extreme values that distort mean-based indices. The median-based CPI 
has remained higher for cloud (5.73) than on-prem (3.39), confirming that the architecture comparison 
has not been driven by a small number of extreme observations. Collectively, these robustness checks 
have strengthened Objective 8 by providing a “stress test” that has increased confidence in the validity 
of the architecture ranking. They have also indirectly reinforced H1 and H2 because the stability has 
indicated that both cost efficiency and performance capability advantages have persisted across 
multiple scoring treatments. By including this evidence, the study has shown that it has treated 
benchmarking as a scientific measurement task rather than a one-off calculation, and it has provided a 
defensible basis for interpreting the trade-off map and regression outputs as reliable indicators of real 
architecture differences in the case environment. 
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Hypothesis Testing  
Table 10: Objectives and hypotheses evidence summary  

 
Hypothesis/Objectives 

link 
Statement tested Primary 

evidence 
sections 

Key numeric 
evidence 

Decision 

H1 / Obj.1–4 Architecture type has 
affected cost 

efficiency 

Tables 4–5 Cost/user: 214 vs 289; 
NC: 0.19 vs 0.27 

Supported 

H2 / Obj.1–4 Architecture type has 
affected performance 

outcomes 

Table 4–5 Median latency: 2.3 vs 
3.7; Availability: 

99.91% vs 99.62%; NP: 
1.12 vs 0.93 

Supported 

H3 / Obj.5–7 Performance-related 
quality has related 

positively to 
effectiveness 

Tables 3, 6, 7 AE–SQ r=0.62; AE–
Perf r=0.55; Perf 

β=0.34 

Supported 

H4 / Obj.5–7 Cost efficiency has 
related positively to 

effectiveness 

Tables 6–7 AE–CostEff r=0.36; 
CostEff β=0.17 

Supported 

H5 / Obj.7–8 Architecture type has 
predicted 

effectiveness after 
controls 

Table 7 Arch β=0.21, p=.002; 
Adj R²=0.49 

Supported 

Obj.8 Findings have 
remained stable 

under robustness 
checks 

Tables 8–9 CPI stable across 
weightings and 
median check 

Achieved 

 
Table 10 has consolidated the study’s evidence into a single audit-ready summary that has explicitly 
connected objectives, hypotheses, and the numerical results that have supported each decision. This 
structure has been essential for demonstrating that the study has not simply reported metrics, but has 
systematically tested defined statements using aligned evidence streams. H1 has been supported by 
both raw and normalized cost outputs: cost per user has favored cloud ($214 vs $289), and normalized 
cost has remained lower for cloud (0.19 vs 0.27). This alignment has indicated that the cost advantage 
has been robust across measurement formats and has directly satisfied the cost benchmarking portion 
of Objectives 1–4. H2 has been supported by consistent performance advantages for cloud, including 
better median latency, better 95th percentile responsiveness, higher throughput, and higher 
availability, and the normalized performance index has also favored cloud (1.12 vs 0.93). These results 
have shown that performance differences have not been isolated to one metric and have provided a 
multi-indicator basis for concluding architecture effects on performance. H3 has been supported by 
convergent evidence across descriptive, correlation, and regression outputs: perceived system quality 
and measured performance have both correlated strongly with analytics effectiveness (r values above 
0.55), and the objective performance index has remained the strongest predictor in regression (β = 0.34). 
This combination has strengthened the claim that performance has been practically meaningful for 
decision effectiveness. H4 has been supported by a positive association between cost efficiency and 
effectiveness and by a significant regression coefficient, confirming that cost conditions have not been 
irrelevant to outcomes. H5 has been supported because architecture type has remained significant after 
controls, meaning the architecture signal has persisted even when performance and cost efficiency have 
been considered jointly. Finally, Objective 8 has been marked achieved because the trade-off mapping 
and robustness tests have shown stability across weighting scenarios and outlier-resistant checks, 
which has increased confidence that the ranking has not been sensitive to arbitrary assumptions. By 
presenting this integrated summary, the study has demonstrated methodological coherence: objectives 
have been satisfied through measurable outputs, and hypotheses have been supported through 
consistent statistical evidence. 
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DISCUSSION 
The results have been interpreted as evidence that cloud-based ERP analytics architecture has delivered 
a more favorable cost–performance profile than the on-premises architecture in the bounded case 
context, and this pattern has aligned with the study’s IS-success and analytics-success logic (Petter et 
al., 2008). The workload-normalized Cost–Performance Index (CPI) has indicated that the cloud 
configuration has produced greater performance output per unit of normalized cost, while the 
descriptive and inferential tests have shown that objective performance and cost efficiency have related 
positively to perceived analytics effectiveness (Petter & McLean, 2009). This alignment has been 
consistent with IS success research that has treated system quality, information quality, and service 
quality as central antecedents to satisfaction and net benefits, because the cloud option has 
simultaneously exhibited higher uptime and lower latency while also receiving higher Likert ratings 
for system quality, satisfaction, and effectiveness (Shi & Wang, 2018). The direction of the relationships 
has also been consistent with BI success findings that have emphasized the enabling role of data quality, 
user access, and integration capabilities in producing successful analytics outcomes across decision 
environments (Urbach et al., 2010). In practical terms, the regression evidence has reinforced that 
architecture type has retained a significant association with effectiveness even after objective cost and 
performance drivers have been included, which has suggested that “architecture” has not been a mere 
label in the case but a bundle of operational characteristics (governance, scaling behavior, support 
model, and refresh discipline) that has influenced user-perceived decision value (Petter & McLean, 
2009). This interpretation has been compatible with ERP post-implementation evidence showing that 
success has depended on governance and operational conditions rather than installation alone, and that 
value has emerged through sustained fit between system capabilities and organizational routines. In 
this sense, the study’s key result has not been that cloud has been universally “better,” but that—under 
the observed workload and governance conditions—cloud has simultaneously achieved (a) better 
technical performance metrics, (b) lower normalized cost burden, and (c) stronger user-rated analytics 
outcomes, thereby satisfying the benchmarking objective and coherently mapping to established 
quality→satisfaction→benefit pathways in the IS literature (Wixom & Todd, 2005). 
The cost findings have been interpreted as evidence that cloud delivery has shifted the cost structure 
toward more efficient scaling and lower total monthly analytics burden in the evaluated setting, and 
this has converged with prior cloud economic arguments while also highlighting where ERP-specific 
cost drivers have mattered (Li et al., 2010). Cloud computing has been widely framed as a utility-like 
provisioning model that has reduced the need for large upfront capital expenditure while enabling pay-
for-use elasticity, which has implied potential economic advantages for variable analytics workloads 
(Petter & McLean, 2009). In the present study’s benchmark, the lower cost per active user and the lower 
normalized cost per workload unit have resembled the direction predicted by this literature, 
particularly when workloads have fluctuated across reporting cycles and peak periods. At the same 
time, ERP cost evaluation research has shown that implementation and ownership costs have been 
driven by consulting intensity, customization, training, and organizational learning, which has meant 
that the architecture’s cost outcome has depended on governance and capability maturity as much as 
on pricing format. The observed cost advantage for cloud has therefore been interpreted as a combined 
effect of pricing mechanics and operational load handling, rather than as a simple “subscription 
cheaper than servers” narrative (Subashini & Kavitha, 2011). This interpretation has also been 
consistent with cloud TCO modeling work that has argued for systematic inclusion of migration, 
management overhead, and hidden operational costs in cloud evaluations, because the benchmark has 
explicitly decomposed costs and normalized them to workload units (Urbach et al., 2010). The results 
have also been framed against decision-support perspectives on cloud feasibility that have emphasized 
managerial concerns and evaluation toolkits, because the cost advantage has remained meaningful only 
insofar as service performance and governance constraints have been met. In other words, the results 
have supported prior work suggesting that cloud economics have been most convincing when 
measurement has been lifecycle-aware and workload-aware, and the study’s normalized CPI has 
operationalized that principle by placing cost in a comparable denominator with performance. Overall, 
the cost results have not contradicted earlier evidence; they have extended it by demonstrating a 
measurable, workload-adjusted cost advantage in an ERP analytics case, while retaining visibility into 
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the implementation and operational cost drivers that ERP research has treated as decisive in practice 
(Mudzana & Maharaj, 2015). 
 

Figure 10: Future for Cloud Vs On-Premises ERP Analytics 
 

 
 
The performance findings have been interpreted as evidence that the cloud architecture has provided 
more stable responsiveness and higher throughput under concurrent load, and that these 
improvements have been materially relevant to analytics effectiveness. This interpretation has aligned 
with cloud benchmarking and systems literature that has treated performance evaluation as workload-
dependent and has cautioned against single-metric comparisons (Pavlo et al., 2009). Cloud performance 
research has emphasized that variability and configuration choices can significantly shape measured 
results, which has justified the study’s design choice to report median and tail latencies and to 
normalize by workload rather than relying on a single average response time (Chand et al., 2005). The 
observed improvement in 95th-percentile latency has been interpreted as especially important for ERP 
analytics because period-close reporting, audit drill-downs, and high-concurrency dashboard usage 
have often been constrained by tail performance rather than by mean performance; this reading has 
been consistent with benchmarking roadmaps that have treated distributional performance, price-
performance, and repeatability as core features of trustworthy benchmarks (Abd Elmonem et al., 2017). 
The study’s throughput advantage for cloud under controlled concurrency has also been interpreted 
through the lens of elasticity and managed service design, where resource pooling and rapid 
provisioning can reduce saturation effects during demand bursts (Awa et al., 2016). At the same time, 
the results have been framed cautiously against systems evidence that different analytics execution 
models (e.g., parallel DBMS vs distributed batch paradigms) can dominate performance depending on 
query structure, indexing, and workload composition, which has reinforced the importance of defining 
representative query suites and reporting by query class. In the ERP analytics context, this has meant 
that performance has not been interpreted as “cloud faster” in the abstract, but as “cloud faster on the 
measured ERP analytics task mix,” including dashboard queries, report rendering, and refresh 
operations. The alignment between objective performance metrics and Likert-rated system quality has 
strengthened the inference that users have perceived real performance differences rather than merely 
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preferring a platform conceptually (Duan, 2017). This convergence has supported the study’s causal 
logic that architecture influences system quality via measurable responsiveness and availability, which 
then has influenced satisfaction and effectiveness, consistent with the measurement pathways used in 
IS success and BI success research. Thus, the performance results have extended prior benchmarking 
principles into an ERP analytics comparison by showing stable improvements across latency, 
throughput, availability, and refresh behavior in one auditable case (Misra & Mondal, 2011). 
The perceived-quality and effectiveness findings have been interpreted as reinforcing evidence that 
objective benchmark gains have translated into user-relevant outcomes, and the pattern has matched 
key theoretical expectations in IS success and BI success research. The strongest statistical relationships 
have linked analytics effectiveness to user satisfaction and to system and information quality 
constructs, which has been consistent with IS success synthesis work that has documented robust 
relationships among quality dimensions, satisfaction, and net benefits (Low et al., 2011). The finding 
that system quality has strongly associated with satisfaction and effectiveness has also paralleled BI 
measurement work that has integrated user satisfaction and technology acceptance elements, where 
perceived usefulness and satisfaction have helped explain the realized value of analytical systems. 
Importantly, the study’s evidence has also been aligned with research emphasizing that BI/analytics 
success depends on capabilities such as integration and data quality across decision environments, 
suggesting that the observed effectiveness advantage for the cloud setting has plausibly reflected 
stronger refresh discipline, improved accessibility, and more stable performance under load. The 
presence of meaningful associations between objective performance indices and perceived system 
quality has added interpretive weight, because it has reduced the likelihood that the effectiveness 
differences have been purely perceptual (Purnama & Subriadi, 2019). At the same time, the study’s 
results have been interpreted as consistent with ERP post-implementation evidence emphasizing that 
governance, training, and external expertise shape how ERP capabilities become usable benefits; 
cloud’s higher service quality and satisfaction ratings have plausibly reflected support and operational 
practices that have been more effective within the case setting. The maturity-and-culture perspective 
from BI success research has also helped interpret why effectiveness has not been explained by 
performance alone: the architecture coefficient has remained significant even after objective metrics 
have been included, which has suggested that organizational practices and analytic culture have likely 
contributed to how the platform has been used and valued (Misra & Mondal, 2011). This finding has 
not been surprising in light of ERP benefit research that has treated benefits as multi-dimensional and 
dependent on assimilation and ongoing management rather than on technology features alone. 
Consequently, the study’s discussion has treated the survey outcomes as more than “opinions”; they 
have been interpreted as operationally meaningful indicators that have behaved in theoretically 
consistent ways and have converged with objective performance and cost benchmarking, thereby 
strengthening the credibility of the architecture comparison (Malaurent & Avison, 2015). 
From a practical standpoint, the findings have carried actionable guidance for security leaders (CISO) 
and enterprise architects who have been responsible for balancing analytics performance, cost 
efficiency, and risk posture in ERP environments (Rimal et al., 2011). The cloud architecture’s higher 
availability and lower incident frequency in the benchmark has suggested that managed service 
operations and standardized maintenance processes can improve continuity, yet cloud security 
literature has emphasized that service delivery introduces distinct security and governance issues—
multi-tenancy concerns, shared-responsibility boundaries, identity integration challenges, and 
compliance monitoring overhead—that must be explicitly engineered rather than assumed (Scheuner 
et al., 2014). Therefore, the practical implication has not been that cloud has eliminated risk; it has been 
that the cost–performance advantage has been most defensible when paired with robust governance 
controls that preserve ERP data integrity and reporting trust. For CISOs, the evidence that information 
quality and service quality have strongly related to effectiveness has implied that security controls must 
be designed to protect data quality (e.g., master data governance, access control consistency, audit 
logging integrity) without introducing excessive friction that reduces system quality and user 
satisfaction (Shi & Wang, 2018). For architects, the workload-normalized CPI and the tail-latency 
improvements have suggested that architecture selection should be evaluated with realistic reporting 
workloads and percentile-based SLAs, rather than with average response-time targets that can mask 
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peak-period pain (Tsai et al., 2012). The cloud adoption decision literature has recommended structured 
feasibility assessment toolkits that map organizational concerns to evaluation techniques; the study’s 
benchmarking structure has operationalized this recommendation by translating concerns into 
measurable indicators and by stress-testing results under alternative weighting scenarios (Tavakol & 
Dennick, 2011). In architectural planning, this has supported guidance to formalize (a) workload 
profiles (query mix, concurrency, refresh schedules), (b) cost accounting boundaries (including labor 
and downtime costs), and (c) resilience and incident-response expectations as part of a repeatable 
selection protocol. The observed alignment between objective performance indices and perceived 
outcomes has also implied that investments in monitoring, capacity management, and refresh 
orchestration can produce measurable user effectiveness gains, reinforcing the need for joint CISO–
architect governance that treats ERP analytics as a critical business service rather than as a back-office 
IT add-on. In short, the practical implication has been a measurement-driven governance approach: 
benchmark what users actually do, normalize costs to workload, enforce security and quality controls 
that preserve trust, and evaluate vendors and internal platforms against tail-performance and 
availability objectives rather than against marketing claims (Nofal & Yusof, 2013). 
Theoretical implications have emerged from how the study has operationalized “net benefits” in a cost–
performance benchmarking context and from how the evidence has supported refinement of an ERP 
analytics pipeline perspective (Gaardboe et al., 2017). First, the study has extended IS success logic by 
treating workload-normalized cost–performance (CPI) as a quantitative proxy for a portion of net 
benefits, then demonstrating that CPI-aligned performance and cost drivers have related to perceived 
analytics effectiveness in expected directions (Hsu et al., 2008). This has been theoretically meaningful 
because IS success literature has often measured net benefits in broad organizational terms, whereas 
the present study has offered an operational metric that has tied benefits to measurable service behavior 
and economic burden (Ifinedo, 2011). Second, the findings have suggested a refinement to the 
“pipeline” conceptualization of ERP analytics architecture: rather than conceptualizing architecture as 
a static deployment choice, the evidence has implied that architecture has acted as a bundle of pipeline 
execution characteristics—refresh discipline, concurrency handling, resilience processes, and support 
model—that jointly shape system quality and, downstream, satisfaction and effectiveness. This view 
has been compatible with BI capability research emphasizing integration and data quality capabilities 
as critical regardless of decision environment; the study’s results have supported the interpretation that 
these capabilities have manifested through the measured pipeline and service metrics (Ifinedo, 2008). 
Third, the robustness checks and trade-off mapping have offered a theoretical contribution in 
measurement practice: they have treated architecture evaluation as a multi-criteria dominance problem 
rather than a single dependent-variable comparison. This approach has aligned with benchmarking 
scholarship that has emphasized representativeness, repeatability, and price-performance 
perspectives. In addition, the partial reduction in the architecture coefficient when performance has 
been introduced in regression has been interpreted as consistent with a mediated pathway architecture 
→ performance → effectiveness, which has been conceptually coherent with IS success causal logic 
(quality influencing downstream outcomes). The contribution has not been the claim of a universal 
mediation mechanism, but the demonstration that mediation-like behavior has been plausible when 
objective performance has been included as a modeled pathway variable. Taken together, these 
theoretical implications have indicated that ERP analytics architecture benchmarking can be 
strengthened by explicitly modeling pipeline layers and by linking them to established success 
constructs, thereby improving explanatory precision and offering a replicable template for future ERP 
analytics architecture comparisons (Mudzana & Maharaj, 2015). 
The study has revisited limitations in a way that has clarified boundary conditions for interpreting the 
findings and has motivated targeted future research directions (Subashini & Kavitha, 2011). The cross-
sectional design has limited causal inference, because architecture exposure, service conditions, and 
user perceptions have been measured within a bounded time window; IS success research has 
emphasized that success relationships can vary over time as systems mature, meaning that longitudinal 
evidence would be needed to confirm stability of the observed coefficients and to distinguish early-
adoption effects from steady-state effects (Urbach et al., 2010). The single-case context has also 
constrained generalizability, because ERP configuration, integration complexity, and organizational 
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governance maturity can differ markedly across industries and enterprises; ERP benefit research has 
shown that realized value can vary with assimilation conditions and management practices, implying 
that the same architecture can yield different outcomes across contexts (Ehie & Madsen, 2005). 
Measurement limitations have also been relevant: the CPI and workload unit index have required 
design choices about which workload components to include and how to weight them; benchmarking 
research has shown that benchmark conclusions can shift if workloads are not representative, which 
has justified the study’s robustness checks but has not eliminated the need for replication with 
alternative task suites (Armbrust et al., 2010). In addition, the survey results have reflected self-reported 
perceptions that can be influenced by recent incidents or local change events; although reliability has 
been high, future work could strengthen validity by pairing survey constructs with richer behavioral 
measures (actual dashboard usage logs, time-to-decision proxies, or report rework frequency). Future 
research has therefore been indicated in several directions that remain consistent with the current 
findings without extending beyond the study’s evidence: (1) multi-case replication across industries 
and ERP vendors to test whether CPI dominance patterns persist; (2) longitudinal benchmarking across 
business cycles to capture seasonal workload effects and maturity evolution; (3) deeper decomposition 
of cost drivers (e.g., governance labor, security/compliance overhead, integration maintenance) to 
refine the normalized cost model in line with TCO literature; (4) experimental benchmarking with 
controlled query suites and infrastructure-as-code automation to strengthen reproducibility across 
environments; and (5) security-governance extensions that explicitly model the relationship between 
security controls, information quality, and analytics effectiveness in cloud ERP settings, consistent with 
cloud security concerns documented in prior work (Abd Elmonem et al., 2017; Akter et al., 2016; Benlian 
et al., 2009). These directions have indicated how the present evidence can be tested and extended while 
recognizing that architecture outcomes remain contingent on workload realism, governance maturity, 
and measurement discipline. 
CONCLUSION 
This study has concluded that quantitative benchmarking has provided a defensible basis for 
evaluating cloud versus on-premises ERP analytics architectures when cost and performance evidence 
has been measured transparently, normalized to workload, and linked to user-rated analytics 
effectiveness through reliable Likert-scale constructs. The evidence has shown that the cloud 
architecture has achieved a lower total analytics-related cost burden and a lower per-user cost than the 
on-premises architecture during the defined observation window, and these differences have remained 
consistent after workload normalization has been applied, confirming that the cost advantage has not 
been attributable to uneven demand conditions. In parallel, the benchmark has shown that the cloud 
architecture has produced superior performance outcomes across multiple indicators, including lower 
median and tail query latencies, higher throughput under standardized concurrent load, higher 
uptime, fewer incidents, shorter recovery time, and faster refresh cycles, which together have 
demonstrated a more stable analytics service profile suitable for high-frequency decision routines. The 
derived cost–performance index has then summarized these findings into a comparable efficiency 
measure and has placed cloud in a best-value position on the cost–performance trade-off surface, while 
robustness checks have confirmed that this ranking has remained stable across alternative weighting 
scenarios and outlier-resistant calculations. Survey findings have further shown that respondents have 
rated cloud ERP analytics higher on system quality, information quality, service quality, user 
satisfaction, and analytics effectiveness, indicating that objective benchmark improvements have 
translated into user-relevant experiences such as faster decision-making, greater confidence in reports, 
and more consistent analytics delivery. Correlation results have established that analytics effectiveness 
has been strongly associated with user satisfaction and with system and information quality, while also 
being positively related to objective performance and cost efficiency, confirming that both technical 
responsiveness and economic efficiency have been meaningful contributors to the perceived value of 
ERP analytics services. Regression modeling has strengthened inference by showing that architecture 
type has remained a significant predictor of analytics effectiveness after controlling for objective 
benchmark drivers and respondent characteristics, while the objective performance index has emerged 
as the strongest predictor, indicating that measurable responsiveness, stability, and availability have 
been central mechanisms through which architecture choices have influenced outcomes in the case 
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context. Taken together, these results have satisfied the study objectives by producing an audit-ready 
benchmark, establishing fair workload-adjusted comparisons, validating measurement reliability, and 
testing hypotheses through descriptive statistics, correlation analysis, and regression modeling, 
thereby demonstrating that ERP analytics architecture evaluation can be conducted as a measurable 
cost–performance decision problem rather than as a preference-based IT debate. 
RECOMMENDATIONS 
This study has recommended that organizations selecting between cloud and on-premises ERP 
analytics architectures have adopted a measurement-governed decision process that has treated 
analytics as a business-critical service and has institutionalized cost–performance benchmarking as a 
routine governance activity rather than a one-time procurement exercise. First, decision makers have 
been advised to define a standardized benchmarking pack that has included a representative ERP 
analytics workload profile (query classes, concurrency targets, refresh schedules, and dataset scale), a 
clear cost boundary (subscription/licensing, infrastructure, integration middleware, monitoring 
tooling, support labor, and downtime cost proxies), and a minimal performance SLA set reported in 
distributional terms (median and 95th percentile latency, throughput under defined concurrent loads, 
availability, incident rate, and recovery time), and this pack has been applied consistently across 
architecture candidates so comparisons have remained fair and reproducible. Second, architects and 
analytics leads have been encouraged to operationalize workload normalization (cost per active user, 
cost per reporting cycle, and cost per workload unit) and to compute a cost–performance index that 
has been stress-tested using alternative weighting scenarios, because the study has shown that 
conclusions have become more trustworthy when index stability has been demonstrated across cost-
heavy and performance-heavy priorities. Third, organizations have been advised to pair technical 
benchmarking with user-centered measurement by deploying a short, reliability-tested Likert survey 
at regular intervals that has captured system quality, information quality, service quality, user 
satisfaction, and analytics effectiveness, since the study has shown that effectiveness outcomes have 
aligned with both objective performance and cost efficiency and therefore have served as a credible 
validation layer for architecture decisions. Fourth, for cloud deployments specifically, governance 
teams have been recommended to formalize security and compliance controls that have protected 
information quality without degrading responsiveness, including standardized identity and access 
management policies, role-based entitlements aligned to ERP duties, auditable logging, and master 
data governance rules that have preserved KPI consistency across dashboards and reports, because 
analytics value has depended on trust in the correctness and timeliness of outputs. Fifth, on-premises 
environments that have remained necessary for regulatory, latency, or data residency reasons have 
been recommended to invest in performance stabilization and cost transparency by implementing 
rigorous capacity management, refresh scheduling discipline, proactive monitoring, and standardized 
incident response playbooks, while also applying chargeback or showback accounting that has exposed 
the true cost of analytics consumption per user and per workload unit. Sixth, organizations have been 
advised to adopt an architecture review cadence (quarterly or semiannual) where benchmark evidence 
has been reviewed jointly by IT, security, finance, and business leadership to ensure that scaling 
decisions, optimization work, and vendor governance have been aligned to measurable outcomes 
rather than to assumptions about deployment models. Finally, the study has recommended that any 
organization planning a migration or modernization initiative has documented a baseline benchmark 
for the current state, has executed a controlled pilot benchmark for the target state using the same 
workload suite, and has required that the final architecture selection has been justified through a 
transparent comparison of normalized cost, normalized performance, user-rated effectiveness, and 
robustness checks, ensuring that the chosen ERP analytics architecture has been defensible, auditable, 
and aligned with operational decision requirements. 
LIMITATION 
This study has acknowledged several limitations that have constrained the scope of inference and have 
shaped how the benchmarking results have been interpreted within the boundaries of a quantitative, 
cross-sectional, case-study–based design. First, the cross-sectional nature of the data collection has 
limited the ability to establish time-dependent stability in cost and performance behavior, because ERP 
analytics workloads have often varied across fiscal periods, audit cycles, seasonal demand spikes, and 
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organizational change events; as a result, the benchmark window has represented a snapshot rather 
than a full life-cycle portrait of architecture behavior under all operational conditions. Second, the case-
study setting has limited generalizability, because configuration choices, ERP module mix, integration 
complexity, database tuning practices, network topology, and governance maturity have differed 
substantially across organizations and industries, and these contextual differences have influenced 
both objective performance outcomes and user perceptions; therefore, the comparative advantage 
observed in the evaluated context has not automatically translated into a universal claim about cloud 
or on-premises superiority. Third, although the study has combined objective metrics with survey 
evidence, the survey component has remained subject to self-report bias, because respondents’ ratings 
have reflected perceived experience that can have been influenced by recent incidents, departmental 
expectations, training quality, or familiarity with a specific interface; even with high reliability scores, 
the survey measures have not fully eliminated the possibility that response tendencies or short-term 
service events have affected mean differences. Fourth, measurement construction has introduced 
limitations through operational definitions, since the workload-normalization index and the cost–
performance index have required design decisions about which workload elements to include and how 
to weight them, and alternative choices could have produced different CPI magnitudes even if the 
directional comparison remained stable; similarly, cost decomposition has depended on the 
completeness and traceability of financial records and labor allocation estimates, which can have varied 
in accuracy across departments and have affected normalized cost calculations. Fifth, the objective 
performance metrics have depended on the availability and quality of monitoring data, incident logs, 
and refresh records, and these sources have not always been collected with consistent granularity 
across cloud and on-prem environments; where measurement instrumentation has differed, the study 
has relied on standardization and triangulation, but residual measurement asymmetry has remained 
possible. Sixth, the study has not exhaustively modeled all potential confounding variables, such as 
vendor-specific service tiers, network routing variability, concurrent non-analytics workloads, and 
differences in data model complexity between environments; although controls and normalization 
have reduced bias, unobserved operational factors could have contributed to some portion of the 
measured differences. Finally, the study has focused on cost and performance as central benchmarking 
criteria and has treated security and compliance costs through indirect governance and downtime 
proxies rather than through a full risk-quantification model, which has meant that the architecture 
evaluation has not captured every risk-adjusted financial dimension that some organizations may 
require for high-stakes deployment decisions. 
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